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The Hiemenz flow over a shrinking or stretching sheet in a ternary hybrid nanofluid is 
examined in this study. Utilising copper Cu, titanium dioxide TiO2, and alumina Al2O3 
nanoparticles dissolved in water, the study seeks to figure out the improved heat 
transfer characteristics of ternary hybrid nanofluids through the considered control 
parameters. This study investigates the thermal and flow behavior of ternary hybrid 
nanofluids in various boundary layer configurations. The governing equations are 
initially formulated as partial differential equations (PDEs) based on the principles of 
mass, momentum, and energy conservation. These PDEs are then transformed into a 
system of nonlinear ordinary differential equations (ODEs) using similarity 
transformations, enabling the analysis of boundary layer flow under specific 
conditions. These resulting equations subjected to the boundary conditions are then 
solved numerically by using bvp4c in MATLAB software. This study found that, based 
on the first solution, a high local Nusselt number can be achieved by increasing the 
volume fraction of TiO2 nanoparticles, suggesting that a suitably more concentrated 
TiO2 composition could improve the heat transfer rate in the system. Moreover, 
increasing the volume fraction of TiO2 could increase the skin friction coefficient. 
Additionally, delaying boundary layer separation is possible by carefully tuning the 
stretching or shrinking parameter . Specifically, the boundary layer separation occurs 
when the sheet is shrunk extensively. These discoveries provide important insights for 
improving heat transfer systems and developing industrial and engineering 
applications for nanofluids. 
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1. Introduction 
 

Stagnation-point flows, describing the fluid motion near the stagnation region at the front of a 
blunt-nosed body, exist on all solid bodies moving in a fluid. The stagnation region encounters the 
highest pressure, the highest heat transfer, and the highest rates of mass deposition. Hiemenz [1] 
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was the first to study two-dimensional stagnation flows using a similarity transform to reduce the 
Navier-Stokes equations to nonlinear ordinary differential equations. Hiemenz flow is the stagnation 
point flow by using similarity of the solution to reduce number of variables by means of coordinate 
transformation.  

The study of boundary layer flow over a stretching or shrinking sheet is a fundamental topic in 
fluid mechanics, with significant implications for both theoretical research and practical applications. 
Boundary layer flow refers to the thin region adjacent to the surface where viscous effects are 
significant, and the analysis of this flow is crucial for understanding heat and mass transfer processes 
in various engineering systems [2]. Stretching and shrinking sheet problems have garnered 
considerable attention due to their relevance in industrial applications such as extrusion processes, 
hot rolling, wire drawing, and glass-fiber production. In these applications, the surface velocity can 
vary, leading to complex boundary layer behaviors [3]. A stretching sheet typically occurs when a 
material is pulled, causing it to elongate and thin, while a shrinking sheet involves the material 
contracting and thickening as it is compressed. 

The mathematical modeling of these phenomena often involves solving the Navier-Stokes 
equations under specific boundary conditions to describe the velocity and temperature fields within 
the boundary layer. These models are further complicated when considering non-Newtonian fluids, 
magnetohydrodynamics, or thermal radiation effects, which are essential for accurately predicting 
the behavior in real-world applications [4]. 

In recent years, the introduction of nanofluids—fluids containing nanometer-sized particles has 
added another layer of complexity and interest to the study of boundary layer flows. Nanofluids have 
enhanced thermal properties, making them highly effective for heat transfer applications [5]. The 
combination of stretching/shrinking sheet dynamics with nanofluids presents a promising area for 
enhancing thermal management systems in various high-performance engineering applications. 

The study by Waini et al., [6] investigates the Hiemenz flow of a hybrid nanofluid composed of 
alumina (Al2O3) and copper (Cu) nanoparticles over a stretching and shrinking surface. The primary 
objective is to derive the mathematical correlations for the thermophysical properties of the ternary 
hybrid nanofluid and hybrid nanofluid. The results indicate that dual solutions exist for several 
physical parameters and that the stability analysis confirms the stable solution. Zainal et al., [7] 
investigated the heat generation and absorption effects on the magnetohydrodynamic (MHD) flow 
of a hybrid nanofluid over a bidirectional exponential stretching and shrinking sheet. The study found 
that increasing the nanoparticle volume fraction and magnetic parameter enhances the skin friction 
coefficient, while the suction parameter improves the heat transfer rate. Conversely, the presence 
of heat generation reduces the heat transfer rate.  

