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Modern quantum machine learning algorithms and techniques are reviewed in this 
review paper with possible financial applications. Along with quantum generative AI 
techniques like Quantum Transformers and Quantum Graph Neural Networks 
(QGNNs), we discuss QML techniques in supervised learning tasks like Quantum 
Variational Classifiers, Quantum Kernel Estimation, and Quantum Neural Networks 
(QNNs). Risk management, credit scoring, fraud detection, and stock price prediction 
are among the financial applications that are taken into consideration. Additionally, we 
offer a summary of QML's drawbacks, possibilities, and restrictions in these particular 
domains as well as more widely throughout the field. With the help of this, we hope to 
provide data scientists, financial industry professionals, and enthusiasts with a quick 
overview of why quantum computing, and QML in particular, might be worthwhile to 
investigate in their respective fields of expertise. 
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1. Introduction 
 

Machine learning and data science have been greatly impacted by quantum computing, which is 
a revolutionary and radically new paradigm in computation. The combination of quantum computing 
and machine learning has attracted a lot of attention as machine learning continues to drive 
technological developments in data science, with the goal of going beyond the limitations of 
traditional machine learning techniques. Quantum Machine Learning (QML) was first introduced in 
the mid-1990s, when it was first investigating the ideas of quantum learning theory [1]. But it wasn't 
until about eighteen years ago—after the groundbreaking work by Harrow, Hassidim, and Lloyd [2]—
that the field began to receive significant attention. Numerous studies in the supervised and 
unsupervised learning domains were made possible by this groundbreaking work [3-10]. Quantum 
algorithms have the potential to achieve significant speedups over their classical computing 
counterparts, sometimes even exponential ones, by utilizing non-classical properties like 
entanglement, superposition and interference. Even though these kinds of speedups have been 
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shown for certain particular problems, obtaining them in the field of data science and, moreover, for 
industry applications, continues to be a challenge that is actively being addressed by QML research. 

Rather than providing a comprehensive overview of the field of quantum machine learning as 
done in [11-13] we concentrate on methods and techniques that parallel classical approaches used 
in finance in this succinct and straightforward review. Our goal is to draw attention to the 
opportunities, difficulties, and potential benefits of using QML in the financial industry. Financial 
professionals, including data scientists and managers, can also benefit from this review as it provides 
them with up-to-date knowledge on QML advancements that are pertinent to their industry. By doing 
this, this review can facilitate the adoption of cutting-edge technologies, support decision-making 
processes, and foster a more thorough understanding of how QML can enhance financial services 
without resorting to hype. 

Based on the type of algorithm and data, QML can be broadly divided into three areas: quantum 
algorithms on classical data, classical algorithms on quantum data, and quantum algorithms on 
quantum data. Since the first category is most relevant to financial applications like fraud detection, 
stock price prediction, risk management, and credit scoring, our review focuses on the interaction 
between classical data and quantum algorithms. Within this scope, we discuss the latest 
developments in Graph Neural Networks, Generative AI models, and Gradient Boosted Tree 
techniques' quantum counterparts for super-vised learning. 

Initially, we go over a few of the most important and popular methods from classical machine 
learning that are applied to financial applications. Next, we give a succinct, high-level summary of the 
benefits and drawbacks of quantum machine learning, shedding light on the state of the field as well 
as its future prospects. We choose three categories of QML algorithms and analyze them with the 
intended applications in mind, taking inspiration from classical techniques. Lastly, we wrap up the 
review with a few conversations 
 
2. Classical Machine Learning Applications in Finance 
 

We briefly review the different applications of classical machine learning techniques in the 
financial services industry in this section. These uses include risk management and credit scoring, as 
well as fraud detection, stock price forecasting, and recommendation systems-based personalization. 
Machine learning's sophisticated capabilities help all of these fields by increasing efficacy, efficiency, 
and accuracy. We explore specific methods and their effects in these important financial areas below. 
 
