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This paper presents a numerical framework for evaluating the polarization tensor (PT) 
of second rank for three-dimensional object inclusion, where PT is a fundamental tool 
to modelling the object inclusion response toward an external field. Our proposed 
method is to approximated the boundary integral formulation of PT using interpolation 
points, which can reduce the numerical quadrature error and lowering the 
computational cost. This paper also includes the theoretical validation of the method’s 
accuracy through a proposition from the previous research, ensuring the mathematical 
formulation is reliable. This integration of computational efficiency together with the 
validation provides a robust and reliable framework of PT evaluation. 
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1. Introduction 
 

Interpolation method are a simple yet effective approach to determining second-rank 
polarization tensors in three-dimensional vectors, and offer the advantage of controlling numerical 
errors which receives high applicability in engineering and applied sciences. The polarization tensor 
is a critically important mathematical tool for object where PT able to capture the geometrical and 
physical characteristics of a material or object; it allows for the characterization of the associations 
that an applied field has on a material to the resulting disturbance in the applied field, and provides 
information about the shape, orientation, and internal properties of internal inclusions or other 
heterogeneities within a spatial domain. Polarization tensors represent a vital albeit complex link in 
characterizing the requirement of micro-structure to macro-physical behaviour of materials or 
media, and are necessary for applied fields such as material science, electromagnetics, and applied 
physics [1,3]. 

Recent work has opened new insight for the understanding and use of polarization tensors 
beyond classical problems. For example, polarization tensor ideas have been applied to characterize 
spin alignment in quantum systems [18], and to investigate nonlinear coupling phenomena in 
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multiferroic and magnetoelectric materials [12]. Additionally, polarization tensors are utilized in a 
variety of contexts ranging from electromagnetic theory to astrophysics [13], indicating their 
potential to evolve across many different contexts. These developments provide motivation to 
continue developing interpolation-based numerical methods as a way to improve our knowledge 
about the evaluation of polarization tensors with particular attention to ensuring accurate and 
efficient computations in various contexts for both researchers and practitioners in physics and 
engineering. 

 
1.1Interpolation based and Numerical Methods for Polarization Tensor Evaluation 

Several interpolation and numerical methods have been developed to evaluate polarization 
tensors, but few are capable of balancing accuracy, efficiency, and geometric complexity. Gaussian 
quadrature applied in conjunction with linear element interpolation is a common approach, which 
uses the contents of a weighted Gaussian quadrature to provide an estimate of the integral of the 
polarization tensor over a mesh with Gaussian quadrature points. It has been improved, through 
error analysis and perturbation theory via Taylor expansion, by allowing real-time error estimates to 
the user as well as the expected error, while performing the numerical computations [10]. This 
improvement is essential for the highly oscillatory, and rapidly changing fields involved in tensor 
evaluations. Examples of other capable methodologies include spatial neural networks and meshless 
interpolation, such as radial basis functions (RBF). Tensor Weave 1.0 is an example of a neural 
network interpolation method that used physical laws to provide a representative tensor field based 
on a sparse or irregular distribution of data [9]. RBF methods helped to model the polarization tensor 
as RBFs can be used on arbitrary geometries without the need for meshes, which can enhance 
numerical stability and convergence properties [5]. Additionally, there has been the application of 
polynomial interpolation methods to first-order polarization tensors, particularly least-squares 
fitting, which evaluate the tensor components, by fitting multivariate polynomials to the data for 
smoothness and improve convergence for a noisy or discrete input [16]. Research has also shown 
that using polynomial interpolation combined with Gaussian quadrature enhances accuracy and 
numerical stability for tensor evaluations for standard geometries such as spheres and ellipsoids [15]. 
Looking ahead, employing these methods to extend to second-rank polarization tensors in 3D 
domains appears to have significant potential albeit with greater complexity and precision to 
consider. Overall, with these interpolation and numerical methods, there is a strong basis for rapid 
and robust evaluation of polarization tensors in the modern context of computational science and 
engineering. 

