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Numerous researchers have extensively numerically investigated Casson fluid flow in 
a slip cylinder, resembling blood flow in human arteries. However, no study has 
successfully derived an analytical solution to validate the accuracy of the complex 
mathematical models obtained through numerical methods. This study focuses on 
utilizing Casson fluid to model blood flow in arteries with diameters ranging from 130 
to 1300μm by analytical approach. The considered slip velocity is significant, closely 
mimicking challenges in real-world blood flow applications. Additionally, this research 
addresses the influence of magnetohydrodynamics (MHD), a porous medium 
simulating cholesterol plaque, and pulsatile pressure gradients simulating the rhythmic 
contraction of the heart. The problem is tackled using dual methods, incorporating 
Laplace and finite Hankel transform techniques. These techniques leverage versatile 
integral transformations to analytically resolve boundary value problems associated 
with time and cylindrical domains. The noteworthy outcomes emphasize that blood 
flow escalates with increasing slip velocity and pulsatile pressure gradient. This 
phenomenon is attributed to the increased velocity gradient between blood particles 
and the solid boundary as slip velocity rises. Furthermore, an elevated pressure 
gradient in blood flow leads to an increased force within blood vessels, directly 
accelerating blood flow. These findings are essential for addressing mathematical 
challenges related to blood diseases.  
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1. Introduction 
 

The fluid consists of liquids and gases that can be deformed with the externally applied force and 
have no fixed shape. Fluid rheology can be broadly classified into two primary groups: Newtonian 
and non-Newtonian fluids. Non-Newtonian fluids, by definition, are against Newton's Law of 
Viscosity. In other words, it encompasses yield stress between shear stress and strain or has a 
nonlinear relationship. Since their features are multiplex and are indescribable by the conventional 
Navier-Stokes equations, they play a vital role in industrial and technological applications. Its 
applications are in polymer industries, oil and gas industries, biological systems, textiles, food 
technologies, and others. Its models have been presented in the literature. One of the best-known 
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non-Newtonian liquids falls under the shear-thinning with yield stress category, which is Casson fluid 
[1]. It acts as an elastic solid when the yield stress is higher, but as soon as the external shear stress 
begins to dominate the yield stress, it begins to move or deform. This versatile fluid manifests in 
various everyday substances such as blood, tomato sauce, concentrated fruit juices, artificial fibres, 
honey, soup, and jelly [2]. Its distinctive properties have sparked significant interest among 
researchers, particularly in biomedical applications. 

Besides that, investigating the fluid flow on heat transfer attracted many researchers, especially 
in free convection flow. Free convection or natural convection flow encompasses the motion of fluid 
masses, buoyancy, and gravitational forces, all influenced by temperature variations within the fluid 
flow. In summary, fluid movement arises from variations in density within a fluid caused by 
temperature gradients. It has numerous applications, such as in the biological industries, to diagnose 
diseases related to blood circulation, optimise foodstuff processing, oil industries, and others [3]. 
With such motivation, many researchers are interested in studying various geometries and fluids 
deeper. Ali et al., [4] conducted a heat transfer analytical investigation on the natural convection of 
Casson fluid flow over an oscillating plate. After that, Sheikh et al., [5] incorporate the chemical 
reactions effect on an oscillating plate into a similar problem as [4]. Khan et al., [6] and Mohamad et 
al., [7] researched Casson fluid flow between vertical channels with free convection. Aghighi et al., 
[8] discovered the Casson fluid flow’s behaviour in a square enclosure with a free convection effect. 
An analytical model for Newtonian fluid was developed by Khan et al., [9] and Ahmed et al., [10], 
exploring the heat transfer phenomena generated by natural convection within a vertically oscillating 
cylinder. By employing a second-grade fluid, Javaid et al., [11] further explored the natural convection 
flow impact within a cylinder undergoing oscillations. Later, Jha et al., [12] conducted a study 
involving Newtonian fluid flow, where the investigation considered aspects such as free convection, 
heat sink/source, and chemical reactions. All the issues above were solved by using analytical and 
semi-analytical methods. 

