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Atherosclerosis, caused by plaque-induced arterial stenosis, restricts blood flow and 
reduces oxygen delivery to tissues. This study investigates magnetohydrodynamic 
(MHD) hybrid nanofluid blood flow in bifurcated arteries with different types of 
stenoses under a uniform magnetic field. A mathematical model is developed for 
incompressible, laminar, Newtonian flow, with silver (Ag) and gold (Au) nanoparticles 
dispersed in blood to form the hybrid nanofluid. Simulations are performed using 
COMSOL Multiphysics and validated against existing literature. Velocity fields and 
streamline patterns are analyzed to evaluate the effects of stenosis geometry and 
location on hemodynamics. Results show that incorporating gold and silver 
nanoparticles improves flow uniformity, while an external magnetic field further 
enhances performance. The findings indicate that MHD-assisted hybrid nanofluids, 
combined with optimized stenosis management, present a promising approach for 
biomedical applications in mitigating the adverse effects of arterial stenosis. 
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1. Introduction 
 

Cardiovascular diseases particularly arterial stenosis, remain one of the leading causes of 
morbidity and mortality worldwide. Zaman et al., [1] defines coronary artery disease as 
atherosclerosis produced by stenosis, which is caused by build of fatty substances, cholesterol, 
cellular waste products and smooth muscle cells in the arterial wall. According to Khan et al., [2], a 
stenosed region affects blood flow distribution and speed, reducing oxygen and nutrient level 
available to tissues and potentially leading to coronary heart disease. Arterial inflammation can 
drastically block blood flow and nutrient. This could result in insufficient blood and oxygen increasing 
the risk of a heart attack, failure or even worse stroke. Since the primary role of the circulatory system 
is delivered oxygenated blood efficiently to all tissues, any obstruction can have life-threatening 
consequences according to Shankar et al., [3]. Bifurcated arteries provide a more realistic 
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physiological model than straight arterial segments because plaque deposition and stenosis 
formation are common at bifurcation points. 
      The effect of stenosis severity and geometry on blood flow has been thoroughly investigated in 
earlier research. The flow pattern in different shapes of stenosed arteries (50-90% cross section area 
reduction) is shown by Roy et al., [4]. According to results, 90% blockage in an artery can be extremely 
dangerous because of flow become transient and turbulent flow. Similar to Kumar et al. [5] study the 
evaluates blood flow patterns in symmetrical, elliptical, trapezoidal, triangular, cosine-shaped and 
bell-shaped stenosed arteries with heat transfer. The generalized power law for the non-Newtonian 
model is numerically simulated by Abd Aziz et al., [6] using three angles of a bifurcated artery. As a 
result, as the severity of angle of degree grows, pressure increases, potentially causing changes in 
blood flow pressure in the human artery.  
       With the advancement of nanotechnology, the stenosed can be cure by the ability to go through 
cells, tissues and organs. According to Waqas et al., [7], nanofluids are a process of heat transfer fluid 
that contains designed suspension nanostructure (1-100 nm) that are disseminated in the fluid. By 
adding nanoparticles, researcher is looking to change and improve the properties of the blood flow 
so that it can be used to treat diseases by Jalili et al., [8]. Further progress in nanotechnology has led 
to the emergence of hybrid nanofluid which are a type of nanofluid that made up of two or more 
distinct forms of nanoparticles fused together in a base liquid by Saeed et al. [9]. The transportation 
of blood through stenosed artery with permeable wall with the aid of nanoparticles was explicated 
by Nadeem and Ijaz [10]. Gold (Au) and copper (Cu) hybrid nanoparticles are distributed in the study 
by Imoro et al., [11] through a stenosed artery with thermal radiation effect. Shahzad et al. [12] also 
employing the silver (Ag) and gold (Au) and blood as a base fluid along a cylindrical duct to know 
understanding blood behaviour. The purpose of employing hybrid nanofluid (HNF) is to increase the 
base fluid’s thermal conductivity.  
        Furthermore, the presence of an external magnetic field introduces magnetohydrodynamic 
(MHD) effect which can significantly influence blood flow behaviour due to the electrically conducting 
nature of blood. Alsaedi et al., [13] said it consists of three words magneto, hydro and dynamics 
which mean magnetic effects, water and movement. Sharma et al., [14] reported that MHD can be 
controlling parameter for blood velocity. The MHD hybrid nanofluid flow in a rotating system with an 
inclined magnetic field and thermal radiation was investigated by Arshad [15]. Vaida et al., [16] 
utilized the perturbation method to analyse the complex rheological behaviour of MHD blood flow 
through stenosed arteries. Zain et al., [17] study the evaluates blood flow patterns in symmetrical, 
elliptical, trapezoidal, triangular, cosine-shaped and bell-shaped stenosed arteries with heat transfer. 
This study aims to analyse the simultaneous effects of stenosis geometry, magnetic field and hybrid 
nanofluids on blood flow and thermal transport in a bifurcated artery with emphasis on velocity 
distribution, heat flux and nanoparticle transport under the realistic physiological conditions. By 
integrating the critical factors into a single framework, this study provides deeper insights into 
hemodynamic regulation in diseased arteries and contributes to the advancement of 
nanotechnology. 
 
