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The challenge is to accurately evaluate uncertainty in imprecise data in complicated 
systems, particularly when the data is subjective or based on measurements that are 
very inaccurate. This paper shows a new method of accomplishing things by using a 
Bézier curve interpolation framework with Type-2 fuzzy numbers (T2FNs) and 
intuitionistic fuzzy sets. The T2FN based Intuitionistic fuzzy interpolation Bézier Curve 
that is being spoken about here exhibits uncertainty in two ways which are via 
secondary membership functions and hesitation degrees. This is great for data that is 
highly unclear. The way the construction is done mixes the flexibility of Bézier curve 
geometry with the more expressive T2FN and intuitionistic fuzzy notions. We test the 
model with both fake and genuine data, including earthquake magnitude data that 
fluctuates a lot. The experiment's results suggest that the T2FN-IFIBC is superior at 
handling data uncertainty because it makes curve fitting more stable and adaptable. 
When faced with ambiguous data, this technique empowers the maximization of the 
potential of geophysical modeling, risk analysis, and data analytics, enabling the 
achievement of extraordinary results. 
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1. Introduction 
 

The main goal of data modeling is to show, analyze, and get insights from environmental data. 
Data modeling is important because it can create abstract models of complicated systems that may 
help us understand and control the underlying environmental dynamics. Zhang et al. say that fuzzy 
set theory is important for dealing with the uncertainties that come with external elements like 
economic circumstances and vendor rates. This lets you handle these uncertainties in an organized 
way when making decisions [1]. Also, fuzzy measures and integrals have been used to improve risk 
coordination in the supply chain. This shows how data modeling efforts directed at environmental 
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data may be used in real life [1]. This modeling does more than just show data; it also lets you 
manipulate and understand data complexity in a variety of situations, such as supply chain 
management and ecological evaluations. 

Adding uncertainty to data modeling, on the other hand, may make things harder. There are a 
variety of factors that might make things hard to understand, such wrong measurements, changes in 
the environment, or missing data. The existence of these ambiguous elements complicates the 
determination of appropriate actions and the assessment of potential risks. Jifrin et al., [2] indicate 
that fuzzy set theory, along with other methodologies, may facilitate the analysis of data that is 
unclear or erroneous. This may make it tricky to model, particularly when it comes to interpolating 
coastline data [2]. If the evidence is highly obscure, the remaining probability may not match what 
really occurred. If this process is not executed properly, it may lead to inaccurate conclusions. Fuzzy 
set theory can assist in addressing uncertainties. However, its efficacy may diminish as the complexity 
of the situation increases. 

As uncertainties escalate, particularly within complex systems or datasets, traditional fuzzy set 
theory may prove inadequate in fully capturing the breadth of the uncertainties encountered. Type-
2 fuzzy sets (T2FSs) present an enhanced framework that significantly improves the representation 
of uncertainty by allowing variability in the membership functions themselves. Type-2 fuzzy logic 
systems (T2FLSs) have garnered attention due to their capability to effectively model uncertainties 
arising from various sources, such as measurement noise or fluctuating environmental conditions    
[3, 4]. Research has shown that T2FSs excel in handling scenarios characterized by higher degrees of 
vagueness and ambiguity, outperforming conventional fuzzy approaches that rely solely on 
deterministic membership values [5,6]. These advanced fuzzy systems provide additional degrees of 
freedom through the concept of a "Footprint of Uncertainty" (FOU), which robustly characterizes 
uncertainty by encompassing a broader spectrum of possible membership values [7,8]. 
Consequently, T2FSs create a more realistic and nuanced representation of complex environmental 
data, addressing the intrinsic challenges that simpler fuzzy models often overlook [9]. This capability 
positions type-2 fuzzy logic not only as a theoretical advancement but also as a crucial tool in practical 
fields requiring precise modeling of uncertainty, such as environmental management and control 
systems  [10]. 

In the face of challenges, it is essential to cultivate innovative approaches to address the issues 
that arise, particularly in the context of T2FS applications that utilize alpha values. Intuitionistic fuzzy 
sets (IFSs) incorporate the elements of membership, non-membership, and hesitation, offering a 
unique methodology for representing uncertainty. This comprehensive framework surpasses 
conventional fuzzy methods in representing ambiguity. IFSs offer significant benefits in situations 
marked by a multitude of unknown variables and defined eligibility requirements for involvement 
[11,12]. Atanassov introduced the concept of intuitionistic fuzzy set theory in the 1980s. It not only 
comprehends how to navigate the complexities of uncertainty, but it also facilitates the handling of 
ambiguous data. This suggests that decision-making frameworks could be utilized in further contexts 
[11,13]. Research conducted by Pomare et al., [13] and Wang et al., [14] demonstrates that 
intuitionistic fuzzy sets are beneficial in the healthcare sector, aiding individuals in making more 
informed decisions. In situations characterized by significant uncertainty, these models demonstrate 
enhanced performance. This approach enhances fuzzy set theory by integrating innovative 
perspectives for analyzing various datasets [15,16]. This illustrates the superior capability of IFSs in 
managing uncertainty in both research and practical scenarios compared to traditional methods. This 
illustrates their importance in the realm of fuzzy logic applications, which is currently evolving [16]. 

Researchers can enhance the representation of real-world events in environmental data 
modeling by employing intuitionistic fuzzy sets, particularly through geometric representations such 
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as Bézier curves. Zakaria et al. demonstrate that integrating intuitionistic fuzzy sets with rational 
Bézier surface functions provides a compelling visualization of complex environmental information 
while highlighting the related uncertainties [17]. This geometric approach enhances the 
comprehension of intricate uncertainties and fortifies decision-making frameworks that address the 
inherent complexities of environmental data [9]. This strategy enhances the models' expressiveness 
by addressing inherent fuzziness and ensuring accurate interpretation of the datasets [9]. 
Intuitionistic fuzzy sets facilitate the integration of various forms of uncertainty, including 
membership, non-membership, and hesitation. This enhances the accuracy of environmental 
evaluations and predictions . Furthermore, frameworks that employ intuitionistic fuzzy set are 
especially adept at clarifying uncertainties present in various environmental contexts. This enhances 
the reliability of data analyses and the processes associated with decision-making [18]. The 
integration of intuitionistic fuzzy sets with geometric models provides valuable instruments that 
assist in addressing the complex nature of environmental phenomena. This facilitates the 
development of improved strategies for environmental management. 