The magnetohydrodynamics (MHD) effect is among the contributing factors to heat transfer in 
free convection flow. Due to its manageable heat transfer rate, researchers' interest in MHD fluid 
flow has lately increased. External MHD causes Lorentz drag force to operate on the fluid, which 
opens the door to the potential of changing the fluid flow features on profiles for velocity and 
temperature [13]. Das et al., [14] explored and delved into the influences of magnetohydrodynamics 
(MHD) on the fluid rate and the heat transfer of Casson fluid as it flowed past a vertically oscillating 
plate. Sheikh et al., [15] evaluated the MHD flow effect for the Casson fluid model passed through a 
channel. The previously mentioned problems have all been analytically resolved via the Laplace 
transform method. Sanyal et al., [16] designed a model to explore the mathematical characteristics 
of blood in an inclined pulsatile flow with MHD and the effects of body acceleration. Mirza et al., [17] 
observed how the velocity effect influenced the second-grade MHD fluid flow in the cylinder. Ali et 
al., [18]–[22] aimed to understand the MHD and the heat transfer effect on Casson fluid flow past 
the cylinder. Containing various fluid model types, investigations are being conducted into how the 
MHD impacts pulsatile Blood flow in a magnetic particle-filled cylindrical tube [23]–[25]. All 
researchers could obtain analytical solutions by applying the Laplace and Hankel transformation. 
However, none of them solves the problems of MHD flow in a porous medium. 

Petroleum, textiles, polymers, biological systems, and irrigation issues are a few areas where the 
MHD flow in a porous media has applications [26]. Particularly in biological applications to track the 
impact of cancer cell treatment with temperature fluctuations in living tissue, there is a crucial 
requirement for fluid movement via porous media [27]. Kataria et al., [28]–[30] and Iftikhar et al., 
[31] also explored the MHD Casson fluid flow effect through a porous material atop an accelerating 
and oscillating vertical plate, considering the diverse heat and mass transfer influences. Many 
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scholars have looked at the issues with MHD flow inside a cylindrical region of a porous media in 
recent years. A mathematical model was devised by Rathod and Tanveer [32] to consider the impact 
of MHD and body acceleration on the pulsatile flow of blood through a rigid tube. The Newtonian 
fluid flow’s analytical solution within a moving porous cylinder was obtained by Paul [33], considering 
the influences of MHD and free convection. The porosity and MHD effects on the Newtonian fluid's 
pulsating flow have been investigated by Bansi et al., [34] and Abro and Atangana [35]. Maiti et al., 
[36], [37] extended a similar problem as previous study [35] by using the Casson fluid model with the 
additional thermal radiation effect. As mentioned above, they obtained analytical solutions to the 
MHD and porosity effects problem of fluid flow. 

All the previous studies above discussed no-slip boundary conditions. Despite this, the slip 
velocity at the boundary has advantages in several scenarios, including applications like the oil and 
gas sector for the drilling process and the blood circulation in human arteries. The idea that slip 
velocity at a wall is in close connection to the shear stress at the border was first put out by Navier in 
1823 [38]. Slip is the fluid’s finite velocity observed at or near a boundary [39]. Inspired by his work, 
numerous scholars have conducted numerical investigations to explore issues related to Casson fluid 
flow in a cylindrical domain, accounting for the slip effect at the boundary. Exploring the effects of 
slip velocity on Casson fluid flow within a cylindrical domain in the presence of the MHD effect, 
Ahmed and Hazarika [40] stand as early contributors. They tackled the problem numerically, utilizing 
the shooting method. Murthy et al., [41] investigated the momentum and energy equations 
associated with Casson fluid flow around a stretching cylinder, incorporating slip velocity and MHD 
effects into their analysis. They utilized numerical techniques, specifically the Runge-Kutta method, 
to solve the problem. Studying the impact of slip on Casson fluid flow in a porous medium outside a 
stretching cylinder,  Ullah et al., [42] investigated the effects of MHD, thermal radiation, viscous 
dissipation, and Joule heating. The researchers employed the Keller box method to address this 
problem. Next, Jalil and Iqbal [43] conducted a numerical investigation on Casson fluid flow over an 
exponentially stretching cylinder, considering the effects of suction and blowing. They omitted the 
energy equation from the momentum equation and solved the system using the Keller box method. 
Hayat et al.,[44] employed the Homotopy Analysis Method (HAM) to derive a semi-analytical solution 
for the Casson fluid flow in a slip cylinder. The effects of heat and mass transfer were evaluated. All 
of the studies mentioned above have generated numerical and semi-analytical solutions for Casson 
fluid flow through a cylinder, taking into consideration slip effects at the boundary.   