2.1 Credit Scoring 

 
Estimating the risk associated with lending to a particular individual or business is a key challenge 

in financial services. The measure of risk associated with selling loans typically informs the price 
offered to an individual or business and is a key component in ensuring that a financial institution 
operates safely and sustainably. Traditionally, credit risk modelling has been undertaken in banks 
using linear algorithms like logistic regression [14]. However, the availability of large datasets and 
computing power has enabled the adoption of more modern machine learning and deep learning 
techniques. Studies comparing these modern techniques to traditional algorithms have found that 
deep learning outperforms logistic regression modelling, with gradient-boosted trees often 
identifying customer risk most accurately [15,16]. Additionally, it has been demonstrated that using 
graph convolutional networks to extract features that represent a company's financial environment 
improves credit risk estimation [17], suggesting that these algorithms can offer a more 
comprehensive perspective of a business when estimating credit risk. 
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2.2 Risk Management and Compliance 
 
Lenders must adhere to regulatory requirements and work within a defined risk appetite. For 

investment banks, estimating portfolio risk is a major challenge. The gradient-boosted algorithm 
Adaboost was found to be the most effective when a number of approaches for calculating the value-
at-risk in a stock portfolio were compared in earlier research [18]. Several banks have recently 
embraced generative AI's capacity to produce text that resembles human language in order to 
guarantee that their communications adhere to legal frameworks [19]. It is anticipated that as this 
technology develops, its application will spread more widely because it has the ability to significantly 
streamline compliance procedures. 
 
2.3 Fraud Detection 

 
Lenders can minimize financial losses, safeguard clients, and foster trust by using automated 

systems to detect fraudulent transactions and behaviors. These systems eliminate the need for 
human transaction analysis, which can be costly and inaccurate. Boosted trees [21], artificial neural 
networks [22], and support vector machines (SVMs) [20] are well-liked algorithms that demonstrate 
good performance in predicting fraud. 
 
2.4 Stock Price Prediction 
 

Predicting future stock prices is an essential but difficult task in financial services, as it guides 
investment strategies and risk management. Long Short-Term Memory (LSTM) networks are one of 
the deep learning-based approaches that can capture complex relationships and outperform 
conventional forecasting techniques like ARIMA [23]. Additionally, time series can be accurately 
classified and forecasted using methods like Generative Adversarial Networks (GANs), which produce 
new data [24]. 
 
2.5 Implications 

 
The implications of integrating Quantum Machine Learning (QML) into financial services are 

significant and multifaceted. Here are some key implications based on the content of the document: 
 

i. Enhanced Risk Management: QML can improve the accuracy of risk assessments and portfolio 
management. For instance, the use of gradient-boosted algorithms like Adaboost has shown 
effectiveness in calculating value-at-risk, which is crucial for investment banks As QML 
techniques evolve, they may provide even more sophisticated models for predicting and 
managing financial risks. 

ii. Improved Fraud Detection: Automated systems powered by QML can enhance the detection 
of fraudulent transactions. By utilizing advanced algorithms such as boosted trees and neural 
networks, financial institutions can minimize losses and protect clients more effectively This 
could lead to increased trust and security in financial transactions. 

iii. Advanced Predictive Analytics: QML techniques, such as Long Short-Term Memory (LSTM) 
networks and Generative Adversarial Networks (GANs), can significantly improve stock price 
predictions and market analysis. These methods can capture complex relationships in data 
that traditional models may miss, leading to better-informed investment strategies. 
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iv. Regulatory Compliance: The ability of generative AI to produce human-like text can 
streamline compliance processes within financial institutions. As regulations become more 
complex, QML can help ensure that communications and operations adhere to legal 
frameworks, potentially reducing the risk of non-compliance  

v. Innovation in Algorithm Development: The challenges faced in QML, such as training 
difficulties and quantum noise, may inspire new algorithms in classical machine learning. This 
cross-pollination of ideas could lead to breakthroughs in both fields, enhancing the overall 
landscape of data science and machine learning. 

vi. Challenges In Implementation: Despite its potential, the integration of QML into financial 
services is not without challenges. Issues such as the difficulty of uploading classical data into 
quantum states and the presence of hardware noise can hinder the practical application of 
QML. Addressing these challenges will be crucial for realizing the full benefits of QML in 
finance. 

vii. Future Research Directions: The ongoing research in QML could lead to the development of 
new quantum-inspired algorithms that may outperform classical methods in various 
applications, including finance. This highlights the importance of continued investment in 
QML research to unlock its full potential 6, 6. 

 
In summary, the implications of QML in financial services are profound, offering opportunities for 

enhanced risk management, fraud detection, predictive analytics, and regulatory compliance, while 
also presenting challenges that need to be addressed for successful implementation.  
  
3. Limitations of Quantum Machine Learning 

 
The process of uploading encoded classical data into quantum states on quantum registers and 

memories, specifically QRAM, is still a significant challenge, even with QML models that demonstrate 
promise with quantum data. This is especially true when dealing with large datasets. 