2. Mathematical Formulation 

 
     Fig. 1 illustrates a two-dimensional blood flow situation in different type of stenosis. The 
Newtonian fluid is assumed to be incompressible, laminar and unsteady in a Cartesian coordinates 
system. The hybrid nanofluid, NPs employed in this problem are Ag and Au, and blood is the base 
fluid.  
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(a)                                                                              (b) 

            

(b)                                                                          (d) 
                               Fig. 1.  Different type of stenosis (a) TYPE I (b) TYPE II (c) TYPE III (d) TYPE IV 
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           u and v are constituent parts of velocity in the x and y directions, respectively. Re is the Reynolds 
number, M is the Hartmann number and Pr is the Prandtl number [11]. The dimensionless boundary condition 
is given as [11]. 
 

Inflow velocity:  and at  and ,     (6) 

Outflow:           (7) 

Upper and lower wall:        (8) 

Temperature at the artery wall:  at       (9) 
Where n is a unit outward normal vector with the pressure point constraint, p=0 [11] is implemented at x=0 
and y= - 0.5, and I is the unit tensor. Tables 2 and 3 show the HNF thermophysical properties and parameters 
where blood is denoted as (f), nanofluid (nf), and and  are the volume fractions, subscripts and  
represent Au and Ag, respectively. 
 
Table 2  
Thermophysical characteristics of the base fluid and nanoparticles [13] 

 Property                                     
 
 Blood               1063                    0.003                   0.52       1090                3746 
 Copper              19300                    0.00464   310       5.96 x 107               129 
 Silver                  10500                           0.005                    429                             4.10 x 106                       235 
    

 
Table 3  
The thermophysical properties of the HNF [13]  
 Property           Equations 
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3. Validation 
 
     Validation was performed using the geometric problem studied by Hussain et al.,[18], which 
involved a 2D artery with stenosis. The same parameters values were applied in COMSOL 
Multiphysics to determine the maximum velocity in the stenosed region [18]. The magnitude surface 
velocity from both results was compared, with the maximum value showing a slight difference at the 
stenosis curve (refer to Figure 2). Therefore, the surface velocity is deemed sufficient to provide a 
good solution for the model.  
 

                 
(a)                                                                                                         (b) 

 
Fig. 2. Surface velocity magnitude at 0.2 s (a) Hussain et al., [18] (b) present study 

 
4. Result and Discussion 
  

The volume fraction, ϕ of Ag and Au is set at 0.005 and M=0, 36.6 in order to analyse the efficiency 
of NPs. Figure 3 Illustrates the blood flow with the presence of MHD under Hartmann number, M=0 
in a bifurcated artery under different types of stenosis: TYPE I (normal, healthy), TYPE II (mild 
stenosis), TYPE III (moderate stenosis) and TYPE IV (severe stenosis). Figure 3 show for the Hartmann 
number under M=0 in different type of stenosed artery. In the healthy case, Figure 3(a) show 
distributed smoothly and symmetric. As stenosis gets worse: Figure 3(b), 3(c) and 3(d), the flow 
speeds up significantly with greatest velocities reaching up from 0.571933m/s to 0.845725m/s and 
recirculation areas from downstream of the stenotic throat. The distributed and asymmetric velocity 
profile in Figure 3(c) and Figure 3(d) illustrate the unstable impact of severe stenosis in the absence 
of magnetic influence.  Figure 4. show the blood flow with the presence of MHD under Hartmann 
number, M=36.6. When the magnetic field is applied at highest, a clear stabilizing effect is observed. 
For the Figure 4(a), the maximum velocity slightly decreased compared to M=0, indicating a that flow 
acceleration is reduced. The maximum velocities in the stenosed cases, especially in Figure 4(b) until 
Figure 4(d), are significantly lower than M=0. The size of the recirculation zones downstream of the 
stenosis is also reduced and the velocity contours become smoother. This illustrates how the 
magnetic field improves flow uniformly by minimizing excessive velocity gradients and irregular flow.  
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(a)                                                                                   (b) 

