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Dengue is one of the infectious diseases and has become the most public health 
issue. The previous studies were focused on the mathematical modelling of 
dengue transmission dynamics with different factors such as climates, mobility, 
time delays, and others. However, many existing models do not 
comprehensively assess the combined effects of multiple control strategies on 
dengue transmission, leading to gaps in effective intervention planning. By 
gaining a more detailed understanding of the relationship between dengue 
transmission dynamics and its control strategies, the spread of dengue disease 
could be diminished. In this research, the method proposed is mathematical 
modelling and estimation of reproduction number on the dengue transmission 
with the implementation of control strategies. The dengue model consists of 
SIR-SI compartments which are SIR for human populations and SI for mosquito 
populations respectively. The mathematical analysis is carried out including 
equilibrium, stability analysis and positivity solutions. The basic reproduction 
number is defined to study the effect of the control strategies on the dengue 
transmission dynamics. The extended dengue is then developed with the 
implementation of three control strategies such as insect repellents, insecticides 
and mosquito fish. The result showed that the basic reproduction number is 
affected after implementing the different combinations of control strategies in 
the model. The best intervention is to combine all the control strategies to 
diminish the spread of dengue. 
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1. Introduction 
 

Dengue is an illness that causes a high fever, severe headache, rashes and muscle and joint pain 
[1]. Dengue virus is one of the common mosquito-borne viruses from the family of Flaviviridae.  

There was a total of four serotypes of dengue virus were known around the world such as DENV-
1, DENV-2, DENV-3 and DENV-4. Dengue is widely spread throughout the tropics, with local variations 
in risk influenced by rainfall, temperature, relative humidity and unplanned rapid urbanization. 
Dengue virus cannot be transmitted directly from human to human, but the spread of dengue virus 
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requires an infected female mosquito bite as a vector. The mosquito species that transmit dengue 
virus are Aedes Aegypti and Aedes Albopictus. This transmission occurs when a mosquito bites an 
infected human and later bites a healthy individual, facilitating virus spread [13].  

The signs and symptoms of an individual who is infected by dengue virus are depending on the 
case severity level and it can even be asymptomatic. The course of dengue infection takes off after 
the incubation period and is divided into three main phases: febrile phase, critical phase (which may 
include haemorrhagic manifestations or dengue shock syndrome) and recovery phase [2]. Moreover, 
dengue is also causing high mortality. Thus, to prevent the continuous spreading of dengue virus, 
there were different approaches suggested and done. For example, dengue vaccination, mosquito 
control by using pesticides, biological control by implementing the food chain and prey-predator 
concept in the ecosystem and others. Infectious disease modelling plays a crucial role in public health 
strategy and epidemic forecasting [12,14]. Mathematical models incorporating vector-host 
interactions have also been applied in dengue transmission studies, providing useful insights for 
understanding and controlling disease dynamics [16]. 

Different studies have been done by researchers in recent years. They have focused on how to 
develop the dengue model, investigated the factors that influence the transmission of dengue 
disease and with different optimal controls [3-8]. The authors lacked focus in comparing different 
combinations of control strategies and investigating the impact of the control strategies on the 
behaviour of the basic reproduction number. The authors lacked of define the relationship between 
model parameters and the basic reproduction number. The dengue model parameters should be 
studied based on the basic reproduction behaviour, so that the implementation of different control 
strategy is functional.  

While numerous studies have explored dengue transmission modelling and optimal control 
strategies, a clear gap remains in evaluating the combined effectiveness of multiple control measures 
within a unified framework. Existing models often isolate specific factors such as climate, mobility or 
single interventions without integrating them holistically. Therefore, this study aims to fill this gap by 
examining the impact of combining insect repellents, insecticides and mosquito fish in reducing 
dengue transmission, particularly through their effects on the basic reproduction number. 

 Section 1 is the introduction or background of dengue. In section 2, the model structure of 
dengue transmission dynamics is described including the generation of the basic reproduction 
number. Section 3 presents the extended dengue model with three optimal controls, along with the 
analysis of optimal control is described. Section 4 contains the numerical simulation that illustrates 
the dynamics results. Finally, section 5 presents the conclusion. 

 
2. Methodology  
2.1 Basic Dengue Model 

 

There were two populations which are human and mosquito populations and it is denoted as HN  

and VN  respectively. For human population, it is subdivided into three compartments, susceptible 

human, infected human and recovered human while for mosquito population, it is subdivided into 
two compartments, susceptible mosquito and infected mosquito.  