As far as the authors are aware, numerous researchers have numerically explored Casson fluid 
flow with slip boundary effects in cylinders. However, prior literature lacks analytical solutions for 
Casson fluid flow in a slipping vertical cylinder, incorporating the influences of MHD, porous medium, 
and heat transfer. Hence, the objective of this current investigation is to examine the Casson fluid's 
unsteady free convection movement via a porous medium (simulating cholesterol plaque) and a 
vertical cylinder while considering the impacts of slip velocity, MHD, and pulsatile pressure gradient 
(simulating the rhythmic contraction of the heart). Analytical solutions for fluid velocity and 
temperature within the cylindrical domain were obtained using Laplace and finite Hankel transform 
methods. Maple software was utilized to compute several essential parameters, and Bessel functions 
of zero order were employed to depict the graphical solutions. 
 
2. Problem Formulation  

 
An incompressible Casson fluid with free convection flow is considered within the framework of 

a vertical cylinder with a radius of r0. The r is the radial coordinate, which is oriented perpendicular 
to the vertically oriented z-axis. The pulsatile pressure gradient is one of the factors induced by fluid 
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flow. The porous medium and the external magnetic field both had an impact. The external electric 
field, the resulting magnetic field, and the electric field induced by polarisation all have negligible 
significance. The fluid and the cylinder are idle during t*=0, and the temperature is ambient, Tꝏ. The 
fluid begins its flow with a slip velocity at the cylinder wall surface after the initial time t*>0. Inside 
the cylinder, the temperature gradually increases from the initial ambient temperature, Tꝏ, to reach 
the wall temperature, Tw, and is then held at a constant level. The fluid velocity and fluid temperature 
solely depend on the variables r and t. The problem of fluid flow is visually represented in the physical 
diagram in Figure 1. 

 

 
Fig. 1. The fluid flow physical geometry  [45] 

 
Describing the relation between shear stress and strain rate in the context of incompressible Casson 
fluid flow, the equation is as follows [37]   
 

           (1) 

 
where ℼ is the deformation rate component product representing eijeij with eij denoting the (i,j)-th 
component of the deformation rate. ℼc is a critical value of this product according to the non-
Newtonian model. Additionally, µB stands for the plastic dynamic viscosity of non-Newtonian fluid, 
and py denotes the yield stress of fluid. The continuity equation is automatically fulfilled built on the 
provided assumptions, Boussinesq's approximation, and the neglect of viscous dissipation. As a 
result, the equation for momentum and energy governs the problem as the governing equations [19], 
[37] 
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           (3) 

 
accompanied by the proper initial and boundary conditions [19], [46]  
 

         (4) 

 
where ρ is the fluid’s density, the velocity component along the z-axis u*, the pressure gradient p, 
fluid dynamic viscosity µ, the non-Newtonian Casson parameter , permeability constant 
kp, electrical conductivity σ, applied magnetic field strength B0, the gravitational acceleration g, the 
thermal expansion coefficient βT, the fluid temperature T*, the specific heat capacity of fluid cp, the 
thermal conductivity k, the fluid kinematic viscosity ν. Introducing dimensionless variables in a 
manner suitable for the context [17], [19], [46]  
 

    (5) 

 
Substituting the dimensionless variables (5) into Eqs. (2), (3), and (4) produces the momentum and 
energy equations outlined below 
 

         (6) 

 

              (7) 

