
 
Semarak International Journal of Nanotechnology 1, Issue 1 (2024) 45-64 

 

45 
 

 

Semarak International Journal of 
Nanotechnology    

 

Journal homepage:  
https://semarakilmu.my/index.php/sijn/index 

ISSN: 3030-6604 

 

Mxene and Strontium Titanate Hybrid Casson Nanofluid with CMC Base 
via the Caputo-Fabrizio Fractional Derivative over a Vertical Riga Plate 

 
Ridhwan Reyaz1, Ahmad Qushairi Mohamad1,*, Yeou Jiann Lim1, Arshad Khan2, Sharidan Shafie1

  
  
1 Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor Bahru, 81310, Johor, Malaysia 
2 Institute of Computer Sciences and Information Technology (ICS/IT), The University of Agriculture, Peshawar, 25130 Khyber Pakhtunkhwa, 

Pakistan 
  

ARTICLE INFO ABSTRACT 

Article history: 
Received 21 March 2024 
Received in revised form 15 April 2024 
Accepted 5 May 2024 
Available online 10 June 2024 

Mxene nanoparticles possess desirable properties such as high electrical conductivity, 
aqueous stability, and thermal stability, making them highly sought-after in various 
fields including manufacturing, renewable energy, and chemical engineering. Similarly, 
Strontium Titanate (SrTiO3) is a versatile material with high electrical conductivity and 
low thermal expansion properties, applicable in electronics, solar energy, and 
biomedical engineering. This study aims to investigate the effects of a hybrid nanofluid 
consisting of Mxene and Strontium Titanate in a Carboxymethyl Cellulose (CMC) base, 
using the Caputo-Fabrizio fractional derivative, over a Riga plate. The fractional 
derivative is a concept with future applications, while Riga plates act as actuators for 
fluid flow in marine vessels. Laplace transform is used to find solutions from the 
governing PDEs, analytically. The resulting integral solution is analysed graphically and 
numerically. According to the study, a rise in the fractional parameter, α, causes an 
increase in fluid temperature and velocity. Because of the unique features of SrTiO3, 
the thermal radiation parameter N has a distinct effect on velocity and temperature. 
As N increases, the temperature rises but velocity declines. Due to the high electrical 
conductivity of Mxene and SrTiO3, the modified Hartmann number, E, favourably 
influences velocity. Skin friction increases due to SrTiO3 whereas the Nusselt number 
falls with increasing N due to CMC base characteristics.  
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1. Introduction 
 

Fluids are commonly used to transfer heat from one medium to another. Applications of heat 
transfer for fluid can be seen everywhere, including in electrical devices such as refrigerators, 
computers and air conditioning all the way to nuclear power plants to regulate heat in the thermal 
reactors. The invention of nanofluids greatly enhanced the properties of heat transfer in fluids. Early 
in the 1990s, scientists made the discovery that adding nanoparticles to a fluid accelerates the rate 
of heat transmission. This was made by Choi and Eastman [1]. Water, ethylene glycol, oil, copper, 
aluminium, ferromagnesium and oxide metals are the typical fluid bases and nanoparticles utilized 
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in nanofluids. Numerous investigations have been conducted on the boundary layer flow of 
nanofluids. For instance, Khalid et al., [2] conducted an analytical investigation on the free convection 
flow of nanofluid with ramped wall effect. The study looked at how five distinct kinds of nanoparticles 
behaved in a fluid with a water basis and solved the PDE system using the Laplace transform. To 
clarify the nanofluid’s temperature and velocity patterns, analytical solutions were obtained. Aly and 
Ebaid [3], on the other hand, conducted an analytical analysis on the rate of heat transfer for 
nanofluids with magnetohydrodynamic (MHD) and Marangoni radiation effects. Using water base 
nanofluids with MHD and radiation absorption effects, Durga et al., [4] conducted an analytical 
investigation for heat and mass transfer for Copper and Titanium Oxide. Other analytical and 
numerical investigations on nanofluids were done by Hussanan et al., [5], Souayeh et al., [6], Uddin 
and Rasel [7], Mahanta et al., [8], Veera and Chamkha [9], Aleem et al., [10] and Anwar et al., [11]. In 
the search for improving heat transfer rates within nanofluids, the search for new and ideal 
nanoparticles and base fluid is still at its peak. Recently, new nanoparticles that were just discovered 
during the past few years are Mxene and Strontium Titanate (SrTiO3). Also, a new base fluid that is 
uncommon for nanofluids is the Carboxymethyl Cellulose (CMC) fluid. 