Based on the idea and studies presented by Andraud et al., [9] and Hethcote [10], the basic 
dengue model is developed based on the assumptions as follows. Figure 1 shows the flow diagram 
of SIR-SI dengue model while Table 1 shows the descriptions of the variables and the descriptions of 
the parameters for the basic dengue model respectively. The model parameters were chosen based 
on relevant literature and assumptions reflective of general dengue transmission characteristics. 
However, further elaboration on the estimation and sensitivity of these parameters, particularly for 
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control variables 1 2,u u and 3u  would enhance model transparency and reproducibility. Future 

iterations could also consider a systematic sensitivity analysis to better understand the influence of 
each parameter on the reproduction number. 
 

 
Fig. 1. Flow diagram of basic dengue model 

 
Table 1 
Variables and parameters of basic dengue model 
Variables/Parameters Descriptions 

𝑆𝐻 Number of susceptible humans 
𝐼𝐻  Number of infected humans 
𝑅𝐻 Number of recovered humans 
𝑆𝑉  Number of susceptible mosquitoes 
𝐼𝑉  Number of infected mosquitoes 
𝑁𝐻 The total human population 
𝑁𝑉 The total mosquito population 
𝑏𝐻 Recruitment rate for humans (birth and immigration) 
𝜇𝐻 Natural death rate for humans 
𝛿𝐻 Disease induced death rate for humans 
𝛽𝐻 Human contact rate 
𝛼𝐻 Recovery rate for humans 
𝑏𝑉  Recruitment rate for mosquitoes (birth and immigration) 
𝜇𝑉 Natural death rate for mosquitoes 
𝛽𝑉 Mosquito contact rate 

 
2.1.1 Human population  

 

The spread of dengue in total human populations at time, 𝑡 are divided into susceptible human ( )HS t

, infected human ( )HI t  and recovered human ( )HR t . Thus Eq. (1): 

 

( ) ( ) ( ) ( )H H H HS t I t R t N t+ + =                                                               (1) 

 
The number of susceptible humans are increasing via the recruitment rate of human by birth or 

immigration into the population, Hb , while decreasing through the natural death rate, H  and the 

infective rate, H V HI S  after human contact with the infected mosquito. Hence Eq. (2): 
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H
H H H H V H

dS
b S I S

dt
 = − −                                                                   (2) 

 
The number of human infected increasing after contact with infected mosquito at infective rate, 

H V HI S  undergoes an incubation period of 4 to 10 days. The number of human infected decreasing 

due to the recovery rate, H  disease-induced death rate, H  and natural death rate, H . Thus Eq. 

(3): 
 

H H H

H
H V H H H H

dI
I S I I I

dt
   = − − −                                                          (3) 

 
The number of recovered people increased as the number of infected people getting recover at 
recovery rate, 𝛼𝐻 while decreased at the rate of natural death, 𝜇𝐻. Hence Eq. (4): 
 

H H

H
H H

dR
I R

dt
 = −                                                                            (4) 

 
2.1.2 Vector population  

 
The spread of dengue in total human populations at time, 𝑡 are divided into susceptible mosquito 

( )VS t  and infected mosquito ( )VI t . The vector component of the model does not include an 

immune class as mosquitoes never recover from the infection, that is their infected period ends with 
their death due to their relatively short life cycle. Thus Eq. (5): 
 

( ) ( ) ( )V V VS t I t N t+ =                                                                            (5) 

 
The number of susceptible mosquitoes are increasing via the recruitment rate of mosquito by birth 

or immigration, Vb  into the total mosquito population, while decreasing through the natural death 

rate, V  and the infective rate, V H VI S  after mosquito contact with the infected human. Hence Eq. 

(6): 
 

V
V V V V H V

dS
b S I S

dt
 = − −                                                                      (6) 

 
The number of mosquitoes infected increasing after contact with infected human at infective rate, 

V H VI S  undergoes an incubation period of 24 hours. The number of mosquito infected decreasing 

due to the its short life cycle or natural death rate, V . Thus Eq. (7): 

 

V
V H V V V

dI
I S I

dt
 = −                                                                            (7) 

 
In short, by considering the above assumptions, the notations of model variables and model 

parameters and formulating together Eq. (1) to Eq. (7) with the block diagram in Figure 1, the 
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resulting system of a non-linear differential system describing the dengue model in the human and 
mosquito population are as follows in Eq. (8):  

 

H H H

H H

H
H H H H V H

H
H V H H H H

H
H H

V
V V V V H V

V
V H V V V

dS
b S I S

dt

dI
I S I I I

dt

dR
I R

dt

dS
b S I S

dt

dI
I S I

dt

 

   

 

 

 

= − −

= − − −

= −

= − −

= −

                                                                                                                  (8) 

 
From the model obtained in Eq. (8), it clearly shown the interaction between the susceptible, 
infected, recovered in human population in (81-83) with change in time. Similarly, the interaction 
between susceptible and infected mosquito populations in (84-85) with change in time. 