In recent research by Zari et al., [8] the study focused on the analysis of Hiemenz flow towards a 
stretching Riga plate in a hybrid nanofluid medium comprising alumina (Al2O3) and copper (Cu) 
nanoparticles dispersed in water (H2O), with the combined effects of thermal radiation, viscous 
dissipation, and joule heating. The findings indicate that the incorporation of electromagnetic and 
thermal radiation effects can substantially improve the performance of hybrid nanofluids in heat 
transfer applications. Reddy et al., [9] investigated the heat and mass transfer characteristics of 
hybrid nanofluid flow over a stretching or shrinking sheet, incorporating the effects of slip, chemical 
reactions, suction, and thermal radiation. The hybrid nanofluid comprised water as the base fluid and 
a combination of Alumina (Al2O3) and Titanium Oxide (TiO2) nanoparticles. The study revealed that 
the temperature of the hybrid nanofluid increased with higher volume fractions of nanoparticles in 
both steady and unsteady cases. A considerable amount of research has also been carried out on this 
subject by other researchers, as evidenced by studies [10-14]. 
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The study aspects of non-unique solutions for hiemenz flow filled with ternary hybrid nanofluid 
over a stretching/shrinking sheet by Jamrus et al., [15] investigates the behavior of hiemenz flow 
involving a ternary hybrid nanofluid across a stretching/shrinking sheet. The results indicate that skin 
friction values are significantly affected by the magnitude of the stretching/shrinking parameter, and 
that the heat conduction efficiency of the ternary hybrid nanofluid surpasses that of the hybrid 
nanofluid. Notably, within a specific range of the shrinking/stretching parameter, the system exhibits 
two distinct solutions, with stability analysis revealing that only one solution remains stable over 
time. 

Jamrus et al., [16] focused on the laminar magnetohydrodynamic (MHD) flow of a ternary hybrid 
nanofluid over a permeable stretching sheet with suction and magnetic field effects. Their findings 
indicated that while unsteadiness and suction parameters enhance the heat transfer rate, the 
magnetic parameter reduces it, providing critical insights for optimizing thermal systems involving 
hybrid nanofluids. 

However, despite the growing interest in hybrid nanofluids, studies specifically addressing 
Hiemenz flow over shrinking or stretching sheets in a ternary hybrid nanofluid remain scarce. To the 
best of our knowledge, no comprehensive study has been conducted on this specific topic, 
highlighting a significant research gap. Ternary hybrid nanofluids, which incorporate three different 
nanoparticles, have received relatively little attention compared to conventional hybrid or mono 
nanofluids. The limited research in this area presents an opportunity to explore the effects of ternary 
hybrid nanofluids in enhancing heat and mass transfer performance, offering potential advantages 
in engineering applications. 

Ternary hybrid nanofluids have gained significant attention for their advanced thermal and 
rheological properties, making them highly relevant to precision engineering applications. Research 
has focused on optimizing their thermophysical properties using advanced methods like neural 
networks and response surface methodology to enhance thermal conductivity and viscosity [17]. 
Their flow behavior and heat transfer capabilities have been explored in various scenarios, such as 
through stenosed arteries [18] and over stretching sheets [19], providing insights into their potential 
for precise fluid control in industrial and biomedical systems. Studies have also reported the synthesis 
and characterization of novel ternary hybrid nanoparticles, including metal-metal-oxide-carbon 
combinations, which offer superior thermal performance [20]. These findings collectively highlight 
the applicability of ternary hybrid nanofluids in enhancing thermal management, lubrication, and 
energy efficiency in high-precision engineering processes [21]. 
 
2. Methodology  

 
The Hiemenz flow of a ternary hybrid nanofluid on a stretching/shrinking surface is considered. 

The flow configuration of the problem is illustrated in Figure 1. Here, the free stream velocity is taken 
as , while the surface velocity is  with  and  are constants. The 
ambient  and the surface  temperatures are also constants.  
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(a) (b) 

Fig. 1. Comparison of (a) stretching and (b) shrinking surface 
 
Therefore, the governing equations are [6,22-24]: 
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where  are the velocity component along  – axes, and  is the temperature of the tetra-

hybrid nanofluid. Further,  is the dynamic viscosity,  is the density,  is the conductivity 

and  is the heat capacity, of the tetra-hybrid nanofluid which the formulations are provided 

in Table 1. Note that Al2O3 , Cu  and TiO2  are the nanoparticles used in this study, with 
their thermophysical properties values tabulated in Table 2. 
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Table 1  
The model of thermophysical properties  
Properties Model 

Dynamic 
viscosity 

 

Density  

Heat 
capacitance 

 

Thermal 
conductivity 

 where 

 

 

 
Table 2 
Value of thermophysical properties  
Properties H2O Al2O3 Cu TiO2 

 997.1 3970 8933 4250 

 4179 765 385 686.2 
 0.613 40 400 8.9538 

Pr 6.2    
 
Next, similarity variables are introduced, such that [25]: 

