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ABSTRACT 

Monitoring water quality is essential for safeguarding the health and safety of aquatic ecosystems and public water sources. 
Conventional water quality classification techniques frequently encounter challenges due to the intrinsic uncertainty and 
imprecision present in environmental data. This study presents an innovative fuzzy logic framework, enhanced by a Genetic 
Algorithm (GA), to address these complexities. The GA optimizes membership functions within the fuzzy framework, refining the 
classification process and improving adaptability. The proposed method integrates fuzzy set theory with machine learning 
techniques to categorize water quality into specific classifications. Validated using data from Malaysian rivers, the model accounts 
for critical factors such as pH, Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total 
Suspended Solids (TSS), and Ammoniacal Nitrogen (AN). The experimental results demonstrate a notable improvement, with the 
fuzzy logic model achieving an overall accuracy of 89.6%, surpassing traditional threshold-based (77.8%) and decision tree classifier 
methods (84.2%). The framework effectively handles ambiguous or borderline cases, showcasing its precision and robustness. The 
study concludes that integrating fuzzy frameworks and genetic optimization into water quality evaluation significantly enhances 
classification accuracy, thereby supporting informed decision-making in environmental management. 
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1. Introduction 
 

Water quality is a vital determinant of the health and safety of aquatic ecosystems and human 
water supplies. The effective management of water resources is contingent upon precise water 
quality evaluations. These evaluations facilitate the detection of contamination, the execution of 
pollution mitigation strategies, and the preservation of water resources for future generations. The 
classification of water quality is intrinsically difficult due to the numerous and dynamic environmental 
elements, including pH, Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Biochemical 
Oxygen Demand (BOD), Total Suspended Solids (TSS), and Ammoniacal Nitrogen (AN) [1]. 
Conventional classification techniques, including statistical methods and standard machine learning 
algorithms, frequently encounter challenges due to the intrinsic uncertainties and overlapping 
characteristics of water quality data, resulting in misclassification and diminished reliability [2,3]. 

Fuzzy logic provides a robust solution to these restrictions by integrating the notion of partial 
membership and addressing the imprecision in environmental datasets. Fuzzy logic models have 
been extensively utilised across diverse domains for decision-making amid uncertainty, rendering 
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them appropriate for water quality categorisation when clear distinctions between quality levels are 
frequently unfeasible [4]. Fuzzy logic, by modelling parameters as fuzzy sets and employing rule-
based systems, offers a more refined classification that corresponds with real-world variability [5]. 

Conventional water quality categorization approaches depend on established thresholds to 
categorize water quality levels, such as "Excellent," "Good," or "Poor." These inflexible limits fail to 
encompass the incremental transitions that frequently occur between groups [6]. A sample having a 
dissolved oxygen value somewhat below the "Good" criteria may be categorised as "Poor," although 
being near compliance with the superior norm [7]. This binary classification method is inadequate for 
addressing ambiguous samples, particularly in the context of borderline cases. 

In response to these challenges, this study proposes a novel fuzzy logic framework integrated 
with Genetic Algorithms (GA) to optimize the classification process. The GA enhances the adaptability 
of the fuzzy model by refining membership functions, leading to improved categorization accuracy. 
By utilizing a machine learning-driven optimization strategy, the proposed methodology addresses 
both imprecision in data and the dynamic nature of environmental conditions, resulting in a more 
robust water quality classification system. This hybrid approach aims to provide more accurate and 
reliable classifications, offering significant advancements over traditional methods. 

The incorporation of fuzzy logic into water quality categorisation has been thoroughly 
investigated in recent years, with numerous research demonstrating its efficacy in addressing the 
inherent ambiguities of environmental data. Various methodologies have been suggested to improve 
the precision and comprehensibility of water quality indexes, especially by integrating fuzzy systems 
with alternative computational models.  

Recent research has demonstrated the efficacy of fuzzy logic in formulating water quality indices 
(WQIs) that offer more refined classifications than conventional methods. A 2024 study utilized a 
fuzzy multicriteria methodology to assess the Water Quality Index in surface water systems. The 
research indicated that employing fuzzy thresholds for various sub-indices enhanced the distinction 
across water quality categories, enabling the detection of nuanced variations sometimes overlooked 
by inflexible classification techniques [8].   

 
2. Methodology  

 
The suggested way to classify water quality uses a complex fuzzy logic structure that combines 

many computer methods to deal with the fact that environmental data is inherently uncertain and 
inaccurate. This part talks about how the framework was designed and put into action. It talks about 
getting the data ready, making fuzzy membership functions and fuzzy rules, and using machine 
learning techniques to make things better. Each part is carefully looked at to make sure that the 
whole approach is understood.   

 
2.1 Dataset and Preprocessing 

 
The dataset used in this study consists of water quality measurements collected from various 

river basins in Malaysia. The primary sources of the dataset include field monitoring stations and 
historical records from environmental agencies. The six key water quality parameters used for 
classification are pH, dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen 
demand (BOD), total suspended solids (TSS) and ammoniacal nitrogen (AN).  