 
2.2 Basic Reproduction Number  

 
The basic reproduction number is defined as the estimated number of secondary infections 

originating from a single person during the infectious period. From the description by Diekmann et 
al., [11], the expression of basic reproduction number can be found by using the next generation 
operator approach. Theoretically, the basic reproduction number is the critical value that determines 

the dengue disease spread or die out. For example, if 0 1R  , the disease will continue to spread in a 

specific area and 0R  is the scale plate of the spread rate; the disease will extinct when 0 1R  . By 

using the next generation operator approach, the basic reproduction number is defined as in Eq. (9). 
 

 
( )

0 2

H H V V

H V H H H

b b
R

 

    
= 

+ +
           (9) 

 
From this, the relationship between the parameters and the basic reproduction number, it can 

be quantified that higher values of , ,H V Vb   and lower value of V  will allow the outbreak of 

dengue disease. Conversely, for small values of , ,H V Vb   and large value of V  will bring the disease 

dies out. The reproduction number is a powerful parameter which measures the existence and 
stability of the disease in the human and mosquito population. If 

( )2

0, 1,H H V V H V H H Hb b R       + +   the disease-free equilibrium is the only equilibrium and 

then the disease dies out. If ( )2

0, 1,H H V V H V H H Hb b R       + +   the unique endemic 

equilibrium exists and the disease persists with the population. 
 

3. Extended Dengue Model  
 
The basic dengue model Eq. (8) is then extended with three optimal controls. For susceptible 

human population, the rate of infected by contact to infected mosquitoes is denoted as 
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( )11 H V Hu I S−   where ( )1 10 1u u   is the control on the application of insect repellent. Repellent-

based interventions have been studied for their measurable impact on dengue transmission rates 
[18]. Similarly, for susceptible mosquito population, the rate of infected by contact with infected 

human is denoted as ( )11 V H Vu I S− . Despite that, 2u  is the use of insecticide spray to increase the 

death rate of mosquito and ( )20 1u  . 3u  is the biological control with mosquito fish which feed 

mosquito larvae as foods. Thus, the recruitment of mosquito population is controlled via ( )31 Vu b−  

and ( )3 30 1u u  . Figure 2 illustrates the three main control strategies, 1 2 3,  and ,u u u used to 

mitigate mosquito populations and reduce dengue transmission. 
 

 
Fig. 2. Controls 1 2,u u and 3u  

 
Next, by combining all the above assumptions and formulations, the following extended model is 

presented in Eq. (10): 
 

( )

( )

( ) ( ) ( )

( ) ( )

1

1

3 2 1

1 2

1

1

1 1

1

H H H

H H

H
H H H H V H

H
H V H H H H

H
H H

V
V V V V H V

V
V H V V V

dS
b S u I S

dt

dI
u I S I I I

dt

dR
I R

dt

dS
u b u S u I S

dt

dI
u I S u I

dt

 

   

 

 

 

= − − −

= − − − −

= −

= − − + − −

= − − +

                                                            (10) 

 
To determine the efforts of the optimal control that probable in desire to control the dengue 

spread, the optimal control problem with the objective function, J  is considered Eq. (11). 
 

( ) 2 2 2

1 2 3 1 2 1 1 2 2 3 3

0

, , [ ]

T

H VJ u u u a I a I b u b u b u dt= + + + +                                                          (11) 
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where T  is the final time and the coefficients 1 2 1 2 3, , , ,a a b b b  are positive weights to balance the 

factors. With the given objective function ( )J u , it is aimed at minimizing the number of infected 

humans ( )HI t  and infected mosquito ( )VI t  while minimizing the cost of control strategies 

( ) ( ) ( )1 2 3, ,u t u t u t . Therefore, an optimal control * * *

1 2 3, ,u u u  is obtained such that in Eq. (12) where the 

control set U  is represent as Eq. (13). 
 

( ) ( ) * * *

1 2 3 1 2 3 1 2 3, , min , , , ,J u u u J u u u u u u U=                                                                  (12) 

 

( ) * * *

1 2 3, , :[0, ] [0,1], 1,2,3iU u u u u T Lebesgue measurable i= → =                                      (13) 

 
3.1 The Hamiltonian and Optimality Conditions 

 
In this section, the extend dengue model with optimal control is analysed according to the 

Pontryagin’s Maximum Principe, the Hamiltonian and optimality conditions are defined from the cost 
functional and the governing dynamics. The adjoint system is introduced by Pontryagin with relation 
of the differential equation to the objective functional. Thus, the necessary conditions were defined 
[13]. 

