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Bank loan approval is a critical financial process that demands both accuracy and 
transparency to ensure fairness, regulatory compliance, and customer trust. However, 
many machine learning models act as “black boxes,” offering strong predictive power 
but limited interpretability, which restricts their adoption in banking. This study aims 
to develop an interpretable and transparent loan approval model using the Supervised 
2-Satisfiability Reverse Analysis (S2SATRA) framework. The method integrates Hopfield 
Neural Networks with 2-Satisfiability logic clauses, enhanced by correlation-based 
feature selection and K-Means clustering for binary encoding. Model performance was 
evaluated on synthetic and real-world datasets using structured train-test splits and 
standard metrics, including accuracy, precision, recall (sensitivity), specificity, and F1 
score. Results showed that the enhanced S2SATRA achieved up to 77.5% accuracy, 
98.11% precision, and 78.62% recall, though specificity remained lower at 30.47%. 
These findings highlight the balance between interpretability and predictive capability, 
offering a logic-driven alternative to black-box models and supporting accountable 
decision-making in banking. 
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1. Introduction 
 

In today’s competitive and data-driven financial environment, the ability to make accurate and 
fair loan approval decisions are more critical than ever. Lending institutions play a pivotal role in the 
economic ecosystem by allocating financial resources to individuals and businesses. A key challenge 
in this process is determining creditworthiness—deciding whether an applicant is likely to repay the 
loan. Traditionally, this task has relied on credit scores, income verification, and human judgment. 
However, due to increasing data availability and complexity, these conventional methods are often 
insufficient, prone to bias, or too slow. To overcome these limitations, machine learning (ML) has 
emerged as a powerful alternative. ML models are capable of learning complex relationships from 
historical data and automating the loan approval process with impressive accuracy. Recent research 
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has demonstrated the success of models such as Decision Trees, Random Forests, and AdaBoost in 
classifying loan outcomes. For instance, the work by Haque and Hassan [3] applied multiple ML 
classifiers to a dataset of over 148,000 loan applications and reported that AdaBoosting achieved 
nearly perfect accuracy (99.99%), demonstrating the strength of ensemble learning in financial 
prediction tasks. 

Despite the impressive accuracy reported in prior studies, a significant limitation per- sists: many 
machine learning models function as ”black boxes.” These models can predict outcomes effectively 
but provide little to no explanation for the decisions produced. This lack of interpretability is 
problematic in real-world banking applications where fairness, accountability, and explainability are 
essential. Regulatory frameworks require banks to justify lending decisions, particularly in rejection 
cases, and customers also demand transparency regarding how their financial data is processed. To 
address this issue, the research community has shifted focus toward interpretable machine learning 
and logic-based models. One promising direction is the integration of symbolic logic with neural 
networks—a paradigm referred to as neuro-symbolic AI. A notable contribution in this domain is the 
Supervised 2-Satisfiability Reverse Analysis (S2SATRA) framework, introduced by Kasihmuddin et al., 
[4]. The S2SATRA model aims to bridge the gap between rule-based logic systems and neural 
computation. It employs 2-Satisfiability (2SAT) clauses to represent decision rules and embeds them 
into a Hopfield Neural Network (HNN), which functions as an associative memory for logic retrieval.  

The S2SATRA model operates through three phases: (1) encoding logical clauses based on 
attribute pairs, (2) embedding those clauses into a neural network through a cost function, and (3) 
minimizing energy to identify the most stable logic configuration. For instance, the framework can 
store rules such as “IF income is high AND credit score is good THEN approve loan,” enabling traceable 
and human-understandable decisions. Prior applications of S2SATRA have demonstrated its potential 
across multiple domains, including medical diagnosis, physics, and social systems.  However, when 
applying the original S2SATRA model to real-world financial datasets, several challenges arise. Bank 
loan datasets typically include a mix of continuous and categorical variables, high feature 
dimensionality, imbalanced classes, and temporal dependencies. The original framework’s reliance 
on random clause construction may result in suboptimal logic generation and poor generalizability. 
Furthermore, a lack of proper feature selection in earlier approaches can allow noise and redundancy 
to diminish both interpretability and performance.  To address these limitations, this study 
introduces several enhancements to the original S2SATRA model. First, correlation analysis is used to 
identify features that are most relevant to loan outcomes, reducing dimensionality and improving 
logic quality. Second, K-Means clustering is applied to discretize and normalize continuous variables, 
making them suitable for SAT-based logic encoding. Third, a structured train-test split strategy is 
adopted to assess the generalizability of extracted rules on unseen data.  