Difficulties in the Quantum Training Landscape: A lot of QML algorithms face difficulties during 
training, like Barren plateaus and local minima, which are comparable to the problem of vanishing 
gradients in classical machine learning. However, the additional complexity of the quantum 
landscape, coupled with the presence of hardware noise, amplifies these issues. Furthermore, in an 
attempt to be more expressive, QML models frequently exploit the entire space of quantum states, 
which frequently results in the emergence of Barren plateaus. Further research is hoped to uncover 
novel ways to lessen these constraints, as methods that have proven successful in classical machine 
learning have not yet been thoroughly adapted and examined in the quantum setting. 

Impact of Quantum Noise: In the pre-quantum error-correction era, hardware noise in quantum 
computations presents a significant challenge for QML, impacting all facets of model performance 
and necessitating the use of strategies like error mitigation techniques or noise-resilient model 
design. 
 
4. QML Algorithms for Supervised Learning Tasks 
 

Several QML approaches and architectures have been proposed in the literature for supervised 
learning tasks, where models learn from labelled data to make predictions or decisions. Some of 
these architectures have shown promise in outperforming classical approaches. The application of 
quantum algorithms and techniques to supervised learning tasks is examined in this section. 
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Particular attention is paid to techniques and methods that are frequently employed in data science 
and finance, such as Quantum Neural Networks (QNN) and Gradient Boosted Trees (GBT). 
 
4.1 Quantum Analogue for GBT? 
 

A machine learning method called Gradient Boosted Trees (GBT) is related to decision trees. It 
works by combining several weak learners, or usually shallow decision trees, to produce a strong 
predictive model. Classification and regression tasks are two areas in which GBT excels, giving them 
versatility in supervised learning. It is important to note that the decision tree has been studied in 
[32], where Grover's search algorithm [33] is used to search over the tree more efficiently while 
utilizing quantum entropy for node splitting and quantum fidelity for data clustering. However, there 
hasn't been any more research done on the subject in quantum machine learning. Because there isn't 
a precise quantum equivalent method, we concentrate on pertinent methods in this section that are 
related to the uses of GBT. 

Although there is currently no precise quantum counterpart for GBT, QML provides a number of 
substitute techniques to improve supervised learning. The primary similarity is in using quantum-
enhanced feature spaces to improve supervised learning tasks. The goal of these quantum algorithms 
is to represent feature space in higher dimensions, which may enable the capture of intricate data 
relationships and increase task accuracy. This is the subject of the following section. 
 
4.2 Supervised Learning with Quantum-Enhanced Feature Spaces 
 

Two quantum algorithms for near-term quantum devices are introduced in this work [3]: 
Quantum Kernel Estimation, which optimizes a classical SVM on a quantum computer, and Quantum 
Variational Classifier, which resembles conventional SVMs. Both apply the idea of using the quantum 
state space as a feature space and provide benefits that are difficult to replicate in a classical setting. 

Introduction of quantum SVMs in [8]. Applications of noisy intermediate-scale quantum 
computers to machine learning are also investigated in this study. The Quantum Variational Classifier 
operates in four steps: mapping classical data to a quantum state, applying a short-depth quantum 
circuit, performing binary measurements, and using a decision rule based on empirical distribution. 
The classification success rate for circuit depths greater than 1 is nearly 100%, according to the 
experimental results, and depth 4 exhibits the best performance when decoherence effects are taken 
into account. The classifier uses 20,000 shots for running classification experiments as opposed to 
2,000 for training, and it is trained on three datasets per depth, completing 20 classifications per 
trained set. For both the training and classification stages, the Quantum Kernel Estimation algorithm 
uses a quantum computer to estimate the SVM kernel. 

The kernel is first estimated by the quantum computer for every pair of training samples. Using 
the support vectors from the optimization, the quantum computer is used to estimate the kernel for 
a new data point during the classification phase. This provides enough information to build the entire 
SVM classifier. Using feature map circuits, inner product estimation for the kernel is done directly 
from transition amplitudes. By repeatedly measuring the final state in the standard computational 
basis, the transition probability is estimated. With two test sets reaching 100% and a third averaging 
94.75% success, it achieves high classification success. The efficacy of this approach is demonstrated 
by its capacity to preserve the kernel's positive semi definiteness in the face of sampling errors. 