1.2 Application of Polarization Tensor 

Polarization Tensors (PT) are remarkable tools that can be used to represent the shape, 
orientation and material properties of inclusions in a host medium. They can be utilized in many 
applications in industry as well as science. Polarization Tensors (PT) are key tools in electromagnetics 
and materials science, and are routinely used to simulate and control electromagnetic wave 
behavior. As tensors they are apt for sophisticated metasurface designs, focusing on dual-band 
transmissive polarization converters and toroidal dipole–assisted electromagnetically induced 
transparency (EIT)-enabled polarization control, that achieved stability and efficiency for 
electromagnetic applications such as communications, received optical filtering, and satellite radar 
[20]. In the spatial spectral domain methods, Hermite interpolation methods were developed for the 
pavement of PT calculations on multilayered media, resulting in a much higher order of continuity 
and differentiability compared to typical basis functions, which improved accuracy and numerical 
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stability verified with finite element and rigorous coupled wave analysis [6]. In fact, when PTs are 
applied in electromagnetics, they can be used to describe how inclusions deform fields in a host 
medium, by describing the shapes, orientations and material properties of the inclusions. They are 
already a useful tool in electrical impedance tomography (EIT) and electromagnetic imaging in finding 
objects such as tumors or hidden metal, and are also a cost-effective method and an obviously an 
easier computational approach than full reconstructions [1]. They also underly eddy current and 
metal detection instruments with their basic electromagnetic "fingerprint" information for 
conductive objects. 

In materials science, PTs connect microscopic inclusion properties to macroscopic phenomena 
such as conductivity, permittivity, and permeability. Spheroidal inclusion analytical and numerical 
studies have validated polarization response predictions and anisotropy in materials [20]. PT 
estimates using the discretization of boundary element methods (BEM) obtain a high precision that 
has become benchmark datasets used for comparison and validation of imaging algorithms used in 
both medical and geophysical applications. For example, electrifield imaging techniques (EIT) which 
use PTs, have non-invasive imaging methods for medical diagnostics of lung monitoring, detecting 
breast tumors, or visualization of brain activity. Additionally, PTs assist geoscience to locate 
groundwater, minerals and geological faults and are a comparison and validation training dataset for 
machine learning models developed for inversion pipelines. Seismic exploration uses polarization 
analysis methods [17] that classify wave types based on covariance matrix eigenanalysis, which 
indirectly uses the PT structure to perform filtering of noise as well as improve signal-to-noise ratios 
relative to each wave type, for subsurface imaging. Optical methods such as permittivity tensor 
imaging (PTI) [19] enable visualization of anisotropic properties of biological tissues in three-
dimensions. In particular for cervical cancer screening, impressive results reveal that dual-modality 
imaging combining bright-field and polarization would improve sensitivity and accuracy of detecting 
lesions by quantifying polarimetric parameters [7]. Similarly, Mueller matrix based PTI [11] helps to 
separate glioma tissue in brain imaging, improving tumor visualization and aiding surgical navigation. 
Lastly, PTs have a major role in non-destructive testing and inverse problem modelling. PT 
formulations are valid for detecting and characterizing defects in conductive media. In summary, PTs 
are useful and compare well technically for modelling electromagnetic responses of complex 
systems, with a substantial applied impact made in biomedical imaging, metamaterial design, 
composite material characterization, geophysics, and non-destructive testing. 

 
2. Mathematical Framework for Polarization Tensor 
2.1 Equation of PT 
 

In order to solve the transmission problem of PT, the numerical integration of the linear element 
of Gaussian quadrature, which involves three nodal points, has been implemented in the form of a 
boundary integral equation. Let 𝑉! denote the outward normal vector to the boundary 𝜕𝐵 at 𝑋, and 
𝐾"∗  is a singular integral operator. While, 𝐾"∗   is the integral that is shown below as the P.V. integral 
and the Cauchy Principal Value 

 

𝐾!∗𝜙(𝑋) =
1
4𝜋

𝑃. 𝑉.-
〈𝑋 − 𝑌〉. 〈𝑉#〉
|𝑋 − 𝑌|$

𝜙(𝑌)𝑑𝜎(𝑌)
%!

, 
(1) 

where 𝑃. 𝑉. denotes the principal value integral, 𝜕𝐵 represent the boundary of the domain 𝐵 while 
𝜙$(𝑌) is the surface potential where it can be represented as 

ϕ&(𝑌) = (𝜆𝐼 − 𝐾!∗)'(9𝑉# . ∇𝑋&;(𝑌), (2) 
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for which 𝜆 is a spectral parameter which is defined in terms of conductivity of the object, 

𝜆 =
𝑘 + 1
2𝑘 − 2

, 

while the conductivity of the object must be in the range of 0 ≤ 𝑘 ≠ 1 ≤ +∞. Conductivity, 𝑘 is said 
to be in the same conductivity of its surrounding if it is equal to 1.  By evaluating Eq. (1) and Eq. (2), 
the integral of first order PT, 𝑀$%  is evaluated using the following integral. 