Despite the promising potential of neuro-symbolic approaches such as S2SATRA, current 
applications to financial datasets face several challenges, including handling mixed variable types, 
feature redundancy, and limited interpretability when random clause construction is applied. These 
gaps highlight the need for a more robust and transparent framework that can generate meaningful 
logical rules while maintaining strong predictive performance. Therefore, this study sets out to 
enhance the original S2SATRA model by integrating correlation-based feature selection, K-Means 
clustering for discretization, and structured train-test evaluation. The objective is to develop an 
interpretable loan approval model that produces human-readable decision rules without sacrificing 
predictive accuracy. The significance of this research lies in its ability to bridge the gap between 
performance and transparency, enabling banks to make fairer, accountable, and regulation-
compliant lending decisions. Furthermore, the enhanced framework offers broader applicability to 
other domains where explainability and trust are essential in decision-making systems. 
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2. Methodology  
 

This section presents the theoretical background for each component involved in the proposed 
logic mining approach. It begins with a general overview of 2SAT based on previous research. 
Following that, it provides a detailed explanation of the DHNN, including a review of existing DHNN-
SAT models. Finally, the section explores the concepts behind each core component and outlines the 
four-phase structure of the logic mining model implemented within the DHNN framework.  

 
2.1 Formulation of kSAT  

 
The k-Satisfiability (kSAT) problem is a Boolean logic formulation where each clause contains 

exactly k literals, with each literal being a variable or its negation. A kSAT formula consists of a 
conjunction (AND) of such clauses, and each clause is a disjunction (OR) of k literals. Formally, the 
problem can be expressed as: 

𝑄!"#$ = ⋀ 𝑐%
&
{%()} 	                                                                      (1) 

Here, each 𝐶%  is a clause with k literals and y is the total number of clauses. The aim is to determine 
whether there exists an assignment of Boolean values that satisfies all clauses simultaneously. The 
complexity of the problem increases with k which is 2SAT is solvable in polynomial time, while 3SAT 
and above are NP-complete. This structure provides a unified framework for logic modelling in AI, 
particularly in rule induction and symbolic reasoning. 

2.2 Process of kSAT in Discrete Hopfield Neural Network 

The DHNN is a recurrent neural network model characterized by binary-valued neurons and 
symmetric synaptic connections. In this research, Abdeen et al., [1] state that DHNN is employed as 
a memory system to store satisfiability based on logic clauses and perform logical inference via an 
energy minimization process. 

Each neuron 𝑠%  in the DHNN represents a literal from the binary attribute space and takes on a 
bipolar state from the set {−1,+1}, where +1 represent logical TRUE and −1 represent logical 
FALSE. The network operates based on the dynamics of energy minimization, where synaptic weight 
𝑤%+  are symmetric (𝑤%+ = 𝑤+%) and no self-connections exist (𝑤%% = 0).  

 
Energy Function: 
The DHNN minimizes an energy function	𝐸, which is defined as: 

                                                      𝐸 = − !
"
∑ ∑ 𝑤#$%

$&!
%
#&! 𝑠#𝑠$ +∑ θ#𝑠#%

#&!                        (2) 
where: 

● 𝑆%  is the current state of neuron 𝑖, 
● 𝑤%+  is the synaptic weight between neurons 𝑖 and 𝑗, 
● 𝛳%  is the threshold for neuron 𝑖, 
● 𝑛 is the total number of neurons in the network. 

 
The energy function guarantees that as the network updates, the energy 𝐸 decreases until a 

stable state is reached. This stable state represents a local minimum in the energy landscape, 
corresponding to a logic rule consistent with the input pattern. 
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Cost Function: 
The cost function is derived from the number of unsatisfied clauses in the satisfiability hypothesis. 

Suppose the logic hypothesis 𝐻 is composed of k clauses, where each clause 𝐶! is the form (𝑝! 	𝑉	𝑞!), 
with literals 𝑝!,𝑞!	 ∈ 	 {𝑥, ¬𝑥}. 

 
 The cost function is defined:  
 

       𝐶𝑂𝑆𝑇 = ∑ ∏ 𝑀#$
"
$&!

'(
#&!                                                                             (3) 

 
where 𝑁𝐶 is the total number of clauses. The definition of clauses 𝑀%+  is given as follow: 
 
 

                                      (4) 
 

Neuron Update: 
Neuron states are updated using the following asynchronous rule: 

  

                                                                   (5) 
Clause logic is embedded into the DHNN weight matrix by constructing synaptic weight. Clauses 

such as (𝑥%	𝑉	¬𝑥+)	 are encoded so that violations raise energy. The weight matrix is constructed 
based on correlation guided to reducing clauses noise and improving logic integrity.  

