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Harvest efficiency depends on the plant health and climate variations. Identification of leaf 
disease at right time, using leaf imagery, certainly helps in treating the crop and getting 
good yield. Recent advancements in transformer-based models, particularly Vision 
Transformers (ViT), have revolutionized agricultural image analysis by capturing complex, 
non-linear patterns. Despite their effectiveness, ViTs require large, labelled datasets, 
posing challenges in plant disease identification due to similar symptoms and limited data. 
This study explores data augmentation and transfer learning with two ViT variants, ViT-
Base and ViT-Large, using training-from-scratch and feature extraction techniques. The 
Robo-Flow augmentation combined with ViT-GZSL feature extraction achieved 96.62% 
accuracy. The work uses transfer learning in the background. ViT-Base excelled in 
classifying corn, chili, tea, and tomato diseases, while ViT-Large performed best on peanut 
and potato crops, reaching up to 98.85 % accuracy. 
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1. Introduction 
 

Crop diseases rot the whole crop field and ends up in monetary loss of farmer. Leaf imagery 
may identify disease of the crop by inspecting the leaf. Deep learning applied to various tasks such 
as natural language processing, speech recognition, medical applications, and computer vision deep 
models may be particularly helpful in identifying the intricate and non-linear relationships hidden in 
imaging data [1,2]. Deep learning has undergone a revolution thanks to the recent invention of 
transformer-based deep models. Vision transformer (ViT) has shown its superiority across 
numerous studies. Vision transformer with self-attention-based architecture utilizes attention 
patterns in image recognition tasks like convolutional layers in CNN architecture. Vision transformer 
has demonstrated superior performance compared to state-of-the-art CNN ResNet and Efficient 
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Net and requires significantly lower training computational resources for image classification tasks 
[20]. ViT employs self-attention mechanism as the main operation to learn spatial relationships 
among patches based on pixel representations from input images. Vision transformer exhibits 
advantages by retaining local image information within feature patches, without processes causing 
image resolution degradation, thus preventing loss of spatial information due to information 
skipping (such as max pooling, stride convolution, global average pooling) [5,7-9]. 

Therefore, the researchers decided to investigate deeply, especially to determine our current 
position in the agricultural field. The agricultural sector plays a crucial role in promoting 
employment, the national economy, poverty alleviation, food security, and competitiveness. The 
availability of food crop commodities plays a key role in maintaining the stability of food security 
amid increasing consumption rates and population growth. The recorded increase in consumption 
of potato is 0.83kg/capita/year, corn 0.21 kg/capita/year, cassava 1.9 kg/capita/year, and rice 
experience a decrease of 2.2 kg/capita/year. However, disruptions caused by plant diseases have 
led to a decrease in productivity and harvest quality. On average, there is a 22.6% loss in corn yield, 
17.2% in potato yield 54% in bean yield up to 30% in tomato yield, 0.78% in tea yield and a 22% 
decrease in Indonesian chilli yield. The decrease in productivity of harvest results impacts food 
security instability and causes losses to farmers. Based on morphological symptoms and local 
symptoms, the identification of plant diseases may be conducted by observing changes in colour, 
shape, and texture in specific parts of the plant such as leaves [11,14,15,18]. Leaves are the most 
responsive part of the plant to environmental changes, thus allowing for the identification of 
diseases based on morphological symptoms on local symptom leaf objects. However, few diseases 
exhibit identical symptoms, making identification difficult and requiring more precision, 
Convolutional neural Network   which are deep learning techniques in computer vision, have been 
widely used in image classification tasks, especially disease identification based on leaf image 
symptoms [6,13,16,21]. A similar work on precision agriculture using IoT technology is conducted 
for coffee beans production. CNNs, on the other hand, stack more convolution layers to 
progressively aggregate features from local to global. However, the vision transformer model 
employs the multi-headed self-attention mechanism, which allows the model to focus on each 
element in the input sequence, to capture long-range interactions [22]. 