 
Accompanied by the correlated dimensionless initial and boundary conditions 
  

         (8) 

 

where denotes the Darcy number,  signifies the magnetic parameter, 

is the Prandtl number, represents the Grashof number, and   

are the constant parameters. The pulsatile pressure gradient arises from the rhythmic pumping 
motion of the heart, as explained [37]  
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where A0 and A1 are the amplitude of pulsatile flow, ω defined as the frequency of pulsatile flow. 
Substitutes Eq. (9) into Eq. (6), which yields 
 

                               (10) 

 
3. Problem Solution 
 

In the subsequent phase, a dual approach is employed, combining the Laplace transform and 
finite Hankel transform. This methodology is applied for the analytical solution of the dimensionless 
partial differential equations and their corresponding initial and boundary conditions. 
 
3.1 Temperature Profile 
 

Laplace transform is being utilised in energy equation (7) and initial and boundary conditions (8), 
which yields 

 

                    (11) 

 

                                    (12) 

 
where  represents the function for Laplace transform  and s refer to the transformation 
variable. Subsequently, utilising the zero-order finite Hankel transform to Eq. (11) under condition 
(12) yields the following result 
 

                     (13) 

 

where the finite Hankel transform of the function is defined as

and the positive roots rn with n=0,1,… determined by the equation , where J0 represents the 
zero-order first-kind Bessel function, and J1 is the first-order Bessel function of the first kind. Next, 
the equation below is result in exploiting the inverse Laplace transform on Eq. (13) 
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                   (15) 

 
and applying to Eq. (14) and the analytical solution for the energy equation for the pulsatile Casson 
fluid flow is 
 

                    (16) 

 
3.2 Velocity Profile 
 

The Laplace transform had been utilised on both the momentum equation (Eq. 10) and the 
boundary condition (Eq. 8), all while taking into account the initial state (Eq. 8). This process results 
in the following outcome 

 

              (17) 

 

                        (18) 

 
Introducing the notation  to signify the Laplace transform of the function . Afterwards, 
we utilise a zero-order finite Hankel transform to Eq. (17) while incorporating boundary condition 
(18), resulting in 
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                  (22) 

                   (23) 

 

                     (24) 

 

                   (25) 

 

where is a constant parameter. The given result is the zero-order inverse finite Hankel 

transform 
 

                               (26) 

 
being applied to Eq. (20), and the analytical solution for the momentum equation for pulsatile Casson 
fluid flow is as below 
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which are Casson parameter β, Grashof number Gr, Prandtl number Pr, Darcy number Da, Magnetic 
parameter M, amplitude pulsatile pressure gradient A0, A1, and time parameter t.  

These parametric values are kept constant for numerical calculations: A0=0.05, A1=0.05, ω=ℼ/4, 
β=0.8, Da=1, M=1, Gr=1, t=1 [7], [36], [46]. Pr=21 is chosen since the current study involves human 
blood flow. These results in Eq. (27) will be contrasted with the findings documented in earlier 
publications for accuracy verification, completed by Khan et al., [9], as shown in Figure 2. The recent 
research focused on the convective and Casson fluid for pulsatile flow. The effects of MHD, porosity, 
and slip velocity are also considered in this study. Khan et al., [9] investigated the Newtonian fluid 
flows convectively past an oscillating cylinder. For comparison, some parameters have been set as 
A0=0, A1=0, ω=0, β=ꝏ, Da=ꝏ, M=0, and us=1 to obtain the same formation for both problems.  

 

 
Fig. 2. Present result validation of fluid velocity u(r,t) 

 
In Figure 3, how blood velocity distributions are affected by variations in the Casson parameter 

(β) in the slip velocity presence and its absence is being visualised. The Casson fluid behaviour 
becomes more effective when the Casson parameter is close to zero, which is relevant to the blood 
flow properties in capillaries. In scenarios where the Casson parameter exhibits high values (β→ꝏ), 
the current fluid model behaves like a Newtonian fluid. According to the graph, blood flow decreases 
with higher Casson parameter values when a no-slip condition occurs. This decrease is attributed to 
the rise in plastic dynamic viscosity, leading to increased internal friction force and, subsequently, a 
higher shear thickening factor, making the blood more viscous. 