 
Hyperbolic Tangent Activation Function (HTAF) is employed to ensure smoother and continuous 

state transitions during training. HTAF is defined as: 
 

                                                            𝑓(𝑥) = tanh(𝑥) = )!*)"!

)!+)"!
                     (6) 

 
This function squashes neuron inputs into range (−1,1), helping the network converge more 

gradually toward stable energy states and reducing oscillations during updates. The HTAF enhances 
the learning stability of the DHNN while still preserving its binary decision behaviour after binary 
decision mapping. 
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Fig. 1. Brief overview of methodology involved in S2SATRA 

2.3 Modified kSAT into 2SATRA 
	

In this subsection, the reformulate k-SAT into 2SATRA (Two-Satisfiability with Reverse Analysis), 
reducing clauses to two literals and applying reverse analysis to efficiently trace constraint 
dependencies and solution feasibility.		
	
2.3.1 Dataset information 
 

The dataset used in this research is obtained from Kaggle: Bank Loan Data by Uday Malviya. It 
contains 16,384 records of loan applications with a range of features grouped into personal 
information, loan details, and credit history: 
 
Table 1 
Datasets features overview 

Category Variable Description 

  
  
  

Personal 
Information 

● person_age 
● person_gender 
● person_education 
● person_income 
● person_emp_exp 
● person_home_owners

hip 

● Applicant’s age (in years) Gender (male, 
female) 

● Education level (High School, Bachelor, 
Master, etc.) 

● Annual income (USD) 
● Employment                            

 experience (years) 
● Home ownership status (RENT, OWN, MORT- 

GAGE) 
  

Loan Details 
● loan_amnt  
● loan_intent 
● loan_int_rate 
● loan_percent_inco

me 

● Requested loan amount (USD) 
● Loan purpose (PERSONAL, EDUCATION,                   

MEDICAL,etc.) 
● Interest rate on the loan 
● Ratio of loan amount to annual income 
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Table 1 (Continued) 
  

Credit & Loan 
History 

● cb_person_cred_hist_length 
● credit_score 
● previous_loan_defaults_on_file 

● Length of the applicant’s credit history 
(years) 

● Applicant’s credit score 
● Whether the applicant has defaulted on 

previous loans (Yes/No) 
Target Variable ● loan_status ● Indicates if the loan was ap- proved (1) or not 

(0) 

                        
2.3.2 Data preprocessing phase 
 
To ensure the reliability and interpretability of the logic mining process, a comprehensive data 
preprocessing phase was conducted. The dataset contained various financial and personal 
attributes of individuals applying for bank loans. The preprocessing involved a multi-stage pipeline 
utilizing SPSS for clustering and Excel for statistical correlation analysis. 

1. Clustering with 𝐾-Means: Initially, the raw data underwent clustering using the 𝑘-means 
algorithm in Statistical Package for the Social Sciences (SPSS). This step grouped similar 
records together based on underlying patterns in the variables. The rationale for clustering 
was to reduce noise and ensure homogeneity within the data subsets that would be 
subjected to logic mining. 

2. Binary Transformation: Following clustering, all relevant attributes were converted into a 
binary representation, using values of 1 and -1. This transformation was essential to 
facilitate the application of the 2 Satisfiability (2SAT) logic mining algorithm, which operates 
efficiently on binary data structures. 

3. Correlation Matrix Construction: Using Microsoft Excel, a correlation matrix was created to 
evaluate the linear relationships between the attributes. This matrix helped identify which 
variables had strong influence on the target variable (loan approval) as shown in Figure 1. 

4. Variable Selection Based on Correlation: Six variables that exhibited the highest positive 
correlation (closest to +1) with loan approval were selected. This step ensured that only the 
most relevant and informative features were retained for analysis, thereby improving the 
potential predictive power and interpretability of the resulting logical rules. 

5. Preparation of Logical Dataset: The final dataset consisting of these six selected variables 
was then exported and formatted as a new Excel sheet. This structured data served as the 
input for the logic mining phase, which was carried out using C++ implementations in Dev 
C++ (Orwell version) and Dev C++ (Embarcadero version) environments. 

 
This meticulous preprocessing was crucial in refining the dataset to a form that is compatible with 
and optimized for logic mining using the 2SAT reverse analysis approach. 
 