A new substance called Mxene has received a lot of attention lately. It is made of carbon-nitrides, 
nitrides, and carbides in 2D [12,13]. Mxenes have many desirable properties that are worth 
investigating. They have a high surface area, providing a huge platform for chemical reactions, they 
are excellent electrical conductors and are very stable in an aqueous environment, making them very 
suitable for nanofluids. Mxenes also have good biocompatibility, opening them up for multiple 
applications in the biomedical engineering field [14-16]. Meanwhile, Strontium Titanate 
nanoparticles are transparent materials with high electrical conductivity properties. They are a type 
of perovskite oxide material [17-19]. The properties of SrTiO3 make it highly sought after in the optical 
industry. There is rarely any research on flow across the boundary layer for nanofluids including 
Mxene or SrTiO3 nanoparticles. Thus, the effect of these nanoparticles on fluid flow within a boundary 
layer is worth investigating. Furthermore, to elevate the effectiveness of nanofluids, hybrid nanofluid 
is also worth considering. It is observed from published studies that hybrid nanofluids offer a higher 
rate of thermal conductivity at the same time, reducing the cost of materials [20-24]. 

In contrast, CMC is an instance of a water-soluble polymer that is a non-Newtonian fluid. It is 
often used as a thickening agent for the food and cosmetic industry [25]. According to experimental 
studies, one of the mathematical model that is suitable to model the fluid flow of CMC fluids is the 
Casson fluid model [26,27]. There are a few studies on boundary layer flow for CMC based nanofluids 
using the Casson model. Using CMC as the basis of the fluid, Alwawi et al., [28] performed a numerical 
investigation on a mixed convection Casson nanofluid from a spherical. Meanwhile, Ali et al., [29] 
investigated the irreversibility analysis of cross fluid with Copper Oxide-Titanium Oxide hybrid 
nanofluid with CMC base. The behaviour of CMC-based Casson nanofluid flowing across a stretched 
plate is examined in another work for CMC-based Casson nanofluid by Rawi et al., [30]. These 
research employ numerical techniques to solve the underlying partial differential equations. Saqib et 
al., [31,32] conducted analytical research on CMC-based nanofluids. It is pertinent to point out that 
Saqib et al., [31,32] also looked at how partial derivatives affect how fluid flows in the boundary layer. 

Fractional derivatives are perceptions where the conventional derivative is considered to have an 
order of an arbitrary number or fraction. Factional derivatives have been defined in a number of ways 
since they were first introduced, including the Riemann-Liouville, Hilfer, Caputo, Caputo-Fabrizio, 
Atangana-Baleanu, and many others [33-35]. Due to its non-singular kernel quality, the 
CaputoFabrizio fractional derivative (CFFD) is one of the most favoured definitions. In contrast to 
Caputo and Atangana-Baleanu derivatives, the CFFD solution of a PDE yields an integral function 
devoid of any special functions. Fractional derivatives are not yet represented geometrically or 
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physically in the realm of fluid mechanics. But the literature claims that when the fractional derivative 
is taken into account in the fluid mechanics model, a different but workable solution is produced. 
Researchers will likely employ these technologies to validate their findings in the near future. In order 
to study the behaviour of a fluid flow, fractional derivatives are therefore significant enough. The 
flow of boundary layers with fractional derivatives has been the subject of various investigations over 
the years. Khan et al., [36] pioneered the study of analytical solutions of boundary layer flow with 
fractional derivative by considering the Caputo derivative. The Caputo derivative, however, is known 
to have unique kernels. As a result, analytical solutions in the shape of unique functions, like the 
Wright and Mittag-Lefler functions, are obtained. Abro and Khan use Abro [37] for analyzing the 
impact of carbon nanotubes (CNTs) on methanol-based nanofluids flowing across a vertical plate. The 
fractional derivative was taken into account, specifically the Caputo-Fabrizio definition. From their 
investigations, it is observed that there are no specific functions in the final analytical solutions. Other 
research on fractional derivatives and the Caputo-Fabrizio fractional derivative can be found in the 
works of Maiti et al., [38], Raza and Ullah [39], Reyaz et al., [40], and Sene [41]. Reyaz et al., recently 
investigated the laminar flow of a Casson fluid [42]. In addition to considering a fractional derivative 
model, they also considered the fluid to be moving along a Riga plate in an upright position. It is also 
worth mentioning that the definition for the fractional derivative that the considered was the 
Caputo-Fabrizio definition. 