Note that for Hamiltonian function, the variables ( ) ( ) ( ) ( ) ( )( ), , , ,H H H V VX S t I t R t S t I t= , 

( ) ( ) ( )( )1 2 3, ,U u t u t u t= , the adjoint variables, ( )1 2 3 4 5, , , ,     = . The Lagrange function, 

( ) ( )( )
23

1 2 3 1 1
, , , ,H H j jj

L L I u u u t a I b u t
=

= = + . Note that i  represents as the adjoint variable 

functions to be determined suitably by applying Pontryagin’s maximum principle, where 
1, 2,3,4,5i = . Thus, The Hamiltonian function H  of the optimal control problem is defined as follows 

Eq. (14): 
 

( ) 1 2 3 4 5, , , V VH H H
dS dIdS dI dR

H t X U L
dt dt dt dt dt

     = + + + + +                                             (14) 

 
From Eq. (14), we substitute the Lagrange function, L  and each differential equation, 

2, , , VH H H
dSdS dI dR

dt dt dt dt
 and VdI

dt
 into it. Thus, will get as Eq. (15): 

 

( )( )
3

2

1 2 1 2 3 4 5

1

V VH H H
H V j j

j

dS dIdS dI dR
H a I a I b u t

dt dt dt dt dt
    

=

        
= + + + + + + +        

         
  

 

( )

( )

 

( ) ( ) ( )

2 2 2

1 2 1 1 2 2 3 3 1 1

2 1

3

4 3 2 1

1

                         1

                          +

                          + 1 1

H V H H H H V H

H V H H H H H H H

H H H H

V V V V H

H a I a I b u b u b u b S u I S

u I S I I I

I R

u b u S u I

  

    

  

  

= + + + + − − −  

+ − − − −  

−

− − + − −

( ) ( )5 1 2                          + 1

V

V H V V V

S

u I S u I  

  

− − +  

                                     (15) 
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3.2 Adjoint System and Optimal Control Analysis 
 

Theorem: For an optimal control set 1 2 3, ,u u u  that minimizes ( )1 2 3, ,J u u u  over ,U  there are 

adjoint variables 1 2 3 4 5, , , ,      satisfying adjoint condition: ( )' ,i

i

H
t

x



= −


 where 1, 2,3, 4,5.i =  The 

Hamiltonian Eq. (14) is then substitute into the adjoint functions. Given the formula, 

( ) ( )' ' ,i x x

i

H
t F g

x
  


= −  = − +


 where 1, 2,3, 4,5.i =  The adjoint functions are defined as follows 

in Eq. (16): 
 

( ) ( )( )

( ) ( ) ( ) ( )( )

( )

( ) ( ) ( )( )

( ) ( )( ) ( )

'

1 1 1 2 1

'

2 1 2 3 2 4 5 1

'

3 3

'

4 4 2 4 5 1

'

5 2 1 2 1 5 2

1

1

1

1

H H V

H

H H H V V

H

H

H

V V H

V

H H V

V

H
t u I

S

H
t a u S

I

H
t

R

H
t u u I

S

H
t a u S u

I

     

         

  

     

     


= −  + − −




= −  − + − + + + − −




= − 




= −  + + − −




= −  − + − − + +



                               (16) 

 

By doing partial derivatives of the Hamiltonian in terms of 1 2 3,  and ,u u u and * * *

1 2 3,  and u u u  is 

obtained in Eq. (17). 
 

( )
( ) ( )

( )

( )

2 1 5 4*

1

1

* 4 5
2

2

* 4
3

3

max 0,min 1,
2

max 0,min 1,
2

max 0,min 1,
2

H V H V H V

V V

V

I S I S
u t

b

S I
u t

b

b
u t

b

     

 



 − + −  
=   

   

  + 
=   

   

   
=   

   

                                         (17) 

