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This research aimed to measure teachers' ability to understand computational thinking 
concepts by using stacking and racking analysis techniques in the Rasch model. The 
participants of this study were chemistry teachers who had been selected to attend 
training for 6 days. Data collection was carried out before and after participating in the 
training using the same instrument. The data obtained was then analyzed using 
WINSTEPS 5.4.1 software. The results showed that teachers who had attended the 
training experienced changes in their knowledge of computational thinking concepts. 
Statistically, the change in the ability of teachers’ computational thinking concept 
knowledge moves from -0.33 logit to 2.44 logit. Along with the intervention effect, in 
certain cases, positive conceptual changes were found due to teachers’ lucky guesses 
and cheating. In other cases, teachers were found to be careless in answering 
questions. Stacking and racking analysis is essential in detailing any changes in teacher 
ability, item difficulty, and learning progress. 
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1. Introduction 
 

The idea of computational thinking (CT) is not new in the education field. CT is a term used since 
the 1950s that describes the notion of using structured thinking or algorithmic thinking [1]. In the 
1960s, Perlis argued that every student from any discipline should learn about programming and the 
"theory of computation". However, in primary and secondary education, computing first became a 
concern after Seymour Papert in the 1980s pioneered the idea of developing procedural thinking 
through programming [2]. Furthermore, Jeannette Wing (2006) published an article entitled 
"Computational Thinking" which appeared in the March 2006 issue of Viewpoint from ACM 
Communication. In the article, she defined CT as "solving problems, designing systems, and 
understanding human behavior, by drawing on the concepts fundamental to computer science. 
Computational thinking includes a range of mental tools that reflect the breadth of the field of 
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computer science" [3]. Based on this, the essence of CT is to think like a computer scientist when 
facing a problem. 

However, the term CT is still not widely recognized by teachers [3]. CT is still often misinterpreted 
as the ability to use computers [4-6]. In essence, CT is an analytical thinking skill that draws on 
computer science concepts. However, CT is a fundamental skill that can be used by and is useful for 
everyone [3]. Some scholars argue that CT is an important skill for all fields of science, not just 
computer science [7]. The application of computational thinking through systematic problem-solving 
has already permeated multiple disciplines, establishing CT as a vital competency across various fields 
[8]. This powerful idea is beginning to have a significant impact in many fields, including medicine 
and health care, archaeology, traffic engineering, music and law [9], making it important to include 
CT as a priority in primary and secondary education. Wing (2006) said, "To reading, writing, and 
arithmetic, we should add computational thinking to every child's analytical ability." In short, CT is a 
set of problem-solving thought processes that originated in computer science but can be applied in 
any domain. 

Several existing studies have been conducted to measure teachers' perceptions of what 
constitutes CT using surveys. The survey examined teachers' concepts of CT and how they differed 
based on teaching experience and subject matter taught. Although teachers agreed with the 
statement that CT is problem solving, logical thinking, and algorithmic thinking, they tended to view 
CT as math, using computers, and playing online games. In addition, there was no difference in how 
teachers viewed CT based on their background in science or grade level, either elementary or 
secondary [10]. 

In another study conducted to examine pre-service teachers' concept of CT, it was found that pre-
service teachers' descriptions of CT varied widely and that familiarity with the term did not 
necessarily result in a more sophisticated view of CT [11]. When discussing what pedagogical 
strategies pre-service teachers could use to develop learners' CT skills, the use of simple technology 
emerged as the most popular response. Overall, they found that prospective teachers had a weak 
understanding of CT and most had low confidence in their ability to teach CT. 

Another study was conducted with elementary school teachers on the conception of CT in Italy 
[12]. Based on a literature review, they categorized CT elements into four categories, namely mental 
processes (such as algorithmic thinking), methods (such as automation), practices (such as testing 
and debugging), and transversal skills (such as creating). Analysis of survey responses from 972 
teachers showed that most teachers did not conceptualize CT in these four categories. Teachers also 
reported that they did not feel prepared to develop CT competencies in their learners. One of the 
positives of the survey was that many teachers viewed computing and IT tools as separate. 