To address uncertainty in environmental data, it is essential to implement a thorough strategy 
that incorporates fuzzy set theory, T2FSs, and intuitionistic fuzzy sets. This method offers a more 
accurate depiction of intricate data landscapes. The integration of these methods improves the 
modeling process by accommodating various membership functions and providing the flexibility 
needed to address uncertain conditions. This, in turn, enhances the reliability and effectiveness of 
assessments across diverse fields including environmental science and financial forecasting [19]. 
Recent advancements underscore the promise of employing fuzzy logic in real-time environmental 
monitoring, particularly when combined with Internet of Things (IoT) technologies, to enhance data 
collection and adaptive control systems for addressing uncertainties in environmental data [10,20]. 
Furthermore, fuzzy logic systems have demonstrated significant efficacy in the creation of predictive 
models, especially in the realm of demand forecasting, where precise data interpretation is essential 
in the face of uncertainty [21]. Through the systematic integration of these methodologies, one can 
develop models that exhibit resilience and adaptability, thereby effectively tackling the complexities 
inherent in real-world datasets and the challenges presented by uncertain information [22,23]. 

This paper is structured in the following manner: Section 2 outlines the methodology employed 
in the development of the proposed model. Section 3 presents the outcomes derived from Section 
2, including the mathematical equation that illustrates the application of the model to a case study. 
This is followed by a discussion of the results in Section 4. In conclusion, Section 5 provides a summary 
of the findings and offers recommendations for future research. 
 
2.  Methodology 

 
In this methodology, the approach employs T2FNs, intuitionistic fuzzy numbers, and interpolation 

Bézier curves in an innovative way to represent earthquake magnitude data. The application of T2FN 
improves the handling of uncertainty by offering a more profound understanding of the imprecision 
inherent in the data. The model incorporates intuitionistic fuzzy numbers, adeptly capturing both 
membership and non-membership degrees, thereby providing a comprehensive insight into 
uncertainty. Bezier curves are employed to illustrate trends and relationships present in the data 
through curve visualization. This provides a comprehensive and precise assessment of earthquake 
intensity across historical timelines. This approach enhances the accuracy and reliability of 
earthquake size predictions, establishing it as a crucial instrument for seismological assessment. 
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2.1 Data Collection 
 

The magnitude of earthquakes was sourced from the Malaysian Meteorological Department, 
commonly referred to as MetMalaysia. The dataset includes historical records of earthquakes 
occurring in Malaysia, with a particular focus on Ranau in Sabah. Between January 2017 and 
December 2017, a total of 55 seismic events were documented in Ranau, showing variations in 
magnitude and geographical distribution. 
 
2.2 Type-2 Fuzzy Number in Defining Uncertainty Complex Data 
 

T2FNs are very important for finding and dealing with data that is hard to understand. They help 
us grasp better things that happen in the actual world that are naturally unclear or obscure. The basic 
ideas behind type-1 fuzzy sets are used to create T2FSs. In a three-dimensional space, fuzzy sets show 
membership grades. Zakaria et al., [24] say that this technique works well to clear up any confusion 
about these grades. This trait makes T2FSs better at handling more uncertainty than regular fuzzy 
sets. This is useful in fields including risk analysis, environmental modeling, and multi-criteria 
decision-making [25,26]. 

The integration of T2FNs facilitates the representation of multiple types of uncertainty, such as 
linguistic uncertainty, measurement errors, and the intrinsic variability present in observed data [9]. 
The use of T2FSs in the construction of Bézier curves allows for the representation of uncertainty in 
control points, improving the visualization of complex datasets where conventional methods might 
struggle, as Zakaria and colleagues' research [27]. This holds significant value in environmental 
contexts, including the modeling of shoreline data or geological hazards, where uncertainties are 
common and can greatly influence decision-making processes [9,27].  
 
2.3 Intuitionistic Fuzzy Number 
 

The utilization of intuitionistic fuzzy numbers in data modeling, especially for curve 
representation, greatly enhances the handling of uncertainties faced in real-world situations. 
Atanassov introduced intuitionistic fuzzy sets, which provide benefits over traditional fuzzy sets by 
integrating a membership function, a non-membership function, and a degree of hesitation. This 
method facilitates a more thorough representation of data, thereby aiding in the resolution of 
uncertainties that may occur in various contexts. The studies carried out by Davvaz et al. [28] and 
Ejegwa and Adamu [29] hold significant relevance. This thorough approach is particularly 
advantageous for modeling intricate datasets, as it offers various options for representing uncertain 
data. Zulkifly and Wahab [30] illustrated that intuitionistic fuzzy Bézier curves, developed through 
the integration of Bernstein polynomials with intuitionistic fuzzy control points, proficiently capture 
uncertainty in data. This enables informed decision-making in multiple areas, including engineering 
and environmental management [30,31]. 

The utilization of intuitionistic fuzzy numbers in conjunction with geometric models enables the 
creation of an advanced and dynamic representation of datasets, incorporating both membership 
and non-membership degrees. This produces better results than traditional models. Research shows 
that intuitionistic fuzzy models are effective in tackling challenges related to uncertain data in areas 
like pattern recognition and image segmentation, where hesitation and ambiguity are significant 
factors [32,33]. Analysts can employ these models to generate visualizations that clearly illustrate 
the uncertainty present in the data, while also supporting strong predictions and flexible decision-
making. This improves the reliability of data modeling in fields like artificial intelligence and 
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environmental science. The integration of curves with intuitionistic fuzzy sets in data modeling 
signifies a notable progression in tackling ambiguity challenges, positioning it as an essential tool in 
modern analysis. 
 
2.4 Piecewise Interpolation Bezier Curve 
 

Piecewise Bézier curve interpolation is a widely used method in computer graphics for modeling 
data sets, offering an effective way to approximate smooth curves that closely match specified 
points. Every segment of the Bézier curve is characterized by a distinct set of control points, enabling 
precise adjustments to the curve's form. This segmentation ensures continuity between segments, 
resulting in smooth transitions that accurately represent complex shapes while circumventing the 
computational challenges associated with higher-degree polynomial functions [34]. The 
implementation of this interpolation is significant in fields like computer-aided geometric design 
(CAGD), animation, and graphical rendering, where generating visually accurate data representations 
is crucial [35]. Furthermore, the adaptability of piecewise Bézier curves enables precise modeling of 
real-world phenomena, making them crucial in applications that require careful detail and smooth 
representational transitions [34]. 

In the context of modeling earthquake magnitude data, piecewise Bézier curve interpolation 
offers a strong framework for analyzing and illustrating the temporal variations in seismic activity. 
Considering the inherent uncertainties and fluctuations associated with earthquake magnitudes, the 
application of Bézier curves enables researchers to create models that accurately represent the 
temporal variations in seismic magnitudes while addressing data discrepancies [36]. This approach 
provides improved visualization features, assisting researchers in recognizing patterns in seismic 
activities and possibly predicting future events based on past data. For example, piecewise 
interpolation adeptly manages significant fluctuations in earthquake magnitudes, facilitating a more 
precise depiction of seismic activity trends over time and aiding in the formulation of disaster 
preparedness models. By effectively illustrating the temporal dynamics of seismic measurements, 
piecewise Bézier curves significantly contribute to our understanding of earthquake phenomena and 
the enhancement of societal resilience to such natural disasters [37]. 