Conversely, blood flow increases with higher Casson parameter values in the presence of slip 
effect. It is associated with a decrease in the yield stress of the blood, which reduces the force 
required to initiate blood flow, thus accelerating blood flow velocity. Eventually, both slip and no-slip 
cases reach an equilibrium state where blood flow at both the wall and centre exhibit similar 
behaviour, showing a decline due to the increased Casson parameter and blood viscosity. Hence, the 
Casson parameter's impact on blood flow is significant in medical contexts, as it can influence the 
hemodynamics of blood flow in narrow arteries.  

Figure 4 illustrates blood flow profiles corresponding to varying Darcy number, Da. The 
observation reveals that blood flow increases as the Darcy number increases, indicating changes in 
the porous medium conditions. Physically, a higher Darcy number suggests more excellent 
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permeability within the porous medium. Permeability refers to the medium's ability to facilitate fluid 
movement [1]. In other words, as permeability increases, the porous medium becomes more 
effective in transmitting blood particles, potentially leading to reduced formation of fatty plaque in 
the blood vessel. Consequently, this enhancement in permeability augments blood flow velocity 
under both slip and no-slip conditions.  

The magnetic parameter, M, depicted in Figure 5, plays a pivotal role in shaping blood velocity 
profiles. As the magnetic parameter increases, there is a concurrent decrease in blood flow velocity, 
regardless of whether non-slip or slip velocities are observed at the cylinder wall. This phenomenon 
is attributed to the emergence of the Lorentz force, which acts as a resistance against fluid 
movement. The Lorentz force arises from the interaction between induced currents and the magnetic 
field, opposing blood flow within the arteries. The presence of an external magnetic field induces 
currents in the flowing blood, contributing to this resistance. Consequently, the magnetic field's 
influence significantly modulates blood circulation within the human vascular system [47]. 

Figure 6 portrays the effect of the thermal Grashof number on blood flow profiles, illustrating 
scenarios with both slip and no-slip conditions at the boundary. The Grashof number, which denotes 
the ratio between thermal buoyancy force and hydrodynamic forces, is highlighted [29]. As the 
thermal Grashof number increases, blood velocity also rises, regardless of the presence or absence 
of slip velocity effects at the boundary conditions. The thermal buoyancy force, arising from 
variations in blood density and temperature gradients, becomes predominant during free 
convection. When blood temperature rises, its density decreases, resulting in reduced impact on the 
viscous force of blood. This leads to upward movement driven by buoyancy forces, while blood with 
higher density moves downward due to gravity forces. Consequently, there is an increase in blood 
velocity. 

Figure 7 displays the impact of the pulsatile pressure gradient on blood flow profiles, considering 
slip and no-slip conditions. The pulsatile pressure gradient serves as an indicator of the cardiac 
pumping mechanism, characterized by two parameters, which are a constant amplitude denoted as 
A0 and an amplitude of oscillating velocity denoted as A1. According to Hemmat Esfe et al., [48], these 
parameters reflect the nature of blood flow in arteries. Analysis of the graph demonstrates that 
increasing the parameters of the pulsatile pressure gradient leads to an increase in blood flow under 
both slip and no-slip conditions. The amplification of pulsatile flow indicates strengthening of the 
cardiac pumping mechanism, facilitating accelerated blood flow throughout the human vascular 
system. The regulation of pulsatile pressure gradients holds the potential for mitigating or managing 
various conditions, including hypertension, which arises from blood flow obstruction. 

In correlation to the Prandtl number, there are changes in the blood velocity and temperature, 
as revealed in Figures 8-9. The Prandtl number is defined as the reciprocal of the ratio of momentum 
to thermal diffusivity [14]. In the context of blood flow in arteries, the Prandtl number is significant 
in understanding the balance between momentum diffusion and thermal diffusion. The trend 
observed in Figure 8 indicates a decline in blood velocity with a rise in the Prandtl number, 
irrespective of slip velocity. A higher Prandtl number signifies increased blood viscosity, meaning 
viscous forces dominate over thermal forces. Consequently, the blood becomes thicker, and 
experiences increased frictional forces, resulting in slower motion.  