 

         (5) 

 

By applying the similarity variables from Eq. (4) to Eqs. (2) and (3), the model reduces to the 
following boundary value problems in the form of ODEs, such that: 

 

, (6) 

  

, (7) 

  
,  

 
(8) 

 

( ) ( ) ( )2.5 2.5 2.5
1 2 31 1 1

µ
µ

f f f
=

- - -
f

thnf

( ) ( ) ( ) ( )( )( )( )3 3 2 1 1 1 2 2 3 31 1 1 1r f f f f r f r f r f r= - - - - + + +thnf f

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )3 2 1 1 2 31 2 3
1 1 1r f f f r f r f r f r= - - - + + +p p p p pthnf f

C C C C C

( )
( )

3 3 3

3 3 3

2 2

2

f

f

+ - -
= ´

+ + -
hnf hnf

thnf hnf
hnf hnf

k k k k
k k

k k k k

( )
( )

2 2 2

2 2 2

2 2

2

f

f

+ - -
= ´

+ + -
nf nf

hnf nf
nf nf

k k k k
k k

k k k k

( )
( )

1 1 1

1 1 1

2 2

2

f

f

+ - -
= ´

+ + -
f f

nf f
f f

k k k k
k k

k k k k

( )3kg/mr

( )J/kgKpC

( )W/mKk

( ) ( )1/2
( ),  ,  y n h q h h¥

¥

-
= = =

-
e

e f
w f

UT TU f y
T T v

2/
''' '' 1 ' 0

/
µ µ
r r

æ ö
+ + - =ç ÷ç ÷

è ø

thnf f

thnf f

f ff f

/1 '' ' 0
Pr ( ) / ( )

q q
r r

æ ö
+ =ç ÷ç ÷

è ø

thnf f

p thnf p f

k k
f

C C

( ) ( )(0) 0,  ' 0 , 0 1l q= = =f f

( ) ( )' 0, 0q¥ ® ¥ ®f



Semarak International Journal of Mechanical Precision and Engineering 
Volume 1, Issue 1 (2024) 44-55 

49 
 

where the involved dimensionless parameters are Prandtl number , 

stretching/shrinking parameter , where  for stretching,  for shrinking and  

for static sheet. 
The interest physical quantities, specifically the skin friction coefficient  and the local Nusselt 

number , defined as follows: 
 

,         (9) 

 
Using Eq. (4), Eq. (8) transforms to: 
 

,                    (10) 

 
where  is the local Reynolds number. 
       
3. Results  
 

The classical Hiemenz problem is recovered when the nanoparticle volume fractions 
(representing a regular fluid) and the stretching or shrinking parameter  

(indicating a rigid surface). Under these conditions, the calculated value of . This 
result is consistent with the findings of Waini et al., [6] .Additionally, Table 3 presents a comparison 
of  values for various cases of  with , further validating the accuracy of the 
current results. The current results align well with the referenced literature. Fur- thermore, the 
calculated values of  and  for various parameters, with , are summarized 
in Table 4 and this result is also validated with Waini et al., [6]. 
 

Table 3  
Comparison values of  with different  for regular fluid with 

 
 Present Results Waini et al., [6] 

2 -1.887306670 -1.887307 
1 0 0 
0.5 0.713294954 0.713295 
0 1.232587654 1.232588 
-0.5 1.495669765 1.495670 
-1 1.328816875 1.328817 
-1.15 1.082231140 1.082231 
 [0.116702109] [0.116702] 
-1.2 0.932473323 0.932473 
 [0.233649675] [0.233650] 
-1.2465 0.584281373 0.584281 
 [0.554296309] [0.554296] 
Note: [ ] Second solution 
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Table 4 
Comparison values of  and  for various values of  and  with  

   (Cu/water)  (Al2O3-Cu/water) 
      
0 0 1.232587654 1.127964359 1.408762990 1.229274834 
  [1.232588] [1.127964] [1.404763] [1.229275] 
0.03  1.425109993 1.213918326 1.605715174 1.317394632 
  [1.425110] [1.213918] [1.605715] [1.317395] 
0.05  1.553849594 1.269379144 1.738636824 1.374809947 
  [1.553850] [1.269379] [1.738637] [1.374810] 
0.05 -0.5 1.885501489 0.706314054 2.109729497 0.791230808 
  [1.885501] [0.706314] [2.109729] [0.791231] 
0 0 1.553849594 1.269379144 1.738636824 1.374809947 
  [1.553850] [1.269379] [1.738637] [1.374810] 
0.5  0.899208322 1.733859220 1.006144165 1.856884594 
  [0.899208] [1.733859] [1.006144] [1.856885] 

Note: [ ] Results by Waini et al., [6] 
 

Figure 2 and 3 show result with  and  vary for  against  

when  and . According to the results, when  increases, the surface friction 
increases for  and zero skin friction is noticed when , which align with the tabulation in 
Table 3. In addition, when  increases, the heat transfer rate increases as the local Nusselt number 
increases (see Figure 3). The point of bifurcation for different  is the same for all which implies that 
the concentration of TiO2 does not affect the boundary layer separation and this parameter cannot 
be used to control the flow phase or the separation of boundary layer, where . Based 
on Figure 3, for , the solution of the local Nusselt number is unique. 