                                                                                                                              

            
(c)                                                                               (d) 

Fig. 3. Hartmann number, M=0 (a) TYPE I (b) TYPE II (c) TYPE III (d) TYPE IV 
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(c)                                                                                                     (d)                                             

Fig. 4. Hartmann number, M = 36.6 (a) TYPE I (b) TYPE II (c) TYPE III (d) TYPE IV 
 
           In the Figure 5 demonstrates the distribution of heat flux at the center stenosis for different 
types stenosis geometry using pure blood, Au-blood nanofluid and Ag-blood nanofluid as the blood 
models. Every single case, the heat flux shows a parabolic profile, with the core region showing the 
highest values and the arterial walls showing the lowest values. In the Figure 5(a) show the cases of 
nanofluid indicate a marginally higher heat flux than pure blood. Because of increased flow and 
increased shear stress at the narrowed throat region, the maximum heat flux increases as the severity 
of stenosis: Figure 5(b) until Figure 5(c) increase. Pure blood exhibits the lowest values of heat flux, 
while Au-blood consistently exhibits the highest, followed by Ag-blood. This is explained by the higher 
thermal conductivity of gold nanoparticles which improves the fluid’s overall heat transfer 
capabilities. The difference between pure blood and nanofluids is more notable in severe stenosis 
Figure 5(d), highlighting the potential of hybrid nanofluids to enhance thermal regulation in 
pathological flow conditions.  
         For the Figure 6 highlights the influence of nanoparticles by showing the volume fraction 
magnitude of Au and Ag nanofluids under 0.005 for Figure 6(a) TYPE I and Figure 6(b) TYPE IV. With 
little difference between Au and Ag, the volume fraction distribution in the healthy artery stays 
comparatively symmetrical and smooth. However, because of the accelerated flow and velocity 
gradients, the distribution becomes extremely non-uniform in severe stenosis with larger 
accumulation in the throat region. This implied that stenosis has a direct impact on the distribution 
and transport of nanoparticles, which in turn affects the efficiency of heat transfer. These results 
show that adding nanoparticles will improves heat transfer when compared to pure blood and the 
effects gets more significant as the severity of the stenosis increases. 
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(a)                                                                                    (b) 

                                                                                  

     
  (c)                                                                                        (d) 

Fig. 5. Heat flux at center of stenosis (a) TYPE I (b) TYPE II (c) TYPE III (d) TYPE IV 
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Fig. 6. Volume Fraction Magnitude (a) TYPE I (b) TYPE IV 
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4. Conclusions 
 
     In conclusion, the influence of stenosis geometry on MHD HNF blood flow and heat transfer gives 
useful data about how the impact MHD and HNF to stenosis. The key findings from this study are 
summarised below:  

• Different types of stenosis change flow in a significant way, which causes backflow and 
recirculation downstream. 

• Flow formation becomes harder and maximum velocity is increased as stenosis severity 
increases. 

• The most critical condition is TYPE IV stenosis which shows the largest heat flux, the strongest 
disturbances, and the highest velocity. 

• When compared to pure blood and Ag-blood, Au-blood offers the highest enhancement in 
heat transfer. 

• In cases of severe stenosis, the distribution of nanoparticles becomes extremely irregular, 
particularly in the throat area. 

 
The study in medical might be useful in evaluating the effects of MHD and HNF from the various  

magnetic therapies on patients. It thought that this study will have an impact because combining 
HNF and MHD could lead to new less invasive treatment. 
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