 
4. Numerical Solutions  
 
In this section, the numerical analysis of the extended dengue model is presented. The simulation 
results for the optimal control strategy, which combines all three control measures - insect repellents, 

insecticides and mosquito fish ( )1 2 30, 0, 0  u u u  are shown in Figure 3 to Figure 7. Similar 

modelling efforts using daily dengue case data have been conducted in other settings to validate 
control effectiveness [15]. These figures illustrate the impact on susceptible humans, infected 
humans, recovered humans, susceptible mosquitoes and infected mosquitoes respectively. By 
applying all three control strategies to optimize the objective function J , the results indicate 
significant differences in the state variables compared to the scenario without control measures. 
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Figure 3 and Figure 4 depict the susceptible and infected human populations under the three optimal 
control strategies. The number of infected humans initially peaks at 40 thousand but after 
implementing optimal control, it declines to 27 thousand demonstrating a substantial reduction. 
Similarly, as shown in Figure 6, the susceptible mosquito population experiences a steep decline 
within one month of implementing control strategies, whereas without control, the decline occurs 
gradually over 2.5 months. For infected mosquitoes (Figure 7), the peak population of 50 thousand 
decreases significantly to 15 thousand, indicating a strong impact of the combined control measures. 
Additionally, Figure 5 shows an increase in the recovered human population after implementing 
optimal control, which is a direct result of reducing the number of susceptible and infected individuals 
in both human and mosquito populations. 
The numerical simulation results confirm that the combination of all three control strategies yields 
the most effective outcome. The implementation of insect repellents, insecticides and mosquito fish 

significantly reduces the basic reproduction number 0 1R  .  

Based on the formula of the basic reproduction number that derived from basic dengue model 
Eq. (8), the parameters that affecting the value of reproduction number include the recruitment rate, 
contact rate and death rate for both human and mosquito populations.  

The hypothesis made is suggesting three different control strategies, which to raise the death 
rate of mosquito population, to deduct the recruitment rate of mosquito population and the contact 
rate between human and mosquito populations. So that the dengue disease is stabilized and the 

reproduction number, 0R  is always less than 1.  

Furthermore, to ensure the basic reproduction number, 0 1R  , several parameters were 

investigated. The contact rate between human and mosquito populations, ,H V   and the 

recruitment rate for mosquito population, Vb  should be always 1 . The recovery rate for human 

population, H  and the death rate for mosquito population, V  should be always 1 . In other 

words, ,H V   and ,V H Vb   . The implementation of the three control strategies 1 2,u u and 3u

which are to control those parameters that affecting the basic reproduction number. It is worth 
noting that the current model does not account for dynamic environmental or social factors, such as 
seasonal climate variations, rainfall patterns or population mobility. These external influences play a 
critical role in the actual spread of dengue and may affect the accuracy of the model's predictions in 
real-world applications. 
 These findings demonstrate that an integrated vector control approach effectively reduces dengue 
transmission and highlights the importance of combining multiple control strategies to achieve the 
best results. 
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Fig. 3. Susceptible human 

 

 
Fig. 4. Infected human 
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Fig. 5. Recovered human 

 

 
Fig. 6. Susceptible mosquito 
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Fig. 7. Infected mosquito 

 
5. Conclusion 

 
In this paper, the basic dengue model, which accurately describes the transmission dynamics of 

dengue disease was developed. This model was then extended by incorporating three control 
strategies: insect repellents, insecticides and mosquito fish. The numerical analysis results 
demonstrated that the combination of all three strategies provides the most effective approach for 
controlling dengue transmission within a community. Innovative mosquito-repellent formulations 
with sustained release have shown potential in long-term vector control [17]. The findings indicate 
that implementing these control measures significantly reduces the number of infected individuals 

and mosquito populations, thereby lowering the basic reproduction number 0R  below the critical 

threshold of one. 
Furthermore, the study highlights the importance of an integrated vector management approach, 

as individual control strategies alone may not be sufficient to achieve long-term disease suppression. 
The results emphasize that a synergistic combination of interventions leads to a more substantial and 
sustained impact on dengue reduction. By increasing the mosquito mortality rate, decreasing 
recruitment and minimizing human-mosquito contact, the proposed model provides valuable 
insights for optimizing public health policies aimed at dengue mitigation. 

Despite the promising results, the model’s applicability across diverse geographical settings may 
be limited due to regional differences in mosquito species behaviour, environmental conditions and 
human-mosquito interaction patterns. Hence, caution is advised when generalizing the findings 
beyond the modelled scenario without local calibration and validation. 

Future research can further enhance this model by integrating real-world epidemiological data 
and machine learning techniques to predict outbreak trends and optimize intervention strategies 
dynamically. Overall, this study provides a scientific basis for policymakers and health authorities to 
design more effective and sustainable dengue control programs, ultimately contributing to public 
health improvement and disease prevention. 

Additionally, integrating real-world epidemiological data would significantly enhance the model’s 
predictive capability and reliability. Incorporating machine learning approaches to analyse outbreak 
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trends and community responses could also provide adaptive, data-driven insights for improving 
dengue mitigation strategies. 
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