 
3. Result 
 

The implementation of the proposed Type-2 fuzzy interpolation Bézier curve (T2FIBC) model 
resulted in notable enhancements in the modeling of uncertainty within earthquake magnitude data. 
The integration of T2FNs with Bézier curve interpolation has resulted in a model that effectively 
captures the inherent imprecision and ambiguity present in seismic datasets, especially across 
different magnitude scales. In this section, the mathematical formulation will be established to 
develop the T2FIBC model, which will subsequently be utilized to model the shoreline data. To 
enhance comprehension, each definition will be illustrated visually.  
 
Definition 3.1 
A T2FN is broadly defined as a T2FS that has a numerical domain. An interval of T2FS is defined using 

the following four constraints, where , ,  

(Figure 1): 
 

1.  

{ }, , ,A a b c da a a a
a é ù é ù= ë û ë û


[0,1]a" Î , , ,a b c da a a a" Î

a b c da a a a£ £ £
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2.  and  generate a function that is convex and  generate a normal 
function. 

3.  for .  

4. If the maximum of the membership function generated by  is the level , that is 

, then [27, 38] . 

 

 
Fig. 1. Definition of an interval T2FN 

 
Figure 1 presents an interval T2FN as defined in Definition 3.1. The outer membership function 

 and the inner membership function  adhere to the ordering  (Item 1). The 

outer function exhibits convexity and normality, whereas the inner function establishes the FOU in 
conjunction with the outer function (Item 2). Horizontal dashed lines at two alpha-levels 

 illustrate the nesting property, where the α-cut intervals diminish as α 
increases and are encompassed within the intervals at lower α-values (Item 3). At the maximum 

membership level , the core interval  is entirely contained within the 

corresponding outer boundary  item (Item 4), clearly illustrating the bounded 

uncertainty structure of the T2FN. 
 
Definition 3.2 

Let  and  are type-2 fuzzy 

earthquake magnitude data (T2FEMD) with , where  is a universal set and 
 is the membership function defined as   and formulated as  

. Therefore, 

            

(1) 

[ , ]a da a [ , ]b ca a [ , ]a da a

( )1 1 2 2 1 1 2 2
1 2 2 1, [0,1] : ( ) , , , , , ,a c a c b d b da a a a a a a aa a a a é ù é ù é ù é ù" Î > Þ É Éë û ë û ë û ë û

2 2c ba a³

[ , ]b ca a
ma

[ , ]m mb ca a 1 1, ,m mb c a da a a a= =é ù é ùÌ ë ûë û

,a da aé ùë û ,b ca aé ùë û ,a ba aé ùë û

( )a a a a>1 2 2 1and , with

1ma = , ,m mb ca aé ùë û
1 1, ,m ma da a- -é ùë û

{ }type-2 fuzzy pointE x x= { }data point of earthquake magnitudei iE E E=


iE E XÎ Ì X

( ) [ ]: 0,1E iE Eµ ® ( ) 1E iEµ =

( )( ){ }, , 0,1,2,...,i E i iE E E E i nµ= Î =




( )
0
(0,1)

1

i

E i i

i

if E X
E c if E X

if E X
µ

Ïì
ï= Î Îí
ï Îî
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iF

with  which  and  are left and right footprint 

of membership values with   where,  and  are 

left-left, right-left membership grade values and  where, 

and  are right-right, left-right membership grade values which can be written as 

             

(2) for every i,  with  where   and  are left-left and right-left 

T2FEMD and  where  and  are left-right and right-right T2FEMD respectively. 

This can be illustrated as in Figure 2. 
 

 

 

                                                                                                                    

 

                                                                                                                          

Fig. 2. T2FEMD around 8 
 

Figure 2 presents a T2FEMD point centered around  as outlined in Definition 3.2. In this 

context,  and  denote the boundaries for the left-left, right-left, left-right, and right-
right membership grades, respectively. The blue outer triangle represents the FOU defined by the 
intervals  on the left side of  and on the right side, effectively capturing 
uncertainty in both directions from the central data point. The inner blue triangle denotes the inner 
membership function, whereas the vertical red dashed line indicates the crisp magnitude value , 

which corresponds to its peak membership value . This structure effectively illustrates how 

( ) ( ) ( ) ( ), ,E i E i E i E iE E E Eµ µ µ µ¬ ®= ( )E iEµ ¬ ( )E iEµ ®

( ) ( ) ( ),E i E i E iE aE bEµ µ µ¬ ¬ ¬= ( )E iaEµ ¬ ( )E ibEµ ¬

( ) ( ) ( ),E i E i E iE cE dEµ µ µ® ® ®=

( )E icEµ ® ( )E idEµ ®

{ }: 0,1,2,...,iE E i n= =
  

[ ],i i iE a b=
 [ ],i i ia aa bb= iaa ibb

[ ],i i ib cc dd= icc idd

iaa ibb iE icc idd

ia ib

8iE =
, ,i i iaa bb cc idd

[ ],i i ia aa bb= iE [ ],i i ib cc dd=

iE
1iF =
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T2FEMD models uncertainty in earthquake magnitude measurements by delineating both the 
primary magnitude and the range of uncertainty on either side. 

Seismologists employ a range of scales to evaluate the magnitude of an earthquake. The four 
types include Local Magnitude (ML) [39], Body-Wave Magnitude (mb) [40], Surface-Wave Magnitude 
(Ms) [41], and Moment Magnitude (Mw). Each of these scales is based on different concepts, each 
having its own strengths and weaknesses. The inherent volatility poses considerable challenges in 
precisely documenting magnitudes. For example, a single earthquake can display several magnitude 
readings, fluctuating by ±0.2 to ±1.0 units. 

Comprehending the differences between various techniques for quantifying earthquake 
magnitude, including Local Magnitude (ML), Surface-Wave Magnitude (Ms), and Body-Wave 
Magnitude (Mb), is essential for the precise evaluation of seismic data. Kadirioğlu and Kartal [42] 
suggest that machine learning may not exhibit the same level of effectiveness in identifying 
significant earthquakes when compared to other magnitude scales, especially for magnitudes of 6.0 
or higher. On the other hand, Surface-Wave Magnitude may not accurately reflect deep-focus 
earthquakes, while Body-Wave Magnitude can be affected by crustal characteristics and frequency 
filtering, which complicates the accuracy of magnitude reporting [43]. Discrepancies of this nature 
can present considerable challenges in the development of historical earthquake catalogs or in the 
comparison of events across different tectonic contexts. Researchers frequently utilize conversion 
equations or probabilistic models to tackle these inconsistencies. However, these traditional 
approaches may not completely encompass the inherent uncertainty linked to seismic 
measurements. 