Overall, the studies show that teachers tend to equate CT with computing, and they express a 
lack of confidence in being able to integrate CT into their classrooms in a meaningful way. The studies 
also show the potential for teachers to make a big difference in what CT means but how teachers 
learn to think about what integrating CT into learning looks like is not much explained. 

Therefore, teachers need to know and understand how CT can be integrated into science 
learning, so that it can improve students’ CT skills. To do that, Southeast Asian Ministers of Education 
(SEAMEO) Regional Centre for Quality Improvement of Teacher and Education Personnel in Science 
(SEAQIS) developed a training program on Integrating Computational Thinking in Science Classroom. 
This program was organized for science teachers - Physics, Chemistry, Biology - at the high school 
level. This training aims to make science teachers have CT knowledge and skills and be able to develop 
learning designs that integrate CT into science learning. 

This program was conducted because there are still few resources that directly integrate CT 
concepts and practices into the science context [13]. Despite efforts to integrate CT at various levels 
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[14-17] and in teacher preparation [4,5], there is still limited research on how teachers understand 
CT, especially in terms of how they think about implementing it in their own classrooms. To integrate 
CT in learning settings, teachers must be directly involved in the learning process [18]. 
 
2. Methodology  
2.1 Participants 

 
The participants in this program were 20 chemistry teachers in West Java province. The trainees 

have different educational backgrounds and different teaching experiences. Table 1 shows the 
demographic data of the trainees. 

 
Table 1 
Demographic data of trainees 

Teaching Experience   Educa0on Level 
Category Numbers Percentage  Category Percentage 
< 5 year 2 10%  

S1 40% 5 – 10 year 2 10%  
10 – 15 year 4 20%  
15 – 20 year 3 15%  

S2 60% 
> 20 year 9 45%  

 
Teachers attended the training for 6 days face to face. They received materials on Concept of 

Computational Thinking, Integration of Computational Thinking in Science Learning, CT-STEM 
Taxonomy in Science Learning, Review of CT Integration Units in Science Learning, Analysis of 
Chemistry Topics that will be integrated with CT, and material on Assessment in CT Integrated Science 
Learning. 
 
2.2 Instrument 
 

The instrument is a multiple-choice test consisting of 15 questions. The questions measure the 
knowledge and understanding of CT concepts and how to integrate CT in chemistry learning. The 
items developed by the facilitator team and the content were validated by experts in educational 
assessment in chemistry. 

To ensure the correct measurement of teacher achievement is made and meaningful conclusions 
can be made, it is imperative that the measurement tool is reliable and valid in measuring teacher 
proficiency in CT concepts [19]. Therefore, the instrument was statistically tested using Rasch 
modelling. Table 2 shows the result of Rasch measurement. 
 

Table 2 
Summary statistic 

 
Infit Ou9it 

Reliability 
Cronbach 
Alpha (α) MNSQ ZSTD MNSQ ZSTD 

Item 
Min 0.63 -2.35 0.5 -2.21 

0.73 
0.81 

Maks 1.44 2.21 2.36 2.68 

Person 
Min 0.58 -1.27 0.26 -1.18 

0.68 
Maks 1.39 1.24 2.08 1.66 
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In Rasch modelling, the validity of an instrument is determined by analyzing the infit and outfit 
mean square (MNSQ) values for content validity and the point measure correlation (PTMEA Corr) 
value for item polarity. Meanwhile, instrument reliability is determined by Cronbach alpha (α), 
person reliability, and item reliability. 

The item fit test is carried out for content validity referring to the MNSQ and ZSTD values. The 
MNSQ value condition must be in the range of 0.5 - 1.5 and the ZSTD value range is -2.0 - +2.0 [20]. 
In addition, if the MNSQ value is accepted, the ZSTD value can be ignored [21]. Based on Table 2, the 
range of MNSQ values for both items and persons is in the predetermined range or appropriate with 
Rasch modeling. Furthermore, construct validity can be measured by referring to item polarity. The 
polarity of this item is described by the PTMEA Corr value. Based on the analysis results, the value of 
PTMEA Corr is positive with a range of 0.22 to 0.75. Therefore, it can be concluded that the items will 
contribute to the measurement of CT concept understanding ability, and all items developed can be 
retained as items in the instrument. 