The continuously growing huge architectures have enabled the ViT to achieve remarkable 
success. However, the vast number of parameters begins to demand hundreds of millions of 
labelled data which are often publicly inaccessible in imaging domain causing insufficient training 
data capacity to train large model architectures. Insufficient leaf disease training data is an 
unavoidable problem in generating models. A promising method to tackle this problem is the 
transfer learning, it tries to transfer the knowledge from the source domain to the target domain 
[4]. Ever-evolving large architecture has allowed ViT to achieve remarkable success. The vision 
transformer architecture trained on the large imagenet-21k dataset of 12 million images with 
21,000 classes has provided good accuracy results when the model is transferred to tasks with 
fewer data points such as Image Net with 88.55% accuracy, Image Net-Real with 90.72% accuracy, 
CIFAR-100 with 94.55% accuracy, and the VTAB suite with 77.63% accuracy. Model performance is 
not only influenced by the adequacy of training data with the model architecture complexity but 
also the quality and diversity of the data, Augmentation is a technique that can increase data 
diversity but the performance of the ViT model using the ImageNet-21k dataset showed a decrease 
when using the AugReg augmentation technique [12]. 

The difficult task of identifying plant diseases from leaf pictures is addressed in this work by 
introducing a novel approach to cross-domain transfer learning. Our method leverages an existing 
ViT model that was adapted for the leaf imaging dataset after it was trained on the Image Net-21K 
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dataset. The following is a summary of the four works' main contributions: Initially, we tried a 
variety of model training approaches, including starting from scratch, extracting features from the 
ViT model, and employing multiple data augmentation methods including Tensor Flow's Image Data 
Generator, the Robo flow platform, and Keras API layer augmentation. This investigation aimed to 
assess how combining augmentation techniques with different model training strategies impacts 
overall model performance. Secondly, we evaluated the performance of pre-trained transfer 
learning models, specifically ViT-Base and ViT-Large variants, on a diverse dataset comprising leaf 
disease images from multiple plant species. This comparative analysis aimed to determine which 
model variants offer the most effective performance in identifying specific plant diseases. Lastly, we 
explored the effects of data reduction on model performance by systematically reducing the 
training dataset size and comparing the performance of the proposed model variants. This 
experiment aimed to understand how varying training data sizes affect the effectiveness of our 
proposed models in disease identification. 
 
2 Materials and Methods 
2.1 Dataset Description 

 
The leaf diseases images dataset used to support the findings of this research is the Plants 

Diseases Dataset. The data is the result of data enrichment performed on the unbalanced data 
source from Agro AI Crop Deep from GitHub [19], which is integrated with other data sources, such 
as corn plant diseases data potato plant diseases, tomato plant diseases data from Tomato Leaves 
Dataset chili plant diseases data, tea plant diseases data from Tea Leaf Disease dataset in Figure 1 
and Table 1 shown sample images of diseased and healthy leaf classes, and the amount of data per 
class of each plant. 
 

 
(a) 

 

 
(b) 
 

 
(c) 
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(d) 

 

 
 (e) 

 

 
(f) 

Fig.1. Sample images of diseased and healthy leaves of bean, (b) 
chili, (c) potato, (d) corn, (e) tea, (f) tomato 

   
Table 1 
Number data per class for each plan 
Food Crop Disease Class Number data 

per class 
Total Data 

Corn Cercospora leaf’s pot grey, common rust, northern 
blight, healthy 

711 2.844 

Potato Early blight, late blight, healthy 1582 4746 
Bean Anthracnose, rust, healthy 1200 3.600 
Tomato Bacterial spot, early blight, late blight, leaf mold, 

septoria spot, target spot, yellow curl, mosaic virus, 
healthy 

745 5960 

Chili Bacterial spot, yellow leaf curl, healthy 465 1.395 
Tea Algal, brown blight, grey blight, red spot, healthy 835 4.175 

 
Displays one leaf object that indicates a disease or healthy. The image validation process was 

also carried out with the help of a phytopathology who has knowledge in this field. Valid diseases 
data is ensured to have a balanced distribution of the amount of data per class in each crop. In this 
study, we split this data of each plant object into training/validation/testing subsets equal to 
80%/10%/10%. 
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2.2 Vision Transformer 
 
Utilizing knowledge from the associated domain (source domain) to enhance performance in 

the target domain or downstream ask is the goal of transfer learning vision transformer models. In 
addition, this approach can reduce training time and cost and overcome the need for extensive 
training datasets. ViT has been trained using the ImageNet-21k database. The pre-trained ViT is 
transferred and fine-tuned for smaller downstream tasks, thus removing the pre-trained 
classification head. 
 