 

  
Fig. 2.  against  for varies  Fig. 3.  against  for varies  

 
Further, the velocity  and temperature  profiles are shown in Figures 4 and 5 for 

 when ,  (for shrinking case) and . The findings 
indicate that while an increase in  reduces the temperature profiles , it increases the velocity 
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profiles  for both solution branches. For Figure 4, momentum boundary layer thickness 
decreases for both solution while for Figure 5 the thermal boundary layer thickness also decreases 
for both solutions. 
 

  
Fig. 4. Effect of  on (shrinking) Fig. 5. Effect of  on (shrinking) 

 
However, for Figures 6 and 7, when  (for stretching case), only the first solution branch 

was able to be generated. The results reveal that as  increases from 0.01 to 0.02 while maintaining 
 and , it reduces velocity of the fluid and thinning the momentum boundary 

layer thickness for both solution (Figure 6). Meanwhile, the temperature profile increases in Figure 
7, and thickening the boundary layer thickness for both solution when  increases. 
 

  
Fig. 6. Effect of  on (stretching) Fig. 7. Effect of  on (stretching) 

 
On the other hand, the effect of  on  and  when  and  are 

shown in Figures 8 and 9 for shrinking case, ( ). Based on the first solution in Figure 8, when  
goes from −1.2 to −1.15 and to −1.1, the velocity of the fluid increases and the momentum boundary 
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layer thickness becomes thinner. Meanwhile, for the second solution, the velocity decreases while 
thickening the momentum boundary layer thickness. Next, based on the first solution in Figure 9, 
when  goes from −1.2 to −1.15 and to −1.1, the temperature of the fluid increases and the thermal 
boundary layer thickness becomes thickness. Meanwhile, for the second solution, the temperature 
decreases while the momentum boundary layer thickness. 
 

  
Fig. 8. Effect of shrinking  on  Fig. 9. Effect of shrinking  on  

 
Meanwhile, for stretching case, only first solution result was taken which can be seen in Figures 

10 and 11. When  increase from 1 to 2 to 3 it shown stretching intensity increase, sheet became 
more expanding for both Figure 10 and 11. Due to this condition, the velocity profile and the 
momentum boundary layer increase as can be seen in Figure 10. Meanwhile for Figures 11, the 
temperature profile decreases and the thermal boundary layer also decreases when the stretching 
intensity increases. 
 

  
Fig. 10. Effect of stretching  on  Fig. 11. Effect of stretching  on  
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4. Conclusions 
 

The research explores the behavior of Hiemenz flow over a stretching or shrinking sheet 
immersed in a ternary hybrid nanofluid, focusing on the effects of nanoparticle volume fractions and 
stretching or shrinking parameters. A mathematical model was formulated and simplified using 
similarity transformations, and were then solved numerically. The key findings include the 
identification of dual numerical solutions, particularly in shrinking cases, which highlight the presence 
of a critical bifurcation point ( ). This bifurcation serves as an indicator of flow stability 
and transition. Based on the first solution, the flow model can be controlled as follows (see Tables 5 
and 6): 
 

Table 5 
Flow control suggestions using nanoparticle volume fraction (TiO2) 
Sheet Condition Physical Quantities Increment of TiO2 volume fraction  
Shrinking Skin friction Increase 
 Heat transfer Increase 
 Velocity Increase 
 Temperature Decrease 
Stretching Skin friction Increase 
 Heat transfer Increase 
 Velocity Decrease 
 Temperature Increase 

 
Table 6  
Flow control suggestions using stretching or shrinking parameter 
Physical Quantities Increment in stretching 

intensity  
Increment in shrinking 
intensity  

Skin friction Decrease Increase (until critical point) 
Heat transfer Increase Decrease 
Velocity Increase Decrease 
Temperature Decrease Decrease 

 
Moreover, the bifurcation of the boundary layer is uncontrollable through the adjustment in the 

volume fraction of TiO2. It is also believed that the first solution is the most reliable since the 
previous study by Waini et al., [6] has proven that the first solution is stable compared to the 
second solution. 
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