Riga plates are flat plates with electrodes and magnets arranged in alternating order. It is often 
used as an actuator to control fluid flow and reduce turbulence. Primarily, it is often used in the 
marine engineering field for submarines and aquatic vessels. The presence of electrodes and magnets 
induces an electromagnetic current which in turn produces an upthrust force, often referred to as 
the Lorentz force. The resultant Lorentz force can be employed to facilitate or obstruct fluid flow, 
depending on where the Riga plate is located. An analytical investigation was conducted by Asogwa 
et al., [43] on the presence of a Riga plate on a double convection fluid flow. Similarly, the fluid 
considered was a Casson fluid. It is also worth noting that the presence of a Riga plate is analyzed 
mathematically by the value of the Lorentz force it generates. Asogwa et al., [44] conducted 
comparative analytical research on water-based nanofluids made of alumina-oxide and copper-oxide 
that were flowing vertically across a Riga plate. The Riga plate is found to stimulate fluid flow, and 
copper oxide performs better overall as a thermal conductor than alumina oxide. Khatun et al., [45] 
did a similar study with similar results. Other studies on the Riga plate to note include Mallawi et al., 
[46], Campus and Africa [47], Bilal et al., [48], Logantahan and Deepa [49] and Nasrin et al., [50]. 

As per the information available currently, no analytical study of the behaviour of fluid flow for 
the boundary layer with Mxene SrTiO3 hybrid Casson nanofluid with CMC base via the CaputoFabrizio 
fractional derivative over a moving vertical Riga plate has been carried out. The purpose of this study 
is to close this gap by analyzing the impacts of parameter modification on fluid velocity and 
temperature and providing an analytical solution using the Laplace transform. 
 
2. Mathematical Formulation  
 

Consideration is being given to the flow of a Casson hybrid nanofluid over an infinitely accelerated 
Riga plate under the influence of free convection. The Riga plate is positioned vertically along the 
-axis with the -axis being perpendicular to it. Movement of the nanofluid is in the same direction 
as the -axis when . Initially, the Riga plate is stationary and the ambient temperature is at 
time . Subsequently, the Riga plate starts moving at a speed of  and maintains a temperature 
of  as time progresses. The motion of the Riga plate induces an electromagnetic field, leading to 

x
y

x 0y > ¥Q
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the generation of the Lorentz force, , which acts as an upward force in the -direction. 
Additionally, thermal radiation, , perpendicular to the -axis, uniformly penetrates the system. It 
is assumed that the Reynolds number is relatively low, resulting in the negligible impact of the 
magnetic field generated by the fluid motion. The relationship between the velocity, , and the 
temperature, , is determined by the variables  and . The fluid flow and the structure of the Riga 
plate are visualized in Figure 1 and 2, respectively. 