However, the Prandtl number influences the blood temperature, θ(r,t) versus radial coordinate r, 
which has been reflected in Figure 9 for different time values, t. Blood temperature diminishes as the 
Prandtl number increases. This phenomenon occurs because a higher Prandtl number accelerates 
heat diffusion due to the inverse correlation between thermal diffusivity and the Prandtl number. 
Consequently, the diminished convective heat transfer rate results in a slower temperature change 
within the fluid, leading to a reduction in fluid temperature. Furthermore, with high time t values, 
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the Prandtl number substantially impacts the temperature distribution. Understanding the Prandtl 
number in blood flow is essential for evaluating the effectiveness of heat transfer mechanisms within 
the bloodstream, with implications for understanding heat exchange dynamics in physiological 
processes such as thermoregulation and the vascular response to temperature changes. 

The impact of slip velocity on blood flow profiles is showcased in Figures 3-8. The graphs illustrate 
that the slip effect results in a reduction in blood flow velocity as it approaches the centre of the 
cylinder. This decline in velocity occurs due to increased viscous forces encountered by the blood as 
it moves toward the cylinder's centre. Additionally, velocity increases with higher slip velocities, 
particularly near the cylinder wall. This phenomenon arises from the minimal shear stress, resulting 
in a reduced velocity gradient near the boundary. Consequently, this leads to a decrease in blood 
viscosity and an increase in blood flow. Understanding the impact of slip velocity on blood flow in 
arteries is essential for precise modelling and prediction of hemodynamic behaviours, as well as for  
elucidating the physiological and pathological mechanisms underlying vascular function.  
 

  
Fig. 3. Blood velocity and Casson Parameter β 
with slip and no-slip effect 

Fig. 4. Blood velocity and Darcy number Da with 
slip and no-slip effect 
 

  
Fig. 5. Blood velocity and Magnetic parameter M 
with slip and no-slip effect 

Fig. 6. Blood velocity Grashof number Gr with slip 
and no-slip effect 
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Fig. 7. Blood velocity and amplitude pulsatile 
pressure gradient A0, A1 with slip and no-slip 
effect 

Fig. 8. Fluid velocity and Prandtl number Pr 
with slip and no-slip effect 

 
  

 
Fig. 9. Fluid temperature and Prandtl number Pr 

 
5. Conclusions 
 

This study investigates how the slip velocity presence at the boundary affects the unsteady MHD-
free convection flow of blood Casson fluid in a porous medium within a vertical cylinder. These 
analytical solutions fulfil the corresponding initial and boundary conditions. Comparing the current 
findings to previously published findings from Khan et al., [9] and obtaining agreement for both 
comparisons constitutes result validation. The distribution of temperature and velocity varies due to 
the changes of the slip parameter us, Darcy number Da, Casson parameter β, Grashof number Gr, 
magnetic parameter M, amplitude pulsatile pressure gradient A0, A1, and Prandtl number Pr have 
been analysed. From this analysis, the results can be concluded as: 

 
i. The blood velocity increases as us, Gr, Da, A0, A1, and t increase. 

ii. The blood velocity declines when M and Pr increase. 
iii. The augmentation of the Prandtl number and the time reduction resulted in a decline in 

temperature profiles. 
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iv. Slip velocity influences the behaviour of blood flow. When β increases, blood velocity 
rises for slip us while decreases for no-slip.  
 

The results obtained from this study serve as important preliminary hypotheses for 
understanding and managing the processes of blood flow and heat transfer within the human body. 
These insights can be instrumental in analyzing blood circulation patterns during cancer treatments, 
facilitating drug delivery through the bloodstream, and addressing other pertinent medical scenarios. 
Additionally, this research presents opportunities for broader investigations into fluids containing 
nanoparticles, the effects of radiation exposure, and chemical reactions. 
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