T2FNs effectively address this ambiguity. Researchers can utilize T2FNs to demonstrate the 
spectrum of potential magnitude values along with the associated uncertainty. For example, when 
an earthquake is documented with ML = 6.5 ± 0.5 and Ms = 6.8 ± 0.3, then  a T2FN may represent 
this data as a fuzzy envelope. This envelope exhibits varying levels of confidence, thereby reducing 
the likelihood of errors in seismic modeling [44]. This example illustrates the utility of alpha-cuts in 
deriving intervals from fuzzy sets that correspond to specific confidence levels. This analyzes the 
intricate fuzzy envelope and deconstructs it into more manageable components for improved 
handling. This comprehensive analysis of alpha-level intervals enhances our understanding of the 
propagation of uncertainty in seismic observations. This enables the assessment of earthquake 
likelihood, especially when combined with methods such as Bézier curve interpolation [45]. Utilizing 
T2FNs to simulate earthquake magnitudes enhances our understanding of the associated 
uncertainties significantly. This enables us to thoroughly understand the facts and prepare for various 
scenarios [46]. 
 
Definition 3.3 

Let  be the set of T2FEMDs with  where . Then  is the alpha-cut operation 

of T2FEMDs with  which is given as follows. 

     (3) 

 
 

 

iE


iE EÎ
  

0,1,..., 1i n= - iE a



0,1,2,...,i n=

( ) ( )

, ,

, , , ,

, , , , , ,

i i i i

i i i i i

i i i i i i i i i i i

E a E b
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=

é ù é ù= ë û ë û

é ù é ù é ù é ù= - + - - +ë û ë û ë û ë û





Semarak International Journal of Fundamental and Applied Mathematics  
Volume 8, Issue 1 (2025) 1-28 

 

9 
 

0.5a =

 
                                                                                                                    
 
                                                                                  

Fig. 3. The alpha-cut operation towards T2FEMD 
 

Figure 3 demonstrates the alpha-cut operation of a T2FEMD as outlined in Definition 3.3. The 
original T2FEMD is depicted by the outer blue triangle, which encompasses the left and right 
boundaries  and , surrounding the central crisp value . The alpha-cut at  
is represented by the horizontal dashed purple line, which intersects the membership functions to 
yield the reduced interval boundaries ,  on the left and , on the right. 

The new points are established through linear interpolation between  and the original support 
endpoints, guided by the alpha value. The vertical dashed purple lines denote the positions of the α-
cut boundaries, whereas the red dashed line signifies the location of , characterized by peak 

membership . This operation successfully reduces the FOU to the interval aligned with the 
specified alpha-level, offering a cross-section of the T2FEMD at a selected degree of membership. 

The alpha-cut of a triangular T2FN serves as a method for representing uncertainty by defining 
specific intervals derived from fuzzy sets according to a specified confidence level (alpha). In this 
context, T2FNs can demonstrate the potential range of values for a specific phenomenon, such as 
earthquake magnitudes, along with the associated level of uncertainty pertaining to that range. The 
centroid, or center of mass, of the triangular fuzzy area is essential for determining the alpha value, 
providing a structured method for analyzing fuzzy data. The alpha-cut functions as a mechanism to 
clarify the intricacies of T2FNs by defining particular intervals that align with different confidence 
levels, thereby enhancing analysis and decision-making in uncertain contexts. 

Following the establishment of the alpha-cut, researchers are able to systematically assess the 
impact of uncertainty on the measurements under evaluation. This methodology assists researchers 
in identifying specific time frames that exhibit a variety of potential values within the T2FN. This 
improves the understanding of how uncertainty propagates in seismic evaluations. The alpha-cut 
plays a crucial role in enhancing the clarity and usability of T2FNs in practical applications, where 
precise information is vital for assessing risks and making informed predictions regarding events such 
as earthquakes [46, 47]. The application of alpha-cuts with T2FNs facilitates the development of 
models that enrich our comprehension of complex data characteristics, thereby improving prediction 

iaa ibb iE icc idd

0.5iaaa= 0.5ibba= 0.5icca= 0.5idd a=

( ),i iaa bb ( ),i icc dd iE 0.5a =

, 0.5iaa a = , 0.5ibb a= , 0.5icc a = , 0.5idd a =

iE

iE
1iF =
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accuracy and aiding in more effective risk management [47]. Therefore, the equation in determining 
the value of alpha cut of T2FEMD based on Figure 2 can be given as follows. 
 

          (4) 

 
Intuitionistic fuzzy numbers (IFNs) play a significant role in enhancing the precision of alpha-cut 

determination following the establishment of the initial alpha value, which is derived from the 
centroid of a triangular T2FN. Utilizing the centroid approach to determine the center of mass or the 
average of the triangular area, the subsequent step involves refining this alpha value by incorporating 
the membership and non-membership degrees related to intuitionistic fuzzy sets. Prakash et al. [48] 
indicate that this refined alpha value effectively addresses uncertainty in both membership and non-
membership directions. The incorporation of intuitionistic fuzzy set properties allows researchers to 
achieve a deeper comprehension of fuzzy data, resulting in more significant alpha-cut intervals. This 
dual representation enables a thorough analysis that accounts for the inherent uncertainty and 
variability in measurements, thereby offering a solid framework for future risk assessments and 
decision-making processes. 

Furthermore, when researchers calculate alpha-cuts using intuitionistic fuzzy numbers, they 
successfully convert the intricate relationships among various fuzzy values into manageable intervals, 
facilitating a systematic analysis of uncertainty levels [49, 50] . When a T2FN produces an alpha value 
indicating uncertainty regarding a set of measurements, utilizing the intuitionistic fuzzy framework 
provides a more comprehensive understanding of how variations might influence results. The 
capacity to visualize both membership and non-membership within specified alpha levels 
demonstrates the effectiveness of intuitionistic fuzzy numbers in tackling associated challenges in 
areas like seismic data modeling [46]. Through the application of algorithms that integrate the alpha-
cut method with intuitionistic fuzzy principles, researchers are able to develop more sophisticated 
predictive models. These models improve both the accuracy and interpretability of data in 
environments characterized by uncertainty, thereby promoting enhanced readiness for potential 
risks and hazards . 
 
Definition 3.4 
Let  be universe of discourse. An intuitionistic fuzzy set,  in  is defined as:

            (5) 

where  and  are the membership and non membership degree of  in  
repectively which  [51]. 
 
Definition 3.5 

An intuitionistic fuzzy number (IFN),  is defined as: 
                          

(6) 
where  and  represent the membership 

and non-membership degrees which  with the hesitation degree is 
 [51, 52]. 

( )1
6

c
i i i i iaa F dd bb F ccia = + + + + +

X Â X

{ }ˆ ˆ
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A
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Definition 3.6 
Let  be an intuitionistic fuzzy set (IFS) defined on a universe  where: 

                        

(7) 
Given two threshold  such that , intuitionistic alpha-cut defined as: 

           (8) 

 

For type IFN such as triangular IFN, , then the measurement of membership value  can 

be given through Eqn. 9 as follows. 