2.3 Feature Extraction ViT-GZSL 
 

The feature extraction process is conducted using the generalized zero-shot learning (GZSL) 
technique, utilizing the attribute attention module (AAM) from pre-trained ViT. This technique 
takes patch features and image attributes as inputs, the next features related to those attributes. 
The process involves merging patch features with an attention mechanism to identify unseen 
classes from new data sources. We discuss the detailed computation process of AMM. Figure 2 
shows the architecture of AAM. Suppose €ZRN×D denoted input, where Nand D are the row and 
column of a matrix. Were-shape Z and define query (Q), key(K) and value (V) as 

Q=ZWq, K=ZWk, V=ZWv                     (1) 

Where Wq, Wk, Wv are the train able weight matrices of 
  

                             (2)	

 
Eq.2 is the Attention(Q,K,V) based on the pair wise similarity between the representation soft 

elements i.e. query qi and key kj and to calculate the similarity between each pair of tokens through 
the process of scale dot product, dV which means approximate normalization, which reduces by 
division against d. The soft max operation is applied to convert the self-attention score values into 
probabilities. Then calculating the weighted sum over all V values in the sequence produces a 
feature map. AAM as a feature extraction method is only trained with visible class images and 
attributes. The base pre-trained model is not fine-tuned, but rather utilizes the weight so flayers 
that have learned tasks from previous datasets. 
 
2.4 Training ViT from Scratch 
 

Training from scratch ViT models is the process of training the model from the initial layer with 
random parameter initialization and not using any pre-learned representations or knowledge from 
other models or pre-trained weights. This means that the model starts with zero knowledge of the 
task to be solved and must learn from the plant disease data provided during the training process. 
This process involves initializing weights and hyper parameters, regularization and tuning other 
parameters for model training. 
 
2.5 Conditional Variational Auto Encoder (CVAE) 
 

CVAE is used to synthesizing ViT features from image attributes. CVAE employs two networks, 
an encoder and a decoder, which are trained to maximize the conditional probability p(XViTa). For 
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the feature extraction process, the encoder maps the ViT feature (XViT) and image attribute (a) into 
a latent vector(Z). 

The CVAE's encoder and decoder are built using a multi-layer perceptron (MLP) with a single 
hidden layer. Furthermore, the pre-trained classification head that is removed in Figure 3 upon 
transfer is replaced by the CVAE [5,9]. For unseen classes, we create synthetic ViT feature samples 
using a fully connected layer. In the fully connected layer, we employ a dropout layer to regularize 
the training process, a ViT feature classifier that uses the supervised learning model of the softmax 
classifier to forecast the class, and CVAE reconstruction by expanding the MLP depth to two hidden 
layers. Adjust the completely connected layer's weights. Weights will have to be adjusted from 
general feature maps to features during the training phase. 
 

 
Fig.2. Architecture 

 
Fig.3. Attribute attention module 

2.6 Hyper parameter 
 

ViT-B/16 and ViT-L/16, the ViT-Base and ViT-Large model variations were trained using input 
patch sizes of 16×16 [3]. Adam outperforms SGD in crucial tasks including attention models. 
However, Loshchilov and Hutter also empirically reported that Adam with decoupled weight decay 
(AdamW) optimizer generalizes substantially better than Adam with L2 regularization optimizer 
[10]. All experiments in this study used the AdamW optimizer with parameter values including 
weight decay = 0.0001, learning rate = 0.001, β1=0.9, β2=0.999. Wefine-tune dat384 resolution, a 
batch size of 32, we else used the Categorical Cross Entropy function to compute loss, and GELU as 
the activation function. 
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2.7 Callback 
 
Early Stopping callback is used to automatically halt training when the validation accuracy as the 

monitored metric, does not improve. The purpose of using the Early Stopping callback is to prevent 
over fitting and conserve time and computational resources by discontinuing further model training 
without clear benefits. All experiments in this study used Early Stopping with sets the patience 
to10, meaning the number of periods without improvement thereafter will halt the training 
process. 
 