These quantum approaches are explored in more detail in other studies, such as [34] and [35]. In 
particular, [35] tests the circuit-centric quantum classifier on datasets such as CANCER, SONAR, WINE, 
SEMEION, and MNIST256, benchmarking it against classical methods. Even with fewer parameters, 
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the quantum classifier frequently performs better than or on par with classical models such as 
MLPshal and MLPdeep; however, in certain instances, it exhibits overfitting, indicating the necessity 
for enhanced regularization strategies. 
 
4.2.1 Provable QML Algorithms in this area 
 

The most noteworthy recent advancements in this field (since 2023) include [36], which shows 
how variational quantum classifiers and quantum kernel SVMs have a quantum advantage when 
solving specific challenging complexity theory 7 problems. This suggests that Bounded-Error 
Quantum Polynomial-Time decision problems may be potentially efficient. A noteworthy addition is 
[37], emphasizing the effectiveness of quantum SVMs. For certain datasets, it achieves a provable 
exponential speedup over classical algorithms by designing kernel functions using quantum circuits. 
Quantitative analysis indicates that the dual formulation can be solved in O(M4.67/ǫ2) evaluations, 
where M is the size of the data set and i̫s the solution. The complexity of solving the dual formulation 
is estimated at  O(minM2/ǫ6,1/ǫ10 ) quantum circuit evaluations 
 
4.3 Quantum Neural Networks 

 
Parameterized Quantum Circuits (PQCs) are an essential component of many QML models. The 

unitary gates in these circuits are parameterized and operate on quantum states to encode the 
classical data [11]. Among the parameterized circuits are quantum gates, which have free parameters 
(θ) that can be tuned via training to solve particular issues. It has been demonstrated that classical 
feedforward neural networks can be formally embedded into PQCs [38]. PQCs and neural networks 
have a conceptual quantum analogy. Certain PQCs are sometimes referred to as QNNs in the QML 
literature, and on occasion, QNNs are thought of as a subclass of Variational Quantum Algorithms 
(VQA) [13]. When a PQC is used in a data science context, the term QNN is used practically (mostly 
when the data is classical and The quantum algorithm is used. A QNN's purpose is to map states from 
distinct classes to distinguishable regions within the Hilbert space. It is specifically related to 
supervised classification tasks. 

It is possible to realize QNNs in various architectures. For a straightforward classification, consider 
the following three instances: dissipative QNNs, convolutional QNNs, and other models where the 
number of qubits in the model is increased, preserved, or decreased in each layer. As previously 
mentioned, dissipative QNNs generalize the classical feedforward network [11]. The classical data is 
converted into quantum states and sent to a QNN in a standard QNN architecture. There, the 
quantum circuit is applied, and all of the qubits are measured at the conclusion. This is an illustration 
of a QNN architecture in which the qubit count is maintained. One example of a QNN architecture 
where the number of qubits is decreased is convolutional QNN, which was studied in [39] and shown 
to have good classification performance. Qubits are measured and eliminated in each layer in order 
to decrease the data's dimension while keeping its pertinent features. Additionally, [13] has 
examined the trainability and capacities of QNNs and has shown how they can be implemented on 
actual hardware. In general, QNNs and their different architectures are one of the main and active 
areas of research in QML [11,40,41]. 

 
 
 
 

4.4 QML Techniques Related to Credit Scoring and Risk Management 
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Quantum machine learning (QML) has been applied to finance in recent studies for credit scoring 

and financial risk assessment. First, we present the paper [42], which proposes a quantum-enhanced 
machine learning technique for credit rating prediction 8. This model exhibits promising results when 
applied to a neutral atom quantum processor with up to 60 qubits. It performs competitively, has 
better interpretability, and requires training times that are comparable to those of the most 
advanced random forest models. The authors of [44] investigate the use of quantum machine 
learning to improve financial forecasting. They improve precision over the classical random forest by 
almost 6% by incorporating both classical and quantum determinantal point processes into Random 
Forest models. They also create compound and orthogonal layer quantum neural network 
architectures for credit risk evaluation. These models demonstrate the efficiency of classical 
performance with significantly fewer parameters. 

Finally, [45] focuses on Value-at-Risk and Potential Future Exposure while examining the broad 
potential of quantum computing in financial risk management. While acknowledging the viability of 
conceptual solutions and small-scale circuits, the study also draws attention to issues that face real-
world applications, including the requirement for more qubits in the hardware and the need to 
reduce quantum noise. One of the earliest works in this field of applications is by [46], in which the 
authors show how to convert these difficulties into a quadratic unconstrained binary optimization 
(QUBO) problem that quantum annealers can solve. This method's potential for optimizing credit 
analysis features was demonstrated through testing it on a quantum simulator (more information is 
provided in [47]). 
 