𝑀&)(𝑘, 𝐵) = - 𝑌)𝜙&(𝑌)𝑑𝜎(𝑌),
%!

	𝑌 ∈ 𝜕𝐵. (3) 

From Eq. (3), as the linear element being implemented, the equation will be represented in term of 
summation where it will be further explained in section 2.3. For the next section, the analytical 
solution which has been derived by Ammari et al., [3]. 

2.2 Analytical Solution of PT 
 
Although the derivation of the singular integrand of PT can be quite challenging, but, previous 

researchers has provided the analytical solution for two different geometries, which are sphere and 
ellipsoid. This analytical solution can become a benchmark for the applicability of the proposed 
numerical method, which is linear element numerical integration. The derivation of the analytical 
solution can be read in Ammari and Kang (2007). The researchers derived and represented the final 
PT equation as a matrix system with 3 × 3 dimension as in the following equation 
 

𝑀(𝑘, 𝐵) = (𝑘 − 1)|𝐵|

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1
(1 − 𝑓() + 𝑘𝑓(

0 0

0
1

(1 − 𝑓*) + 𝑘𝑓*
0

0 0
1

(1 − 𝑓$) + 𝑘𝑓$⎦
⎥
⎥
⎥
⎥
⎥
⎤

. 

(4) 

where |𝐵| is the volume of object 𝐵 while 𝑓&, 𝑓' and 𝑓( is constant defined by integral as   

𝑓( =
𝑏𝑐
𝑎
-

1

𝑡*P𝑡* − 1 + Q𝑏𝑎R
*
P𝑡* − 1 + Q𝑐𝑎R

*

+,

(
𝑑𝑡,	

𝑓* =
𝑏𝑐
𝑎
-

1

S𝑡* − 1 + Q𝑏𝑎R
*
T

$
*
	P𝑡* − 1 + Q𝑐𝑎R

*

+,

(
𝑑𝑡,	

𝑓$ =
𝑏𝑐
𝑎
-

1

P𝑡* − 1 + Q𝑏𝑎R
*
P𝑡* − 1 + Q𝑐𝑎R

*

+,

(
𝑑𝑡. 

(5) 

Here, 𝑎, 𝑏 and 𝑐 are semi principle axes of an ellipsoid represented by 𝑥'/𝑎' + 𝑦'/𝑏' + 𝑧'/𝑐' = 1 
such that 𝑎 ≥ 𝑏 ≥ 𝑐 ≥ 0. Matrix system in (20) is used in order to compute the numerical solution 
of ellipsoid as well as validate the results obtained in this study. By taking semi principle axes become 
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equal to each other which is 𝑎 = 𝑏 = 𝑐 it will then become the analytical solution for sphere which 
can be represented as 

𝑀(𝑘, 𝐵) = (𝑘 − 1)|𝐵|

⎣
⎢
⎢
⎢
⎢
⎡
3

2 + 𝑘 0 0

0
3

2 + 𝑘 0

0 0
3

2 + 𝑘⎦
⎥
⎥
⎥
⎥
⎤

. 

(6) 

 
Both analytical solutions of the sphere and ellipsoid are used in order to validate the method that 

has been proposed. These solutions are used as a first benchmark for other complex geometry for 
which the analytical solution is unknown and probably not exist. For the next section, in order to 
observe the accuracy of the numerical solution, we presented the formula to compute the error for 
first order PT. 
 
2.2 Linear Element Integration 
 

Throughout this paper, we intend to implement interpolation technique in order to solve the 
integral of PT. Then we validate our numerical computation of PT by using proposition that will be 
stated in the Result and Discussion section. The computation of PT involves the computation of the 
singular integral in terms of Cauchy Principal integral, 𝐾"∗  followed by solving the linear system of 
𝜙$(𝑌) and lastly the integral of PT itself. First, the singular integral in Eq. (1) is expressed as the 
integral containing surface projection, 𝑆)(𝜉, 𝜂) as well as Jacobian, 𝐽(𝜉, 𝜂) in terms of local 
coordinates system. 