2.8 Evaluation Metrics 
 

We estimated classification jobs using a portion of testing data from the dataset and evaluated 
the model's performance using evaluation measures like accuracy, precision, recall, and F-score. 
Furthermore, we quantify how well the model predicts the output or target. Accuracy to evaluate 
how closely the observations predicted by the model approach the magnitudes of the observations. 

 
                                                                        (3) 

Loss is used to evaluate the loss by calculating the difference between the predicted probability 
distribution and the actual probability distribution. 

 
  N   C 

 L=  ∑ ∑yi,clog(yˆi, c)                                    (4) 
            i=1 c=1 

 
 

          (5) 

 
Macro Average Precision (MAP) evaluates the proportion of Predicted Positive cases that are 

correctly Real Positives. 
 

                                                          

  (6) 
Macro Average F1-score (MAF) evaluates model performance to identify positive and negative classes 

based on the balance between precision and recall values by Powers et al [16]. 
 

MAF                                                                 (7) 

Where FP stands for false positives, FN for false negatives, L for loss, TP for true positives, TN for 
true negatives, the acronym MAR stands for macro average recall. N stands for the number of 
testing data, MAP for macro average precision, and MAF for macro average f1-score and C refers to 
number of classes, yi, c refers to label or target, yˆi, c prediction probability value. 

Applying the three proposed augmentation techniques consisting of API layer augmentation, 
image data generator and robo-flow platform. We also add by building a fully connected layer for 
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fine-tuning the downstream tasks Figure 2 which consist of Conditional Variation Auto encoder 
(CVAE) uses multi-layer perceptron (MLP) with two hidden layers, we set the number of first hidden 
units to 3071 and the second hidden units to 1536, dropout layer of 0.5 in each hidden layer. We 
trained our model for 25 epochs with parameter values including weight decay = 0.0001, learning 
rate = 0.001, β1=0.9, β2=0.999. 

 
2.9 Different Pre-trained Model Variants and Plant Objects 

 
This experiment adopts the best combination of Augmentation techniques and training 

strategies from previous experiments to be applied to two pre-trained variants including ViT-B/16 
and ViT-L/16 for separate downstream tasks on six plants are shown inTable1. We also add the fully 
connected layer which consists of Conditional Variation Auto encoder (CVAE) uses multi-layer 
perceptron (MLP) and dropout layer are summarized in Figure 2 and Table 3.  

 
2.10 Different Numbers of Training Data and Pre-trained Model Variants 

 
Specifically, to understand how different training data counts affect the model variants' 

performance, we conducted two training rounds on potato and bean crops using different 
quantities of data on the two model variations stated in Table 4. Involved training the model for 50 
epochs with hyper parameter as explained. 

 
Table 3 
Variants vision transformer 

 Attribute ViT-B ViT-L 
 Layers 12 24 
 Hidden Size D 768 1024 

Pre-trained MLP Size 3072 4096 
 Heads 12 16 

 Parameters 86M 307M 
 1stHiddenUnits 3072 4096 
FCL 2nd Hidden Units 1536 2046 

 Dropout 0.5 0.5 
 

Table 4 
Number of training data 
Plants Versions Train/Class Validation/Class 
Potato V1 2.532 361 
 V2 1.200 240 
Bean V1 1.920 240 
 V2 1.200 150 