            (9) 

Similarly, the measure of non-membership value  is given by Eqn. 10 as follows 

                                   

(10) 
Next, the degree of hesitancy and the intuitionistic alpha value can be given by Eqn. 11 and Eqn. 12 
respectively. 

                       

(11) 

          

(12) 
 

 
Fig. 4. Triangular intuitionistic alpha-cut 

 
Fig. 4 illustrates the intuitionistic alpha-cut for a triangular IFN as described in Definition 3.6, 

emphasizing both the membership function,  and the non-membership function,  
throughout domain . The triangular shapes demonstrate the graded transition of these functions, 
with the membership function decreasing from 1 to 0 and then increasing back to 1, while the non-
membership function exhibits an inverse pattern. The points  denote the critical breakpoints 

of the triangular membership function, whereas  (implicitly aligned) relate to the non-
membership curve. The vertical dashed lines define the boundaries set by the second alpha value, 
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indicating the interval where  and , inline with the condition . The 
alpha-cut operation generates a subinterval of  values that adhere to the membership and non-
membership constraints. The membership value , non-membership value , degree 

hesitancy , and intuitionistic alpha value can be determined from this subset using Eq. (9)– 
(12). 

Based on Definition 3.3, when IFN implemented, then the process of alpha-cut process is also the 
same where the different that is the alpha value, first alpha value, and second alpha value (where 
the IFN been applied). Note that, first alpha value will determined through Eq. (4). Then, the second 
alpha value will be implemented when first alpha value determined along together Eq. (4). Therefore, 
the representative symbols for both alpha values can be defined as  and  are alpha cut value 
for the first and second alpha values respectively. 

The implementation of alpha-cuts in T2FEMD is a critical procedure for minimizing the FOU at a 
designated confidence level alpha. The execution of the alpha-cut operation on both the outer and 
inner membership functions of the T2FEMD effectively narrows the broad uncertainty interval into a 
more precise range, while preserving the fundamental uncertainty characteristics of the original data. 
This process entails linearly interpolating between the peak magnitude value  and the left 

and right support points. This results in the reduced intervals and 

 for the selected alpha-level. This alpha-cut refinement enhances the clarity of 

uncertainty visualization across various confidence thresholds and facilitates subsequent analytical 
operations such as intuitionistic processing, defuzzification or comparative analysis on a more 
focused and pertinent subset of the magnitude data. 

However, if the chosen alpha value in the T2FEMD displays both partial truth and partial falsity, 
this suggests that the membership information alone is inadequate for reaching a definitive 
conclusion. In these scenarios, a framework employing IFN can be utilized to efficiently handle the 
degree of membership ( ), the degree of non-membership ( ), and the degree of hesitancy ( ). 
The initial alpha-cut from the T2FEMD is utilized to improve the FOU in alignment with the 
membership function. The subsequent interval is assessed within the IFN framework to ascertain a 
secondary alpha value that takes into account both truth and falsity constraints, guaranteeing that 

. This dual-stage alpha-cut approach enhances the decision-making process where the type-
2 fuzzy model addresses uncertainty in magnitude measurement, while the intuitionistic fuzzy layer 
manages ambiguity arising from incomplete or conflicting information, leading to a more balanced 
and reliable range for earthquake magnitude assessment. 

The dual-stage alpha-cut process initiates with T2FEMD and is further enhanced through the 
application of an IFN. This approach yields a more succinct and reliable interval that adeptly 
incorporates the degrees of truth, falsity, and hesitancy, thereby representing earthquake magnitude 
with enhanced confidence. After acquiring this refined interval, the next essential step is type-
reduction, in which the T2FS is transformed into a suitable type-1 fuzzy set by incorporating all 
possible embedded fuzzy sets within the specified alpha-cut interval. This process effectively 
consolidates the FOU into a single fuzzy representation, enabling more straightforward 
defuzzification or additional analysis. In this context, type-reduction serves as the link between the 
complex, uncertainty T2FEMD and tangible numerical results. The operation is characterized as the 
procedure that converts a T2FS into a type-1 fuzzy set by determining its centroid or an alternative 
representative value across all permissible secondary memberships. Then, the type-reduction can be 
defined as Definition 3.7 as follows. 
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Definition 3.7 

Let  be a set T2FEMD and are the set of T2FEMD after the alpha-cut process for 

, then the type-reduction of which is represented as  can be defined as follows 

         

(12) 
where  is crisp data points and  and  are left and right type-reduced alpha-cut T2FEMD 

respectively with their formulation given by 

           

(13) 
 

Definition 3.7 describes the type-reduction process for a set of T2FEMD following the alpha-cut 
and where applicable, the subsequent alpha-cut through the refinement of IFN. The type-reduced 

set  is characterized by its left and right  boundaries, which are established as the 

average of the corresponding left-left/right-left and left-right/right-right alpha-cut points. This 
operation incorporates the residual FOU into a type-1 fuzzy interval, maintaining the fundamental 
characteristics of the original type-2 fuzzy data while enhancing it for subsequent processing. 
Following the completion of the type-reduction step, the subsequent phase is defuzzification, during 
which the type-1 fuzzy interval is transformed into a single crisp value which commonly employing 
techniques such as the centroid calculation to facilitate accurate numerical interpretation and 
informed decision-making based on the earthquake magnitude data. Then, Definition 3.8 will be 
defined as a defuzzification process as given as follows. 

 
Definition 3.8 

Let  be the type-reduction alpha-cut T2FEMD with . Then,  is defuzzification 

process of  if for every , 

           

(14) 

where for each  can be formalized as 

           

(15) 
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â



ci
E 0,1,2,..,i n=

â
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Definition 3.8 describes the defuzzification stage applied to the type-reduced alpha-cut T2FEMD. 

Once type-reduction has been performed, yielding the interval  for each data point, 

defuzzification converts this interval into a single crisp value. The process is defined for the set , 

where each element  is computed as the average of the left type-reduced bound , the crisp 

magnitude , and the right type-reduced bound , divided by 3 as Eq. (15). This produces a precise 

numerical representation of the earthquake magnitude while retaining the influence of the 
uncertainty boundaries obtained from the type-2 fuzzy modeling process. Essentially, defuzzification 
finalizes the transformation from the original fuzzy, uncertain data into a single actionable magnitude 
value suitable for interpretation, reporting, and decision-making. 