5. QGENAI Technique 
 

The quantum counterpart of classical Stochastic Neural Networks (SNN) is the Quantum Circuit 
Born Machine (QCBM), which was first described by Benedetti et al. [51]. Randomness in QCBM does 
not come from sampling after each layer; rather, it comes from intrinsic properties of quantum 
mechanics. The main idea is to generate a tunable discrete probability distribution that approximates 
a target distribution using a Quantum Neural Network (QNN). The desired distribution is produced 
by manipulating an initial quantum state using a Parametrized Quantum Circuit (PQC). The topology 
of the entangling layers in PQCs has a significant impact on the performance of QCBM; optimal 
performance is attained when the topology aligns with the hardware architectures. Numerous 
generative learning tasks have been tackled with QCBM [64].QCBM has been applied in the field of 
finance to acquire empirical financial data. 

Amin et al.'s proposed Quantum Boltzmann Machine (QBM) is a quantum variant of the classical 
Boltzmannmachine (BM) [52]. It prepares the Boltzmann distribution, which estimates discrete target 
distributions, using quantum devices. In QBM, qubits take the place of BMs' units, and a quantum 
Hamiltonian takes the place of the energy term in the classical BMs' Hamiltonian. One popular model 
is the transverse-field Ising model, where the Hamiltonian is designed to have trainable parameters 
[52,64]. Through optimization techniques, QBM updates the target distribution's parameters in an 
effort to minimize the negative log-likelihood. The training procedure of QBM, which includes 
computing gradients using both positive and negative phases, is a crucial component. The Boltzmann 
average is referred to as the positive phase, and the exponential complexity makes the negative 
phase sampling NP-hard. 
 
 
5.1 Quantum Generative Adversarial Network (QGAN) 
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A novel technique in QGenAI, Quantum Generative Adversarial Network (QGAN) was first 

conceptualized by Lloyd and Weedbrook [4]. QGANs use a generator and a discriminator to play a 
two-player minimax game, adhering to the structure of classical GANs. But QGANs are different in 
that these parts are often built using QNNs rather than traditional deep neural networks. Because 
QGANs use quantum resources, they can estimate both discrete and continuous distributions, 
potentially providing computational advantages over classical GANs [4,75,76]. For a variety of 
applications, including quantum chemistry calculations [77], image creation [78], and finance [79], 
several forms of QGANs have been investigated. 
 
6. Conclusion and Discussions 
 

This brief review paper describes some promising applications of QML algorithms in finance. 
Graph Neural Networks, generative AI models, and supervised learning tasks were the main topics of 
our investigation into quantum improvements to traditional machine learning techniques. Our 
analysis demonstrates the potential of QML in the financial sector for tasks like fraud detection, stock 
price prediction, risk management, and credit scoring. After analyzing our results, it is clear that some 
QML subfields, algorithms, and techniques have more potential and utility for finance in the short- 
and long-term. 

Quantum Variational Classifier and Quantum Kernel Estimation algorithms show promise for 
enhancement in tasks such as risk management and credit scoring in the near future, making them 
viable choices for implementation on Noisy Intermediate-Scale Quantum (NISQ) devices. Even 
though some current algorithms have high classification success rates, more testing on actual 
hardware is required to confirm their effectiveness in comparison to traditional techniques. Adoption 
of these techniques could prove beneficial even with the lack of a provable exponential quantum 
advantage in this field, given their hybrid nature and the fact that these algorithms are less costly and 
resource-intensive than the fault-tolerant ones. This is especially true if they offer significant 
improvements in precision or other metrics. 

Even though QML offers many advantages, it's important to recognize its drawbacks and 
restrictions, like the difficulty of efficiently uploading data and the difficulties of training in the 
quantum environment. In the long run, QML could lead to revolutionary developments in data 
science and machine learning. We can push innovation in a variety of industries and open up new 
vistas in computational science by solving current problems and fully utilizing quantum technologies. 
Furthermore, despite the technological difficulties presented by quantum computing hardware, the 
study of quantum algorithms provides inspiration for the development of novel algorithms in classical 
machine learning, including the potential emergence of new generations of quantum-inspired 
algorithms. This highlights the importance of QML research from various application perspectives. 
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