 

𝐾"∗𝜙(𝑋) =
1
4𝜋 𝑃. 𝑉.I

〈𝑋 − 𝑌〉. 〈𝑉*〉
|𝑋 − 𝑌|( 𝜙(𝑌)𝑆)(𝜉, 𝜂)𝐽(𝜉, 𝜂)𝑑𝜉𝑑𝜂.

+"
 

(7) 

In this case, 𝑋 and 𝑌 is the elements located at the object inclusion 

〈𝑋& − 𝑌&…-〉 = 〈𝑥&& − 𝑥'&…- , 𝑦&& − 𝑦'&…- , 𝑧&& − 𝑧'&…-〉,	
〈𝑋' − 𝑌&…-〉 = 〈𝑥&' − 𝑥'&…- , 𝑦&' − 𝑦'&…- , 𝑧&' − 𝑧'&…-〉,	

⋮	
〈𝑋&…- − 𝑌&…-〉 = 〈𝑥&&…- − 𝑥'&…- , 𝑦&&…- − 𝑦'&…- , 𝑧&&…- − 𝑧'&…-〉 

 

while 𝑋 − 𝑌 is the distance between the barycentre of element 𝑋 (containing 𝑥, 𝑦 and 𝑧 coordinates) 
to element 𝑌 (containing 𝑥, 𝑦 and 𝑧 coordinates). Let 𝑋& be the first element of the object inclusion 
with 𝑌' be the second element of the object inclusion. This inner product will yield to 
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〈𝑋 − 𝑌〉. 〈𝑉*〉
|𝑋& − 𝑌'|(

=

⎣
⎢
⎢
⎢
⎢
⎡〈𝑋

& − 𝑌&〉 ⋅ 𝑉*!..#
&

|𝑋& − 𝑌&|( ⋯
〈𝑋& − 𝑌-〉 ⋅ 𝑉*!..#

&

|𝑋& − 𝑌-|(
⋮ ⋱ ⋮

〈𝑋- − 𝑌&〉 ⋅ 𝑉*!..#
-

|𝑋- − 𝑌&|( ⋯
〈𝑋- − 𝑌-〉 ⋅ 𝑉*!…#

-

|𝑋- − 𝑌-|( ⎦
⎥
⎥
⎥
⎥
⎤

-×-

 

(8) 

It will then being dot product with the outward normal vector of element 𝑋, 𝑉* = 〈𝑉*! , 𝑉*% , 𝑉*#〉 for 
which 𝑉*! , 𝑉*%  and 𝑉*#  be the 𝑥, 𝑦 and 𝑧 coordinates for normal vector of element 𝑋. From Eq. (7), 
the surface projection, 𝑆)(𝜉, 𝜂) is expressed as 

𝑆)(𝜉, 𝜂) =
〈𝑥$ , 𝑦$ , 𝑧$〉
|〈𝑥$ , 𝑦$ , 𝑧$〉|

 
(9) 

while  

𝐽(𝜉, 𝜂) = Y
𝑥/ 𝑥0
𝑦/ 𝑦0
𝑧/ 𝑧0

Z = Y
𝑥&( 𝑥'(
𝑦&( 𝑦'(
𝑧&( 𝑧'(

Z 
(10) 

By substituting Eq. (8), (9) and (10), Eq. (7) is expressed in terms of summation form  

𝐾"∗𝜙(𝑋) =
1
4𝜋 𝑃. 𝑉.[

〈𝑋$1 − 𝑌%1〉. 〈𝑉*&〉

\𝑋$ − 𝑌%\
( 𝜙]𝑌%^𝑆)(𝜉, 𝜂)𝐽(𝜉, 𝜂)

-

12&

, 
(11) 

where the size of 𝐾"∗  is 𝑁 × 𝑁. From the solution of 𝐾"∗, we substitute it into linear system in (2) and 
finally we obtained the integral of PT as in Eq. (12). 

𝑀$%(𝑘, 𝐵) = [[𝑊3𝑌1𝜙(𝑌1)𝐽(𝜉, 𝜂)
(

32&

-

12&

, 
(11) 

The following section presents the result of first order PT where we compute the first order PT for a 
sphere and instead of validating the solution with the analytical solution as conducted by Sukri et al., 
[15], we use proposition to show that the proposed method is reliable to be implemented.  