The type-2 fuzzy interpolation Bézier curve (T2FIBC) is an advanced mathematical modeling 
technique designed to represent and approximate data characterized by uncertainty, imprecision, 
and vagueness, particularly in situations where type-1 fuzzy models do not fully capture the entire 
spectrum of variability. This method integrates the geometric adaptability of Bézier curves with the 
functionalities of T2FSs, enabling seamless and continuous interpolation among type-2 fuzzy control 
points, while preserving the FOU along the curve. In this context, each control point is defined as a 
T2FN, ensuring that the resulting curve not only interpolates the given data but also incorporates the 
related uncertainty at each position along its path. The methodology for T2FIBC is an essential 
instrument for modeling real-world datasets, such as earthquake magnitude records, shoreline 
changes, and hydrological flows. The methodology thoroughly addresses measurement errors, data 
incompleteness, and inherent variability, ensuring that both the shape and the uncertainty profile of 
the modeled curve are meticulously evaluated. Therefore, the next definition is the defining the 
T2FIBC piecewisely curve. 

 
Definition 3.9 

Given T2FEMD,  and type-2 fuzzy derivative values at ,  where . Then, 
the type-2 fuzzy interpolation Bezier curve can be defined as 

        
(16) 
with 

                        

(17) 

such that  and  are type-2 tangent vector of T2FEMD where the representation of the type-2 
fuzzy tangent values can be given as follows. 

                       

(18) 
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(19) 
 

                     

(20) 
where 

                       

(21) 
for  
 

 
Fig. 4. Type-2 fuzzy control polygon consists of type-2 fuzzy tangent 
vector and T2FEMD 
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Fig. 5. T2FIBC interpolate all T2FEMD,  and . 

 
Fig. 6. T2FIBC interpolates all T2FEMD together with the type-2 fuzzy 
control polygon and the type-2 fuzzy tangent vector 

 
Figure 4-6 illustrate the process of creating the T2FIBC and addressing the gaps within it to obtain 

T2FEMD. Figure 4 illustrates the type-2 fuzzy control grid. The blue dashed lines indicate the fuzzy 

control points . The dashed magenta tangent vectors link each point and indicate a specific 

direction, regardless of any uncertainties that may arise. Figure 5 illustrates the functionality of the 
interpolation technique. This section illustrates the seamless movement of the T2FIBC around the 
fuzzy areas and  at the center. The blue and purple lines represent the maximum and 
minimum values that the type-2 fuzzy membership functions can offer. Figure 6 presents the adjusted 
curves, a type-2 fuzzy control polygon along with the associated tangent vectors. This encompasses 
the entire model. This illustrates the relationship between fuzzy uncertainty and geometric 
configuration. This ensures that information regarding earthquake magnitudes, which may lack 
clarity is communicated reliably and consistently. The transition from control polygons to integrated 
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curve analysis demonstrates the effectiveness of the T2FIBC approach in monitoring data trends and 
rectifying errors in seismic data modeling. 
 
3.1 Type-2 Fuzzy Interpolation Bezier Curve of Earthquake Magnitude Data at Ranau, Sabah 
 

In 2017, Ranau, Sabah, recorded a notable occurrence of earthquakes, amounting to 55 
throughout the year. The occurrence of earthquakes in the region indicates a significant likelihood of 
future events. This can be largely ascribed to its location within a dynamic tectonic zone linked to the 
Ring of Fire. Ranau is at risk of earthquakes as a result of its geological characteristics, shaped by local 
fault systems and regional tectonic activity. The local infrastructure was developed with inadequate 
consideration for seismic activity, rendering it vulnerable to potential damage. This highlights the 
importance of improving the earthquake resilience of structures in the region. 

The earthquake that occurred in Ranau on June 5, 2015, with a moment magnitude of 6.0, 
underscores the considerable effects that seismic events can impose on the region. Subsequent to 
the earthquake, further calamities transpired, encompassing landslides and rockfalls across multiple 
areas. This demonstrates the relationships between geological hazards. The occurrence of 55 
earthquakes in 2017 highlights the importance of monitoring earthquake risk and conducting 
research to accurately quantify and manage it. This comprehensive strategy will be crucial for 
addressing risks and assessing the vulnerabilities of both individuals and infrastructure in Ranau and 
its surrounding areas. 

The interconnected nature of geological hazards highlights the importance of ongoing seismic 
monitoring, comprehensive hazard assessment, and effective mitigation strategies to protect lives 
and infrastructure. In this context, advanced modeling techniques, including the piecewise T2FIBC, 
serve as crucial instruments for effectively capturing the uncertainty in earthquake magnitude data. 
This enhances risk assessment and facilitates informed decision-making for disaster preparedness in 
Ranau and its neighboring regions.  

This study will focus on selecting a subset of 20 earthquake magnitude data points from the total 
of 55 recorded events in Ranau, Sabah, for preliminary analysis. This approach is mainly influenced 
by computational limitations, as managing all 55 data points at once could result in performance 
delays during the modeling phase. The selection of 20 data points enables thorough testing and 
validation of the proposed methodology, while also optimizing the use of computational resources. 
Following the successful execution of the analysis for the 20 data points, the current modeling 
framework can be effectively utilized for all 55 data points without requiring any methodological 
adjustments. Furthermore, the 20 selected data points represent a suitable subset of the entire 
dataset, allowing the results achieved to provide a reliable initial evaluation of the model's 
performance. This will enable a smooth transition to a more thorough analysis once computational 
constraints are resolved. Therefore, based on Definition 3.9 and the T2FEMD of Ranau Earthquake 
Magnitude Data, then the T2FIBC of those data can be modeled and visualized as follows. 
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Fig. 7. Piecewise cubic type-2 fuzzy interpolation Bezier curve of T2FEMD 

 
Figure 7 presents the piecewise cubic T2FIBC created from the T2FEMD for Ranau, Sabah, 

employing 20 selected data points as fuzzy control points. Each point, referred to as , is linked to 
a type-2 fuzzy uncertainty, characterized by the FOU, which is delineated by the upper and lower 
membership functions. The cubic Bézier segments effectively link these points providing a smooth 
representation of variations in earthquake magnitude, while the various embedded curves illustrate 
distinct membership grades within the FOU. This approach preserves the dataset's continuity and its 
uncertainty characteristics, enabling a realistic and interpretable visualization of the magnitude 
range. 

Upon completion of the T2FIBC construction, the subsequent step involves employing the alpha-
cut procedure to derive the interval of the T2FS at a specified membership grade ( ). This simplifies 
the representation while maintaining the uncertainty information. The intuitionistic alpha value 
assists individuals in decision-making when the data presents both true and false information. The 
values of membership  and non-membership  are initially established through the 

parameters of the triangular IFN , as demonstrated in Eq. (9)-(12). The degree of hesitancy 
 represents the level of uncertainty that remains after considering both membership and non-

membership factors. The intuitionistic alpha value is determined by summing the membership 
value with the adjusted membership value that accounts for reluctance. This illustrates the degree 
of certainty and hesitation inherent in the decision-making process. The improved alpha value 
ensures that the fuzzy intervals derived from the alpha-cut process accurately represent the 
uncertainty and reluctance inherent in earthquake magnitude data. The subsequent type-reduction 
and defuzzification processes are rendered more reliable as a result. 