The item reliability test is used to assess whether the instrument used measures what should be 
measured and provides appropriate results. Meanwhile, the person reliability test was conducted to 
test whether the participants filling out the instrument were the right individuals to answer the 
instrument [22]. Based on Table 2, it is shown that the Cronbach alpha value is 0.81. This indicates 
that the instrument is reliable and acceptable with a high level of consistency in measuring teachers' 
CT comprehension skills. This high value also indicates that the instrument is in good condition with 
a high level of consistency so that it is acceptable for use in this study. 

Furthermore, Table 2 shows that the item reliability value is in the good enough category at 0.73, 
which indicates that the instrument has good reliability in measuring what needs to be measured and 
there are enough items to measure accurate reading. In addition, the person reliability value is also 
in the good enough category, which is 0.68. This indicates that 68% of the results from teacher 
responses will be repeated if the same respondent answers questions related to alternative 
instruments [21]. 

Based on the description, the instruments used in this study were appropriate with Rasch 
modeling and can be used to measure teachers' CT comprehension skills. 
 
2.3 Data Collecting and Analysis 

 
Before the intervention, teachers took a pre-test to determine their initial knowledge and then 

they took a post-test using the same questions after the training. Teachers filled in the pre- and post-
test answers online so that their answers could be recorded immediately.  

The pre- and post-test data measurements are still ordinal data. The Rasch model with WINSTEPS 
5.4.1 software was used to convert ordinal data into interval data to have the same scale. The result 
is calibrated data on the level of ability and difficulty of teacher questions in the same interval. 

Data analysis was conducted using stacking and racking techniques [23]. Data analysis with the 
stacking technique places pre- and post-test data together vertically. Each respondent appeared 
twice in the data set, while the item appeared once. This allows the researcher to examine each 
respondent's change after the intervention. In contrast, the racking analysis technique places the 
pre- and post-test data horizontally. Each pre- and post-test item appears twice in the data set, while 
the respondent appears once. This allows the researcher to examine the change in difficulty of each 
item before and after the intervention [23]. 
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3. Results  
3.1 Conceptual Changes in Chemistry Teachers' Understanding Ability of Computational Thinking 
 

Changes in the concept understanding ability of chemistry teachers on computational thinking 
are determined by comparing the value of the pre- and post-test using the stacking technique in the 
Rasch model [23]. 

 
Table 3 
The score of chemistry teacher pre- and post-test average ability 

Code Mean (logit) Diff pre- and post-test (logit) SD 
Pre-test -0.33 

2.77 
0.72 

Post-test 2.44 1.23 

 
Table 3 presents the results of measuring the mean ability of conceptual understanding change 

scores before and after the training. Based on Table 3, it is known that the mean size of the post-test 
item (2.44 logits) is greater than the mean size of the pre-test item (-0.33 logits). This shows that 
chemistry teachers who attended the training experienced a good understanding of the concept of 
computational thinking.  
 
3.2 Nature of Change Chemistry Teacher Pre-and Post-test Understanding 

 
The underlying reason for this analysis is to find out which teachers experienced positive and 

negative pre- and post-test changes. A simple description of this can be explained by using a scatter 
plot graph. Figure 1 illustrates the scatter plot graph of the pre- and post-test measures of teachers 
who participated in the training.  
 

 
Fig. 1. Scatter plot of chemistry teacher pre- and post-test ability measures 
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Based on Figure 1, it can be explained that, first, the pretest output range moves from -2 logits to 
+2 logits, while for post-test output it moves from 0 logits to +5 logits. Based on this information, 
there is a diversity of teachers' initial knowledge and understanding of the CT concept before they 
attended the training. Furthermore, teachers get a positive logit value after attending the training. 
This means that they experienced an increase in knowledge after the training.  

Second, there are two lines, a blue line (top) and a grey line (bottom). These two lines represent 
the areas of change in teachers' knowledge before and after the training. It can be seen from Figure 
1 that all teachers are in knowledge change. This means that they experienced a change in knowledge 
after attending the training. Furthermore, based on Figure 1, there is no significant negative nature 
of change. This indicates that during the training process, teachers can absorb information about CT 
concepts and experience changes in knowledge after attending the training. 
 