3. Results and Discussion 
 

Previous theoretical findings show that the first order polarization tensor (PT) is depends on the 
scaling factors,	𝑓4 which related to the size of the reference object. To approximate the first order PT, 
two methods are used to calculate PT for sphere geometry with a constant conductivity value for 
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different geometry sizes. This approach is based on proposition from Hyeonbae Kang (2013), which 
explains the transformation formula of PT with 𝑓4. 
Proposition 3.1 Given that 𝑀(𝑘, 𝐵) is the first order PT for the referred geometry 𝐵. Let 𝑓4be the 
scaling factors for the size of object 𝐵. The first order PT for 𝐵 after its size is scaled, 𝑀(𝑘, 𝑓4, 𝐵) 
satisfies 𝑀(𝑘, 𝑓4, 𝐵) = 𝑓4(𝑀(𝑘, 𝐵) 

Proposition 3.1 states that the first order PT of the original geometry can be used to determine 
the PT after the geometry has been scaled. This information is important for validating numerical 
computations when dealing with the objects with no analytical solutions. For standard shapes like 
spheres or ellipsoid, are more straightforward to verify because analytical solution is provided. 
However, for other shapes, we need to ensure that the numerical results follow the transformation 
formula in proposition 3.1. If the computed PT fulfil this transformation, we can assume the solution 
is accurate, and the method used is reliable for evaluating the first order PT. In general, the PT can 
be calculated using numerical methods. In this study, we compute the first order PT using an 
approach based on the integration of linear elements. We begin by presenting the numerical results 
of the first order PT for a sphere, using a few different size scales. The conductivity is fixed at 0.5 and 
different radius which is 𝑟 = 0.5 and 1. Theoretical values of first order PT are then calculated for 
comparison. For each sphere with different value of radius, the norm of the first order PT is shown 
in Table 3.1 where the matrix norm is calculated using formula ‖𝑀(𝑘, 𝐵)‖ =
d𝑀&&

' +𝑀&'
' +⋯+𝑀('

' +𝑀((
'  in which ‖	𝑀(𝑘, 𝐵)‖ = ‖𝑀(𝑘, 𝐵‖'. 

 
              Table 1 
              The norm of the first order PT for a sphere with different radius, 𝑟 when conductivity  𝑘 = 0.5 

Radius, 𝑟 Centre 𝑀(𝑘, 𝐵) 

0.5	
(0,0,0)	 0.4307267218	
(0,1,0)	 0.4542677484	
(0,0,1)	 0.4272636527	

1	
(0,0,0)	
(0,1,0)	
(0,0,1)	

3.440584793	
3.525823421	
3.573473194	

Table 1 presents the norms of the first order PT for sphere with different radius where it can be 
observed that, for smaller radius of sphere, the PT norms measured at different centres shows values 
around 0.43 to 0.45. Differently with spheres with larger radius, which exhibits significantly higher 
norms ranging approximately from 3.44 to 3.57. These reflect the increasing magnitude of PT norm 
as the radius of sphere increase, which aligns with the theoretical understanding that the larger 
inclusion induces a strong polarization effects. Additionally, the slight variations in PT norms at 
different centres points highlight the directional sensitivity or minor anisotropic behaviour inherent 
in the measurements or calculations. 

           Table 2 
           The comparison for actual and the norm of the first order PT for the sphere with different radius 𝑟  
           when conductivity 𝑘 = 0.5 

Radius, 𝑟 Actual PT, 𝑀(𝑘, 𝑓'𝐵) 
Computed PT 
𝑀(𝑘, 𝐵) 

Absolute Error |𝑀(𝑘, 𝑓'𝐵) −𝑀(𝑘, 𝐵)| 

0.5	
0.4300730991	 0.4307267218	 0.0006536227 
0.4407279276	 0.4542677484	 0.0135398208 
0.4466841493	 0.4272636527	 0.0194204966 

1	
3.445813774	 3.440584793	 0.005228981 
3.634141987	 3.525823421	 0.108318566 
3.418109222	 3.573473194	 0.155363972 
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4. Conclusions 
 

In conclusion, this paper has introduced an interpolation based framework for evaluating 
polarization tensor for 3D object inclusion where its reliability is supported by theoretical validation 
through previous proposition. The results confirm that the method is consistent, aligning with the 
formulation established by previous researcher. However, while the approach achieves notable 
computational efficiency, its accuracy is limited. As a future research direction, the incorporation of 
higher order interpolation is recommended to further enhance the efficiency and accuracy. 
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