 

 
Fig. 1. Geometrical representation of fluid flow 

 

 
Fig. 2. A Riga plate and its application 

 
The following governing momentum and energy equations are obtained using Boussinesq’s 

approximation and the aforementioned assumptions [51, 52, 53, 42]: 
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Eq. (1) and (2) are both constrained by conditions: 
 

  (3) 

 
In our analysis, the dynamic viscosity is represented by , the fluid density by , the Casson 

fluid parameter by , the thermal expansion coefficient by , the gravitational acceleration by , 
the electrical current density by , the magnetization strength by , and the width of the magnets 
and electrodes by . The specific heat capacity of the fluid at constant density is denoted as . 
Furthermore, we use the symbols  to denote the thermal radiation value and  for the thermal 
conductivity parameter. Rosseland’s approximation, cited by [54, 55, 56], reduces the governing 
energy equation from Eq. (2) to: 

 

 (4) 

 
The mean absorption coefficient is represented by , while the Stefan-Boltzmann constant is 

denoted as . Notably, the physical properties of the hybrid nanofluid are symbolized by the 
subscript . As per the Tiwari and Das model [57, 58, 59], the thermophysical properties of the 
base fluid and nanoparticles are detailed in Table 1. 

 
Table 1 
Thermophysical properties of base fluid and nanoparticles 
 ( )  ( ) ( ) ( )  

Carboxymethyl 
Cellulose (CMC) 

997.2 4179 0.613 21 10-5 6.2 

Mxene 4000 650 350 8.3 10-6 - 
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(SrTiO3) 

5120 540 12 10.4 10-6 - 
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  (10) 

 
where, φ is the nanoparticle volume fraction and  and  are the nanoparticle volume fractions of 
Mxene and Strontium Titanate (SrTiO3) particles, respectively. The attributes for base fluid and 
nanoparticle, respectively, are represented by the subscripts  and . The kinematic viscosity, fluid 
density, thermal expansion, specific heat capacity, base fluid thermal conductivity, and hybrid 
nanofluid thermal conductivity equations range from Eq. (5) to (10). Eq. (1) and (4) must be solved 
with a set of dimensionless parameters, as illustrated in the following Eq. (11). 

 

 (11) 

 
Utilizing definitions of thermophysical properties for nanofluid and base fluid from Eq. (5) to (10) 

as well as the dimensionless parameters from Eq. (11) [5,60,61]. Eq. (1), (3) and (4) are further 
reduced to their dimensionless form as follows by eliminating the asterisk (*) notation: 
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bounded by dimensionless initial and boundary conditions: 
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dimensionless thermal radiation parameter by , the Prandtl number by , and the dimensionless 
nanoparticle volume fraction parameter by  for . 

 

  (16) 

 

  (17) 

 
The equations for the Caputo-Fabrizio fractional derivative Eq. (16) and its corresponding Laplace 

transforms Eq. (17) provide the definitions. In these expressions, the Laplace transform, , the 
frequency domain, , and the fractional derivative parameter, , are utilized. The fractional 

derivative, , from Eq. (16) is substituted with the partial derivative with respect to time, , in 

Eq. (12) and (13), transforming them into fractional governing momentum and energy equations, 
respectively. 

 

 (18) 

 

  (19)

3. Mathematical Formulation  
 
The governing equations Eq. (18) and Eq. (19) were first reduced to a frequency domain, , using 

the Laplace transform before being used to obtain the final analytical solutions. The momentum and 
energy equations’ answers are written down using the method of Laplace transform as follows: 

 

 (20) 
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 (22) 

 
Next, Eq. (20) and (21) are separated into: 

 

 (23) 
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denoted by  and , and after an inverse Laplace transformation, they are expressed as 
the convolution product in the following manner: 

 

 (28) 

 
The final analytical solutions of the momentum and energy equations, as per Eq. (28) and (29), 

can be obtained by substituting Eq. (26) and (27), and replacing the modified Bessel function with its 
integral form in Eq. (20) and (21). 
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momentum and energy equations from Eq. (30) and (31) may be simply examined graphically with 
mathematical software such as Matlab and MathCad due to the lack of specific functions. 