 
3. Experiments and Results 
 

We compared the combination of three augmentations Techniques (API keras layer sequential, 
image data generator using tensor flow framework and robo-flow platform) and two training 
strategies against model transfer (training from scratch and feature extraction ViT-GZSL). Other 
augmentation techniques (Mixup and Rand Augment) have been reported in previous studies to 
increase data diversity but did not help improve performance [17]. In this experiment, we utilized 
the augmentation parameters provided by each of the proposed augmentation techniques. The 
parameters are applied to subset of training and validation data resulting in different output 
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characteristics of each Technique. Table2 is the use of the provided parameters of each 
augmentation technique along with their values. The three augmentation techniques provide 
different parameters, characteristics and outputs. Augmentation technique of API keras layer 
sequential performs random augmentation on the image during the training process (real time), 
and the output produces images that have various effects without increasing the amount of data. 
Augmentation technique of image data generator generates data to be augmented before the 
training process, and the output produces images that have various effects without increasing the 
amount of data. Augmentation technique of tools robo-flow performs augmentation on data 
before the training process to generate new additional data with an increased number of images. 
Figure 4 and Figure 5 show the results of the three augmentation techniques on some sample data. 

                       

 
(a) 

 

  
(b) 

 

 
  (c) 

Fig. 4. Augmented sample images of (a) API keras layer sequential, 
(b) Image data generator tenfor flow, (c) Roboflow 

 
 

 
Fig.5. Comparison performance evaluation of combination augmentation techniques 
and model training strategies 
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Table 5 
Performance of model variants on identifying diseases in each plant 

 Training Strategies Evaluation Matrix 
Precision Recall F1-Score Accuracy 

Image Data 
Generator 

Training from scratch 88.4 86.2 86 86.26% 
Feature extraction 96.6 96.2 96.6 96.38% 

Layer Sequential Training from scratch 90 89.8 89.6 89.87% 
Feature extraction 94.4 94.2 92.6 94.21% 

Robo flow Training from scratch 89.4 88.6 88.6 88.43% 
Feature extraction 96.8 96.8 96.6 96.62% 

 
We evaluate and compare the effectiveness of different learning model variants, including ViT-

B/16andViT-L/16 to determine the most effective classifier model for plant disease identification. 
The objective of this study was to evaluate the effectiveness of the variants of the vision 
transformer model on a subset of test data for each crop. Table6 shows the results. In the corn 
plant object scenario, the ViT-B/16 mode variant has the most effective performance obtaining the 
highest matrix evaluation in terms of accuracy to 98.94%, precision to 0.9894,recall to 0.9899, f1-
score to 0.9894, in addition to ViT-B/16 also shows minimum loss value to 0.0349,in addition ViT-
B/16 also obtained a higher correct percentage when evaluated using other test data samples. In 
the potato plant object scenario, the ViT-L/16 model variant has the most effective performance 
obtaining the highest matrix evaluation in terms of accuracy to 98.95%, precision to 0.9895, recall 
to 0.9895, f1-score to 0.9895, ViT-L/16 also shows the minimum loss value to 0.0458, in addition 
ViT-L/16 also obtained a higher correct percentage when evaluated using other test data samples. 
In the chili plant object scenario, the ViT-B/16 mode variant has the most effective performance 
obtaining the highest matrix evaluation in terms of accuracy to 99.28%, precision to 0.9928, recall 
to 0.9929, f1-score to 0.9928, ViT-B/16 also shows minimum loss value to 0.034, in addition ViT-
B/16 also obtained a higher correct percentage when evaluated using other test data samples. In 
the tea plant object scenario, the ViT-B/16 mode variant has the most effective performance 
obtaining the highest matrix evaluation in terms of accuracy to 97.83%, precision to 0.9783, recall 
to 0.9792, f1-score to 0.9784, ViT-B/16also shows minimum loss value to 0.0536, in addition ViT-
B/16 also obtained a higher correct percentage when evaluated using other test data samples. In 
the tomato plant object scenario, the ViT-B/16mode variant has the most effective performance 
obtaining the highest matrix evaluation in terms of accuracy to 97.97%, precision to0.9797, recall 
to0.9807, f1-score to 0.9797, ViT-B/16 also shows minimum loss value to 0.0536, in addition ViT-
B/16 also obtained a higher correct percentage when evaluated using other test data samples. In 
the bean plant object scenario, the ViT-L/16 mode variant has the most effective performance 
obtaining the highest matrix evaluation in terms of accuracy to100%, precision to1.00, recall to1.00, 
f1-score to1.00,ViT-L/16 also shows minimum loss value to 1.9 e-07, in addition ViT-L/16 also 
obtained a higher correct percentage when evaluated using other test data samples .We found that 
vit-b/16 is predominantly effective for identifying diseases of 4plant objects. ViT-B/16 model has 
higher accuracy and ability to find true positive instances and lower loss value when predicting data 
than ViT-L/16on the disease identification task of jaung, chili, tea and tomato. While in the case of 
the other two plants, such as bean and potato, we found that ViT-L/16 is more effective in terms of 
precision and the ability to identify true positive instances is higher, with lower loss values when 
predicting data compared to ViT-B/16.” 
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Table 6 
Performance of Model Variants on Identifying Diseases in Each Plant 
Food 
Crops 