3.3 The Changes in item difficulty level 

 
Table 4 displays the results of the racking analysis relating to changes in the difficulty level of 

items in the pre and post-test. Based on Table 4, the average pre-test difficulty level is -0.32 logits, 
the average post-test is -0.93 logits, and the average pre-post difference is -0.61 logits. This study 
also found that nine items met a significant change in the level of item difficulty. They were lower 
than the difference between pre and post-test (-0.61), namely items 1, 4, 5, 6, 7, 8, 9, 10, and 15. 
Furthermore, there were six items whose difficulty level was greater than the average, namely items 
2, 3, 11, 12, 13, and 14. The most difficult item in the pre-test condition was item 1 (2.04 logits), and 
the easiest item was item 2 (-4.77 logits). While in the post-test condition, the most difficult item was 
item 11 (1.64 logit), and the easiest items were items 5 and 7 (-1.53 logit). This finding indicates that 
there is a difference in changes in the level of item difficulty between teachers before and after 
attending the training. 

 
                                               Table 4 
                                               Data of item measures of pre- and post-test 

Item Pre-test Post-test 
Diff Pre and 

Post 
Item 1 2.04 1.32 -0.72 
Item 2 -4.77 -2.8 1.97 
Item 3 -1.05 -0.14 0.91 
Item 4 -0.58 -2.8 -2.22 
Item 5 0.59 -1.53 -2.12 
Item 6 1.56 -2.8 -4.36 
Item 7 -0.13 -1.53 -1.4 
Item 8 0.1 -0.69 -0.79 
Item 9 -0.81 0.67 1.48 

Item 10 -0.13 0.29 0.42 
Item 11 0.59 1.64 1.05 
Item 12 0.59 -0.69 -1.28 
Item 13 -1.58 -2.8 -1.22 
Item 14 -1.3 0.67 1.97 
Item 15 0.1 -2.8 -2.9 
Mean -0.32 -0.93 -0.61 
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3.4 The Changes in Teacher Understanding and Item Difficulty Level 
 

In addition to the effect of the training intervention, there are three other factors that tend to 
affect changes in teacher ability and the level of difficulty of the questions, namely 1) guessing the 
correct answer or lucky guess, 2) cheating, and 3) carelessness. These three factors can be identified 
from teachers' item response patterns using a scalogram. Table 5 displays the teachers' item 
response patterns. For example, the response patterns for teachers 1 and 18. Both teachers did not 
understand items 12 (-0.69 logit), 3 (-0.14 logit), and 10 (0.29 logit). Meanwhile, teachers 1 and 18 
were able to answer correctly the more complicated item, item 14 (0.67 logit). This condition implies 
the existence of a lucky guess. This is also confirmed by the Rasch output shown in Figure 2. Both 
teachers had knowledge thresholds below the difficulty level of the questions, but both teachers 
were able to answer the questions correctly. 

Furthermore, there is an indication of cheating in the response patterns of teachers 10 and 19. 
This indication can be seen from the Rasch measurement output that all indicators have the same 
value. Based on the response patterns in Table 5, teacher 4 could not answer item 5 (-1.53 logit) 
which was easy but could answer item 8 (-0.69 logit) which was more difficult than item 5. In addition, 
they had a high post-test proficiency.  
 

Table 5 
Scalogram 

 

 
Fig. 2. Person diagnostic maps 
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4. Conclusions 
 

The findings of this study indicate the conceptual change in teachers' understanding of 
computational thinking and items after attending the training. This is indicated by the average change 
from -0.33 logit (pre-test) to 2.44 logit (post-test). In addition, based on the results of the stacking 
analysis, it was found that all teachers experienced a positive change in ability. However, some 
special conditions reflect an inappropriate response pattern. After further analysis, it turns out that 
there are three types of inappropriate response patterns with the three patterns being lucky guess, 
cheating, and careless. Two teachers might do lucky guesses, namely teachers 1 and 18, and two 
teachers might do cheating, namely teachers 10 and 19. Finally, three teachers might have done 
carelessness, namely teachers 4, 11, and 16. 
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