Data Preprocessing includes: 
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i. Data Cleaning: Missing values were handled using interpolation techniques, while outliers 
were identified and removed using z-score analysis. 

ii. Normalization: All water quality parameters were normalized to a [0, 1] range to ensure 
consistent scaling and reduce the influence of parameters with larger value ranges. 

iii. Categorization: Water quality was classified into five classes (Class I to Class V) based on 
Malaysian WQI standards as shown in Table 1, with each sample labelled accordingly [1]. 

 
Table 1 
Water quality index classification based on Malaysia’s water quality standard 
Parameter Class 

I II III IV V 
Ammoniacal Nitrogen 
(mg/l) 

< 0.1 0.1 – 0.3 0.3 – 0.9 0.9 – 2.7 > 2.7 

Biochemical Oxygen 
Demand (mg/l) 

< 1 1 – 3 3 – 6 6 – 12 > 12 

Chemical Oxygen Demand 
(mg/l) 

< 10 10 – 25 25 – 50 50 – 100 > 100 

Dissolved Oxygen  
(mg/l) 

> 7 5 – 7 3 – 5 1 – 3 < 1 

pH > 7.0 6.0 – 7.0 5.0 – 6.0 < 5.0 > 5.0 
Total Suspended Solid 
(mg/l) 

< 25 25 – 50 50 – 150 150 – 300 > 300 

Water Quality Index  
(WQI) 

> 92.7 76.5 – 92.7 51.9 – 76.5 31.0 – 51.9 < 31 

 
2.2 Fuzzy Membership Functions 

 
Fuzzy membership functions are used to define the degree to which each water quality parameter 

falls within a specific class (Class I to Class V). Their design is critical for accurate classification. The 
membership functions were defined as follows: 

 
i. Triangular and Trapezoidal Shapes: Chosen for simplicity and effectiveness in defining 

boundaries between classes. 
ii. Parameter Calibration: A machine learning optimizer was employed to adjust the 

membership function limits dynamically, ensuring they accurately reflect the dataset’s 
unique characteristics. 

iii. Overlapping Functions: Overlaps were used to handle uncertainty and ambiguities, 
improving the model’s ability to classify borderline cases. 

 
The Fuzzy Inference System (FIS) uses a rule-based approach for classification, employing a 

Mamdani-type framework with "IF-THEN" rules: 
 

i. Rule Formulation: Rules were developed for all possible combinations of six water quality 
parameters, with prioritization strategies to resolve conflicts. 

ii. Fuzzification: Input values were converted into fuzzy sets based on the calibrated 
membership functions. 

iii. Aggregation and Inference: Multiple rules were combined to produce a fuzzy output 
representing a probability distribution across all water quality classes. 
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iv. Defuzzification: The centroid method was used to convert the fuzzy output into a crisp 
classification, assigning it to one of the five water quality classes. 

 
2.3 Integration with Machine Learning 

 
To improve the adaptability and precision of the fuzzy framework, a machine learning-driven 

optimisation strategy was incorporated into the methodology. This hybrid methodology integrates 
fuzzy logic with Genetic Algorithms (GA) to refine membership functions and optimise fuzzy rules. 
The initial population of membership function parameters was created utilising the ranges 
determined during the preprocessing phase. The fitness function was established according to 
categorisation accuracy. It assesses the efficacy of the membership functions in distinguishing among 
the five water quality classifications. Standard genetic operations, including crossover and mutation, 
were utilised to investigate the parameter space. The method continues to iterate until the variation 
in classification accuracy drops beneath a specified threshold, signifying convergence. 

A decision tree-based model was built on the identical dataset to enhance the fuzzy rules. The 
decision tree determines the most distinguishing parameters and formulates rules that optimise 
classification accuracy. These regulations were subsequently integrated into the fuzzy rule base, 
supplanting superfluous or contradictory rules. 

 
2.4 Performance and Evaluation Metrics 

 
The performance of the fuzzy logic-based framework was evaluated using standard classification 

metrics such as precision, recall, F1-score, and overall accuracy. The metrics are expressed in the 
following equations, Eq. (1) until Eq. (4) [11]. Additionally, a confusion matrix was generated to 
analyse the model's performance across different water quality classes. TP stands for "true positive," 
TN for "true negative," FP for "false positive," and FN for "false negative." Precision measures the 
accuracy of positive predictions. It’s the ratio of correctly predicted positive observations to the total 
predicted positive observations. Recall measures the ability of a model to capture all relevant 
instances of the positive class. It’s the ratio of correctly predicted positive observations to all actual 
positive observations. This metric is useful when it’s important to capture as many positive instances 
as possible. The F1-Score is the harmonic mean of Precision and Recall, combining both metrics into 
a single score. It’s especially useful when you need a balance between Precision and Recall and is a 
good metric to use when there’s an uneven class distribution. 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 !"#!$

!"#!$#%"#%$
                                                                                                                           (1) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 = 	 !"