 
3.1 Skin Friction and Nusselt Number 

 
By taking into account the following equations, the skin friction,  and Nusselt number, 

, for this particular problem are explored numerically and graphically [65,59]: 
 

  (31) 

 
and 

 

  (32) 

 
The resulting Skin Friction and Nusselt Number solutions are explained in the following section. 
 
4. Results and Discussion 
 

In this section, the velocity and temperature profiles generated from Eq. (29) and (30) are 
generated via Mathcad15 and MATLAB. Thereafter, the profiles with distinctive values for each 
parameters are analysed. The base values for parameters are as follows:  

 
 (33) 

 
Since the impact of each nanoparticle on fluid flow is not the main focus of this study, the values of 
each type nanoparticles in the fluid will remain the same, which is 0.01 for both  and . Thus, the 
impact of nanoparticle volume fraction is summarised to the values of , instead of individually  
and . Each parameter is used in every analysis and each analysis one parameter will have various 
values to analyse the impact of that parameter to the velocity and temperature of the fluid. 

First, the velocity profile of the fluid with variations in the fractional parameter  is observed in 
Figure 3. It can be seen that the velocity of the fluid is increased when  is increased. The difference 
in speed showcases new solutions to the momentum equation when the fractional derivative is 
considered. Although the physical representation of fractional derivatives is still not known, obtained 
analytical solutions are pragmatic in future experimental and numerical studies. 
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Fig. 3. Fluid velocity for distinctive values of  

 
Meanwhile, Figure 4 displays the velocity profile of the fluid with variations in the Casson parameter, 

. The Casson parameter determines the viscosity and plasticity of the fluid. A higher value of  
signifies a fluid with high viscosity and plasticity. High viscosity and plasticity of fluid would hinder 
fluid, slowing down the fluid. As observed in Figure 4, the velocity of the fluid decreases as the value 
of  is increased. 
 

 
Fig. 4. Fluid velocity for distinctive values of  

 
On the other hand, the fluid velocity increases with an increase in the modified Hartmann 

number, . The presence of the Riga plate induces Lorentz force, and it is represented by the 
modified Hartmann number. As the is increased, the Lorentz force is also increased, as observed in 
Figure 5. Since the position of the Riga plate induces Lorentz force in the direction of fluid flow, it 
causes the velocity of the fluid to increase. The increase in the velocity profile could also be due to 
the presence of Strontium Titanate (SrTiO3) in the fluid. SrTiO3 are excellent electrical conductors, 
aiding the fluid flow due to Lorentz force. 
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Fig. 5. Fluid velocity for distinctive values of  

 
Figure 6 observes the fluid velocity with various values of the Grashof number, . Grashof 

number is defined as the correlation between the buoyancy force and the viscous force. When  is 
increased, the buoyancy force acting on the fluid is increased and in contrast, the viscous force of the 
fluid is increased. Thus, when the value of  is amplified, the velocity of the fluid is amplified as 
well, as observed in Figure 6. 

 

 
Fig. 6. Fluid velocity for distinctive values of  

 
The velocity of a fluid with different values of thermal radiation parameter, , is showcased in 

Figure 7. An increase in  increases the magnitude of thermal radiation supplied to the fluid. 
Consequently raising the temperature of the fluid and increasing the kinetic energy within the fluid. 
Thus, increasing the fluid velocity. However, it is observed in Figure 7 that as the value of  is 
increased, the velocity of the fluid is decreased. This is due to the property of Strontium Titanate 
(SrTiO3) considered in this study. Despite SrTiO3 being excellent electrical conductors, they are very 
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poor in conducting heat. When exposed to extremely high temperatures, the functionality of SrTiO3 

is depleted, becoming excess weight within the fluid. Therefore, decreasing the velocity of the fluid. 
 

 
Fig. 7. Fluid velocity for distinctive values of  

 
Concurrently, the velocity profile for the fluid with various values of nanoparticle volume fraction,

, is analysed from Figure 8. It is observed that as the value of  is increased, fluid flow is slowed 
down. Although it is discussed that the presence of SrTiO3 could aid in fluid flow, the overall volume 
of hybrid nanoparticles, including the Graphene nanoparticles, increases the mass of the fluid. As a 
result, the mass of the fluid countered the functionality of SrTiO3 and decreases the fluid velocity. 