 

 
Fig. 8. Piecewise cubic type-2 fuzzy interpolation Bezier curve of T2FEMD after alpha-
cut process 
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Fig. 9. Piecewise cubic intuitionistic type-2 fuzzy interpolation Bezier curve of T2FEMD after 
second alpha-cut process 

 
Following the application of the alpha-cut method with α=0.3333, Fig. 8 illustrates the piecewise 

cubic T2FIBC derived from the T2FEMD. At this alpha level, each type-2 fuzzy data point is converted 
into an interval type-1 fuzzy set. This maintains the uncertainty range defined by the FOU while 
excluding membership grades that fall below the threshold. Figure 9 illustrates the T2FIBC following 
the alpha-cut procedure, utilizing an intuitionistic alpha value of 0.59. The value was determined by 
summing the degrees of membership, non-membership, and hesitation as outlined in Eq. (9)-(12). 
The curve presented in Figure 9 illustrates a more precise and detailed uncertainty band compared 
to that in Figure 8. The intuitionistic alpha value considers hesitation, resulting in a more balanced 
interval width that accurately reflects the dual nature of the data as both true and false. 

After completing the alpha-cut and intuitionistic alpha-cut stages, the subsequent step in the 
processing of the T2FIBC model is the type-reduction process. This step involves converting interval 
T2FSs into a type-1 fuzzy set by aggregating the upper and lower membership boundaries. This step 
is essential as it converts the complex type-2 representation into a format appropriate for final 
defuzzification, while preserving the effects of uncertainty captured in the earlier stages. Different 
type-reduction methods, including the Karnik–Mendel (KM) algorithm and improved iterative 
procedures, can be utilized to ascertain the centroid of the reduced set. This guarantees that the 
resulting type-1 representation precisely captures the variability and uncertainty inherent in the 
original T2FEMD. 
 

 
Fig. 10. Piecewise cubic type-2 fuzzy Interpolation Bezier curve after type-reduction process  
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Fig. 11. Piecewise cubic intuitionistic type-2 fuzzy interpolation Bezier curve after second type-
reduction process 

 
Figure 10 illustrates the piecewise cubic T2FIBC of the T2FEMD following the type-reduction 

process. The curve demonstrates the process of converting the transformed T2FS into a type-1 fuzzy 
set by aggregating the upper and lower membership boundaries, while preserving the uncertainty 
distribution recognized during the alpha-cut phase. The blue and red boundary curves represent the 
FOU, while the central black line indicates the centroid-based reduced type-1 set. Figure 11 presents 
the piecewise cubic intuitionistic T2FIBC which adheres to the second type-reduction process and 
incorporates the intuitionistic alpha value. This results in an improved model representation that 
integrates both membership and non-membership information, thus enabling a more precise 
depiction of the uncertainty distribution inherent in the original T2FEMD data. 

Following type-reduction, the subsequent essential step is defuzzification, which transforms the 
reduced type-1 fuzzy set into a precise numerical value appropriate for interpretation and decision-
making. Various defuzzification methods, including the centroid of area (COA), weighted average, or 
mean of maxima, can be utilized based on the specific modeling objective. This step concludes the 
uncertainty modeling process by producing a singular representative value from the fuzzy domain, 
while preserving the impact of the preceding fuzzy and intuitionistic phases. The final output is 
guaranteed to be mathematically valid and pertinent for future analyses or applications. 

 

 
Fig. 12. Piecewise cubic type-2 fuzzy Interpolation Bezier curve after defuzzification process 
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Fig. 13. Piecewise cubic intuitionistic type-2 fuzzy interpolation Bezier curve after 
defuzzification process 

 
Figure 12 illustrates the piecewise cubic T2FIBC of T2FEMD following the defuzzification process, 

in which the previously type-reduced fuzzy set is converted into a singular crisp curve. The blue curve 
illustrates the final precise magnitude estimation derived from the centroid of the aggregated type-
1 set, accurately reflecting the core trend while removing the fuzzy spread. Figure 13 illustrates the 
piecewise cubic intuitionistic T2FIBC following defuzzification, which integrates both membership 
and non-membership degrees derived from the intuitionistic alpha-cut stage. This generates a 
polished and precise curve that considers a broader range of uncertainties, which may result in more 
accurate and context-sensitive magnitude assessments. 

The subsequent step involves performing a comparative analysis between the defuzzified curve 
and the original T2FEMD curve, in addition to the defuzzified intuitionistic curve and the original. This 
analysis assesses the effectiveness of the specific outputs in maintaining the integrity of the original 
shape, peak positions, and magnitude values, while also striving to minimize uncertainty. Through 
the analysis of deviations, error metrics, and visual alignment, one can evaluate if the integration of 
intuitionistic information offers a notable enhancement compared to the conventional 
defuzzification process. This step is essential for confirming the effectiveness and reliability of both 
methods in accurately representing real-world earthquake magnitude data. 
 

 
Fig. 14. Defuzzified Type-2 Fuzzy Interpolation Bezier Curve model against crisp interpolation 
Bezier curve model 
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Fig. 15. Defuzzified Intuitionistic Type-2 Fuzzy Interpolation Bezier Curve model against crisp 
interpolation Bezier curve model 

 
Figure 14 presents the defuzzified T2FIBC in comparison to the original crisp interpolation Bézier 

curve model. The blue defuzzified curve closely aligns with the shape and peaks of the original data 
trend. The visual alignment indicates that the type-2 fuzzy defuzzification process successfully 
maintains the key characteristics of the original curve while removing the fuzziness from prior stages. 
Figure 15 illustrates the defuzzified intuitionistic T2FIBC, alongside a comparison to the crisp 
interpolation curve. The incorporation of intuitionistic parameters, which account for both 
membership and non-membership degrees, enhances the curve fitting process, providing a more 
precise alignment with the original crisp data, even though the plotted graphs exhibit only slight 
visible differences. 