!"#%$
                                                                                                                                              (2) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 !"

!"#%"
                                                                                                                                        (3) 

 
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2	 ×	"&'()*)+,	×/'(011

"&'()*)+,#/'(011
                                                                                                            (4) 
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3. Results  
 
The results of the fuzzy logic-based water quality classification framework were evaluated using 

a dataset of 11,065 samples collected from various Malaysian rivers. The Water Quality Index (WQI) 
for each sample was calculated using the prescribed sub-index formulas and the overall Malaysian 
WQI standards. The results showcase the effectiveness of the proposed framework in accurately 
categorizing water quality into five distinct classes: Class I (Excellent), Class II (Good), Class III 
(Moderate), Class IV (Slightly Polluted), and Class V (Poor). The analysis of the distribution of samples 
across different water quality classes showed that the majority, 73.5% (8,132 samples), belonged to 
Class I (Excellent), followed by 15.2% (1,684 samples) in Class II (Good). Additionally, 9.1% (1,007 
samples) were categorized as Class III (Moderate), 1.8% (197 samples) as Class IV (Slightly Polluted), 
and only 0.4% (45 samples) fell into Class V (Poor). 

Figure 1 shows a histogram that shows how the WQI scores for all samples are spread out. The 
samples are coloured by their matching WQI classes, which range from Class I to Class V. The plot 
shows the number of samples in the higher WQI ranges, which means that a lot of the samples have 
great water quality (Class I). The kernel density estimate (KDE) line shows the general trend and draws 
attention to the distribution density. 

Figure 2 is a scatter plot showing the correlation between dissolved oxygen (DO) and water 
quality index (WQI). The colour of each point in the plot describes the water quality index class. 
Higher DO levels typically correspond to higher WQI scores, suggesting better water quality, as seen 
by the scatter plot, which demonstrates a strong association between DO and water quality. 

The optimisation findings show that the initial expert-defined ranges are not as effective as the 
GA-adjusted membership functions, especially for highly variable parameters like AN and SS. The GA 
improves its overall accuracy from 85.3% (when not optimised) to 89.6% (while optimised) after 50 
generations, achieving convergence. Thus, the methodology's proposed hybrid strategy is proven to 
be beneficial. 

 

 
Fig. 1. Graph of distribution of water quality index across classes 
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Fig. 2. Scatter plot of dissolved oxygen (DO) against WQI 

 
The performance of the proposed fuzzy framework was evaluated using precision, recall, and F1-

score for each class. The confusion matrix and overall classification metrics demonstrate the 
following: 

 
i. Class I (Excellent): Precision = 0.92, Recall = 0.95, F1-Score = 0.94 

ii. Class II (Good): Precision = 0.89, Recall = 0.87, F1-Score = 0.88 
iii. Class III (Moderate): Precision = 0.82, Recall = 0.78, F1-Score = 0.80 
iv. Class IV (Slightly Polluted): Precision = 0.75, Recall = 0.72, F1-Score = 0.74 
v. Class V (Poor): Precision = 0.68, Recall = 0.65, F1-Score = 0.67 

 
These values confirm that the framework handles the varying quality classes well, with the 

highest accuracy observed for Class I and II. The decrease in performance for Class V is attributed to 
the small number of samples in this category, which result in a less robust learning process. 

The proposed fuzzy logic framework was compared against traditional threshold-based models 
and decision tree classifiers as shown in Table II. The fuzzy logic framework achieved superior 
performance, demonstrating the ability to handle imprecise and uncertain data more effectively than 
traditional approaches. 

 
                                       Table 2 
                                       Performance metric for each model 

Model Overall Accuracy Precision Recall 
Threshold-Based 77.8% 0.76 0.77 
Decision Tree Classifier 84.2% 0.83 0.82 
Proposed Fuzzy Model 89.6% 0.88 0.89 

 
4. Conclusions 
 

We have presented a fuzzy logic-based framework for water quality classification that addresses 
the limitations of traditional methods. By leveraging fuzzy set theory and integrating machine 
learning-based optimization, the proposed model offers improved flexibility and accuracy in 
classifying water quality. Experimental results demonstrate that the fuzzy framework performs well 
even in the presence of ambiguity and overlapping class boundaries. 
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Future work will focus on expanding the model to include additional water quality parameters 
and testing it on diverse datasets from different geographical regions. Additionally, the integration 
of real-time data from IoT-based water quality monitoring systems could further enhance the 
practical applicability of the proposed framework in dynamic environments. Overall, this research 
contributes to the growing body of knowledge on environmental management by providing a robust, 
adaptable, and interpretable solution for water quality classification. 
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