 

 
Fig. 8. Fluid velocity for distinctive values of  

 
Meanwhile, Figure 9 shows the behaviour of the temperature of the fluid with increments in the 

fractional parameter, . It is seen that the temperature of the fluid increase with every increment in 
the value of . As discussed, fractional derivatives do not have a physical representation yet. 
However, these solutions will be useful in future experiments and numerical studies. 
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Fig. 9. Fluid temperature for distinctive values of  

 
Figure 10 on the other hand displays the temperature profile of the fluid with different values of 

the thermal radiation parameter, . From the figure, it is seen that the fluid temperature increases 
with an increase in . As the amount of  increases, the amount of thermal radiation supplied to 
fluid also increases. Thus, increasing the temperature of the fluid. It is also important to note that 
CMC fluid, the fluid considered in this study as the base fluid, has a very high specific heat capacity. 
Thus, a lot of energy is needed to increase the temperature of the fluid. Thus, it is also observed form 
Figure 10 that temperature of fluid is still high with large values of . 

 

 
Fig. 10. Fluid temperature for distinctive values of  

 
The temperature of the fluid with several values of nanoparticle volume fraction,  is elucidated 

in Figure 11. As values of  increases, the amount of nanoparticles within the base fluid is increased. 
Since Graphene nanoparticles, part of the hybrid nanoparticle considered in this study, are excellent 
thermal conductors, the fluid temperature tends to increase with the increase of .  
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Fig. 11. Fluid temperature for distinctive values of  

 
Skin friction,  , analysis is displayed in Table 2. It is observed that  values 

correspond well to analysis on fluid velocity from Figures 3 to 8. The value of when  is 
increased, skin friction is increased as well. As discussed, due to the properties of SrTiO3, fluid velocity 
decreases. Thus, increasing the  value. 

 
Table 2 
Skin friction coefficients 

       

0.2 1 0.01 1 1 1 -0.837 

0.6 1 0.01 1 1 1 -1.928 

0.2 5 0.01 1 1 1 -0.095 

0.2 1 0.1 1 1 1 0.819 

0.2 1 0.01 3 1 1 -1.195 

0.2 1 0.01 1 2 1 -2.632 

0.2 1 0.01 1 1 3 0.216 

 
On the other hand, the Nusselt number, , for fluid flow is analysed in Table 3. Values of 

 correspond to the analysis of fluid temperature from Figures 9 to 11. It is important to note 
that since CMC is considered as the base fluid in this study, the heat transfer rate is reduced. This is 
due to the very high specific capacity of CMC fluid. 
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Table 3 
Nusselt numbers 

    

0.2 0.01 1 1.350 

0.6 0.01 1 0.771 

0.2 0.1 1 1.858 

0.2 0.01 3 0.928 

5. Conclusions 
 
An analytical study on fractional Caputo-Fabrizio Mxene Strontium Titanate Hybrid Nanofluid 

with Carboxymethyl Cellulose base flowing over a vertical uniform velocity Riga plate has been done. 
Final solutions in integral form with fractional parameters  were obtained via Laplace transform 
and analysed graphically and numerically. It is observed that: 

 
i. Fluid velocity and temperature increase with an increase in fractional parameter . 

ii. Fluid velocity decreases with an increase in thermal radiation, . In contrast, the fluid 
temperature increases. 

iii. Fluid velocity decreases with an increase in nanoparticle volume fraction, . In contrast, 
the fluid temperature increases. 

iv. Fluid velocity decreases with an increase in Casson parameter, . 
v. Fluid velocity increases with an increase in the modified Hartmann number, . 

vi. Fluid temperature increases with an increase in Grashof number, .  
vii. Skin friction and Nusselt number correspond well with graphical analyses. 
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