 
Table 1 
Comparison between crisp, defuzzified and defuzzified 
intuitionistic of T2FEMD 
Crisp Earthquake 
Magnitude Data 

Defuzzified T2FEMD Defuzzified 
Intuitionistic 
T2FEMD 

(1,2.1) (1,2.1) (1,2.1) 
(2,3.5) (2,3.5) (2,3.5) 
(3,2.7) (3,2.7) (3,2.7) 
(4,2.8) (4,2.8) (4,2.8) 
(5,2.0) (5,2.0) (5,2.0) 
(6,2.5) (6,2.5) (6,2.5) 
(7,3.2) (7,3.2) (7,3.2) 
(8,2.4) (8,2.4) (8,2.4) 
(9,2.6) (9,2.6) (9,2.6) 
(10,2.9) (10,2.9) (10,2.9) 
(11,2.9) (11,2.9) (11,2.9) 
(12,1.8) (12,1.8) (12,1.8) 
(13,1.3) (13,1.3) (13,1.3) 
(14,2.4) (14,2.4) (14,2.4) 
(15,2.5) (15,2.5) (15,2.5) 
(16,1.7) (16,1.7) (16,1.7) 
(17,1.2) (17,1.2) (17,1.2) 
(18,1.8) (18,1.8) (18,1.8) 
(19,1.5) (19,1.5) (19,1.5) 
(20,1.1) (20,1.1) (20,1.1) 
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Table 2 
Comparison of statisctic perfomance measure between crisp 
with defuzzified and crisp with defuzzified intuitionistic of 
T2FEMD 
Type of Statistical 
Perfomance 

Crisp with 
Defuzzified T2FEDM 

Crisp with 
Defuzzified 
Intuitionistic 
T2FEMD 

Root Mean Square 
Error (RMSE) 

  

Mean Absolute 
Error (MAE) 

  

Mean Absolute 
Percentage Error 
(MAPE) 

  

Coefficient of 
Determination (R2) 

1 1 

 
Considering that the plotted curves in Figure 14 and Figure 15 do not clearly demonstrate the 

subtle differences among the crisp data, defuzzified data, and intuitionistic defuzzified data, a 
numerical comparison for all data points is regarded as more appropriate. A table can be employed 
to display each data point, encompassing the crisp value, the defuzzified value, and the defuzzified 
intuitionistic value, along with their respective differences from the crisp reference as in Table 1. To 
evaluate the model's effectiveness, it is advisable to compute several statistical performance 
measures, such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute 
Percentage Error (MAPE), and Coefficient of Determination (R²). A table can be developed to 
summarize the comparison between crisp, defuzzified data and intuitionistic defuzzified data which 
mentioned in Table 2. Lower RMSE, MAE, and MAPE values, combined with higher R² scores, would 
indicate a more accurate model, offering statistical proof to assess whether the intuitionistic 
defuzzification approach demonstrates a quantifiable improvement over the traditional 
defuzzification method. 

Table 1 presents a point-by-point comparison between the crisp earthquake magnitude data, the 
defuzzified T2FEMD, and the defuzzified intuitionistic T2FEMD. Each entry lists the index of the data 
point and its corresponding magnitude values in all three forms. From the table, it is evident that the 
values for the defuzzified type-2 fuzzy data and the defuzzified intuitionistic type-2 fuzzy data are 
identical for all 20 points. This indicates that, although the intuitionistic alpha-cut was incorporated 
in the earlier stages, the subsequent type-reduction and defuzzification steps yielded the same crisp 
output values as the standard defuzzification method. This can happen if the intuitionistic component 
does not introduce additional variation at the defuzzification stage which is often due to perfect 
symmetry between the membership and non-membership functions or because the chosen centroid-
based defuzzification method neutralizes the effect of the intuitionistic adjustment. 

Table 2 provides a summary of the statistical performance measures that compare (1) the crisp 
data with the defuzzified T2FEMD and (2) the crisp data with the defuzzified intuitionistic T2FEMD. 
The metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute 
Percentage Error (MAPE), and Coefficient of Determination (R²). The performance values for both 
methods are the same, demonstrating exceptionally small error magnitudes (around 10⁻¹⁵ to 10⁻¹⁶) 
and perfect R² values of 1, indicating an exact fit. The statistical equivalence noted is a direct 
consequence of the identical data point values shown in Table 1, thereby reinforcing the conclusion 
that the intuitionistic extension did not alter the final crisp outputs in this specific case. This outcome 

-´ 162.32882 10 -´ 162.32882 10

-´ 161.33227 10 -´ 161.33227 10

-´ 155.75299 10 -´ 155.75299 10
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suggests that, under certain conditions, the intuitionistic component may influence uncertainty 
representation in intermediate fuzzy stages, but does not impact the final defuzzified result. 
 
4. Discussion 
 

The comparative analysis of the earthquake magnitude data, the defuzzified T2FIBC data and the 
defuzzified intuitionistic T2FIBC data reveals a precise numerical alignment at all evaluated points. 
The results shown in Table 1 indicate that the intuitionistic alpha-cut method adds an additional 
phase for handling uncertainty. The crisp values achieved after type-reduction and defuzzification 
align with those obtained from the traditional T2FIBC method. The observed outcome is linked to the 
symmetry found in both the membership and non-membership functions along with the attributes 
of the centroid defuzzification method which effectively addresses any minor variations that may 
occur during the initial intuitionistic processing. 

Table 2 provides statistical measures such as RMSE, MAE, MAPE, and R² for assessing model 
performance through a comparison of the crisp data with the two defuzzification methods. The 
minimal error values that ranging from 10⁻¹⁵ to 10⁻¹⁶ and coupled with a R² value of 1 demonstrate 
that both defuzzified datasets closely correspond with the crisp dataset with exceptional precision. 
This demonstrates that the interpolation and uncertainty modeling framework upholds a significant 
degree of stability and does not cause numerical distortion during the defuzzification phase, even 
with the incorporation of the intuitionistic extension. 

It is important to acknowledge that although the numerical results are identical, the early stages 
of the modeling pipeline which particularly during alpha-cut, intuitionistic alpha-cut, and type-
reduction where differ in their approach to representing and managing uncertainty. The intuitionistic 
approach provides a more refined representation by incorporating degrees of hesitation, which can 
be beneficial in scenarios where uncertainty needs to be evaluated before defuzzification, including 
decision-making thresholds, multi-criteria evaluations, or risk assessments. In these contexts, the 
intermediate stages maintain a higher level of detailed uncertainty information in comparison to the 
standard T2FIBC. 

The primary benefit of integrating the intuitionistic approach in this context lies not in altering 
the final crisp outcomes, but in enhancing the robustness and clarity of the uncertainty 
representation throughout the intermediate fuzzy phases. This approach improves the method's 
effectiveness in situations where fuzzy representation is employed for reasoning, rather than relying 
solely on the final crisp outputs. 
 
5. Conclusion 
 

This work has proven that both the conventional defuzzified T2FIBC model and the defuzzified 
intuitionistic T2FIBC model can accurately generate crisp earthquake magnitude data with great 
numerical precision. The modeling framework is stable and accurate since the end findings are always 
the same and the error metrics are low and the determination coefficients are high. 

Adding intuitionistic fuzzy processing does not change the ultimate crisp outputs for the dataset 
used, but it does improve the intermediate modeling stages by giving them more uncertainty 
descriptors. This might be helpful in cases when a deep study of uncertainty is needed, even if the 
final defuzzified numbers don't show these details. 

Future studies should look at datasets or application areas where the difference between 
membership and non-membership functions might cause the two methods to diverge during the 
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defuzzified stage. Also, looking at other ways to defuzzify outside the centroid approach can show 
situations where the intuitionistic extension gives different and perhaps more accurate end results. 
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