Model 
Variants 

Evaluation Matrix    F1 
Score 

True 
Percentage Accuracy Loss Precision Recall 

Corn ViT-B/16 98.94% 0.0349 0.9894 0.9899 0.9894 90% 
ViT-L/16 7.89% 0.0574 0.9789 0.9796 0.9789 85% 

Potato ViT-B/16  8.31% 0.0564 0.9831 0.9834 0.9831 86% 
ViT-L/16  8.95% 0.0458 0.9895 0.9895 0.9895 100% 

Chili ViT-B/16   9.28% 0.0340 0.9928 0.9929 0.9928 100% 

ViT-/16   98.5% 0.0352 0.9855 0.9858 0.9854 73% 

Tea ViT-B/16    7.83% 0.0536 0.9783 0.9792 0.9784 84% 
ViT-/16    7.11% 0.1470 0.9711 0.9721 0.9711 60% 

Tomato ViT-B/16  97.97% 0.0682 0.9797 0.9807 0.9797 95% 
ViT-/16  97.47% 0.0620 0.9747 0.9752 0.9745 80% 

Bean ViT-B/16   9.72% 0.0219 0.9972 0.9972 0.9972 87% 

ViT-L/16  1.00% 1.9e-07 1.00 1.00     1 
.00 

93% 

 
3.1 Effect of Varied Training Data Sizes on Pre- Trained Model Performance 

 
In this section, we report the influence of model variant performance using different sizes of 

training data described in sub subsection 2.1.2 based on the evaluation matrix described in 
subsection 1.5. Table7, in the potato plant object scenario, the ViT-L/16 variant model in both 
versions outperforms the ViT-B/16 of the same version based on the evaluation matrix. Therefore, 
reducing the training data from version 1 by 2532 to version 2 by 1200 does not affect the 
attainment of the best model variant. However, it affects the effectiveness of performance on each 
variant model. The performance of the ViT-B/16 variant model in version 1 is more effective 
compared to version 2, indicating that the effectiveness of the ViT-B/16 model decreases with data 
reduction. Meanwhile, the performance of the ViT-L/16 variant model in version 2 is more effective 
compared to version1, indicating that ViT-L/16improves with data reduction. Table in the bean 
plant object scenario, the ViT-L/16 variant model in version 1 outperforms the ViT-B/16 in the same 
version, while ViT-L/16 and ViT-B/16 from version 2, as well as ViT-B/16 from version1, show 
evaluation matrices that do not significantly differ. The process of reducing the training data 
version 1 by 1920 to version 2 to 1200 for bean plants does not greatly affect the effectiveness of 
the ViT-B/16variant model’s performance, but it does impact the decline in ViT-L/16’s performance 
From the experiments conducted we found that efficiency of the model performance may be 
affected not only by the augmentation techniques, model training strategies and model variants 
used, but also background images from the training data on the main imitations of ViT ” the straight 
forward. Character datasets, including namely a potato dataset that displays a full leaf on the 
background as shown in Figure 1 and a bean dataset without a background whose image shows a 
full leaf with lines or edges that are truncated due to the enlarged image as shown in Figure 1. We 
hypothesize that, when the model learns the potato dataset, it is considered a challenge because it 
has a back ground and is unable to model the local structure of leaf edges and lines, but it should 
not be too difficult if the intensity of the background pixels is different from them a in object, on 
the other hand, when the model learns the bean dataset, it is considered to anticipate the 
weakness of ViT with data without visible background and leaf edges. We find that both variations 
of the model demonstrated nearly comparable performance effectiveness when trained with the 
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bean dataset, and that the evaluation matrix performance in both variants of the bean classification 
model was more optimal than the performance of the potato classification model. 
 

Table 7 
Comparison of model variants performance with varied sizes of potato training data 
Food Crops Model 

Variants 
Evaluation Matrix F1-Score True 

Percentage Accuracy Loss Precision Recall 
Version1 
Potato 

ViT-B/16 98.31% 0.0564 0.9834 0.9831 0.9831 87% 
ViT-L/16 98.95% 0.0458 0.9895 0.9895 0.9894 100% 

Version2 
Potato 

ViT-B/16 97.89% 0.0626 0.9796 0.9789 0.9787 100% 
ViT-L/16 99.16% 0.0312 0.9916 0.9916 0.9916 100% 

Version1 
Bean 

ViT-B/16 99.72% 0.0219 0.9972 0.9972 0.9972 87% 
ViT-L/16 1.00% 1.00 1.00 1.00 1.00 100% 

Version2 
Bean 

ViT-B/16 99.72% 0.0148 0.9972 0.9972 0.9972 93% 
ViT-L/16 99.72% 0.0219 0.9972 0.9972 0.9972 93% 

 
Nevertheless, the classification model performs better on data with a background when 

evaluated on a small dataset related to field circumstances. Such as edges and lines, because the 
input images are tokenized via hard splitting. VIT's inability to model the local structure of the 
image, such as the edges and lines of the leaf as the boundary of the leaf object with its 
background, results from the training process' feature extraction from the self-attention module, 
which learns the input image representation through simple tokenization that divides into patches. 
Through the experiment sub subsection 2.2.3, we have indirectly observed the weakness of ViT 
when training two variants of pre-trained ViT is unable to model the local structure of the image, 
model through feature extraction on two different. 
 
4. Conclusion 

 
In this study, we propose a learning model using a Model transfer approach using pre-trained 

vision transformer variants from the Image n ET-21K database for downstream tasks on identifying 
diseases in crop plants consisting of corn, potato, chili, tomato, tea and bean. Before evaluating the 
performance of the proposed pre-trained vision transformer variants to identifying diseases of 
these crops, we first evaluated the effectiveness of the combination of three augmentation 
techniques and two training strategies of the ViT pre-trained model in improving the model 
performance. We found that the combination of robo flow augmentation technique with feature 
extraction ViT-GZSL training strategy is most effective to improving the model performance with 
accuracy to 96.62%. Next, we adopted the best combination choice to be applied to both pre-
trained ViT variants to identify the six plant diseases one by one. The goal is to find out the most 
effective performance model variant for diseases identifying of each crop. We compared the 
performance of each model based on matrix evaluation values using test datasets. We found that 
the ViT-B/16 model variant predominantly produced the optimal disease classification identification 
with accuracy of 98.85% and 100% respectively. In addition, we compared the performance of each 
model variant by training on reduced data, it was found that data reduction affected the effective 
performance of model variants in the case of potato crop disease identification but did not have a 
significant effect on bean crops model, including the identification of diseases of corn, chilli, tea, 
and tomato plants with accuracies of 98.94%, 99.28%, 97.83%, 97.97%respectively. While we 
obtained effective disease classification model performance from ViT-L/16 model variant for potato 
and bean disease. 
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