 

Fig. 2. Correlation matrix table 
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2.3.3 Training phase 
 

The training phase is a critical step in the S2SATRA framework, where logical rules are constructed 
and encoded into the neural memory structure. After the data preprocessing phase, the cleaned and 
discretized dataset containing the most relevant features is prepared for training. This dataset is fed 
into the S2SATRA training pipeline, which is implemented in Dev C++ Orwell. In this stage, each data 
sample (record) is analysed to construct 2-Satisfiability (2SAT) clauses. Each clause is formed by 
selecting two attributes (variables) that are positively correlated with the target outcome (loan 
approval or rejection). These pairs are then converted into Boolean logic clauses, such as: 

																																																											𝐶% 	= 	 (𝑚% 	∨ 𝑛% 	)																																																																				(7)	
	
These clauses are embedded into a Discrete Hopfield Neural Network (DHNN) by calculating their 
synaptic weights using the energy function. This allows the network to represent logical knowledge 
in a distributed memory format. The cost function ensures that the system favors logical 
configurations that satisfy most training samples. During this process, clauses that appear most 
frequently among positive loan outcomes are prioritized for storage. The resulting model effectively 
encodes decision rules such as: 
 

”IF income is high AND credit score is good THEN approve loan.” 
 
The implementation in Dev C++ enables direct control over clause generation, memory updates, and 
logic verification through custom-coded logic mining scripts. Throughout training, output files 
containing the clause matrices and synaptic weight configurations are generated for later retrieval 
and testing. 
 
2.3.3 Retrieval phase 
 

Once the training phase is complete and the most representative logical clauses have been stored 
in the neural network memory, the model enters the retrieval phase. This step involves using the 
trained clause structure to test its ability to predict loan decisions on unseen data. The retrieval phase 
is carried out using a separate executable coded in Dev C++ Red (Embarcadero version), which 
supports more efficient memory management and I/O operations compared to standard Dev C++. 
The retrieval process simulates the recall function of the Hopfield Neural Network. Each test input is 
passed through the clause memory, and the network iteratively updates neuron states to minimize 
energy according to the predefined energy function as of Equation (1). By reaching the minimum 
energy state, the system converges to a stable logical decision that either accepts or rejects the loan 
application. This logical decision is compared against the actual target label to determine correctness. 
Additionally, the retrieval phase allows the extraction of the most stable and frequently retrieved 
rules using a clause frequency analysis as of Eq. (4). The system identifies which logical clause 
configurations are most effective in correctly classifying loan applications. The logic retrieval is 
followed by scoring the model using standard classification metrics, which are computed and 
recorded for each test batch. The use of Dev C++ Red in this phase ensures better debugging, memory 
tracing, and modular logic evaluation, making it well-suited for high-volume rule-based simulations 
in financial datasets. 
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3. Experimental Setup 
 
The implementation of this research involves multiple software tools: 
• Microsoft Excel – for initial data preparation and cleaning. 
• IBM SPSS – for statistical analysis and correlation matrix construction. 
• Dev C++ – for implementing S2SATRA training with correlation-guided rule formation. 
• Dev C++ Embarcado – for executing test phase logic evaluation and performance 
scoring. 

To evaluate the effectiveness of the 2-Satisfiability logic mining process, five standard classification 
performance metrics were used: accuracy, precision, recall(sensitivity), specificity, and F1 score. 
The formulas for each metric are formulated in Eq. (8) - Eq. (12) as follow: 

● Accuracy=   	(𝑇𝑃	 + 𝑇𝑁)	/	(𝑇𝑃	 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)	 `       (8) 

● Precision=     𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)           (9) 

● Recall (Sensitivity)=    𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)     `   (10) 

● Specificity=  𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)         (11) 

● F1 Score=   2	𝑋(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑥	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)	/	(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 + 	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)   (12) 

4. Results and Discussion 
 
This section presents the outcomes of the proposed approach and examines their implications. The 
results are analysed in the context of the research objectives, with a focus on performance, accuracy, 
and the insights revealed through comparative evaluation. 
 
4.1 Metrices Performances Table 
 
Table 2 
Performance metrics for each configuration (A max - average across all folds) 

Train:Test Split Accuracy Precision Sensitivity Specificity F1 Score 
60:40 0.7753 0.9811 0.7862 0.2078 0.8725 
70:30 0.7737 0.9793 0.7854 0.2238 0.8709 
80:20 0.7296 0.9803 0.7391 0.2528 0.8403 
90:10 0.7449 0.8927 0.7657 0.3047 0.8194 

 
Table 3 
Performance metrics for each configuration (A standard - average across all folds) 

Train:Test Split Accuracy Precision Sensitivity Specificity F1 Score 
60:40 0.7720 0.9758 0.7859 0.1990 0.8703 
70:30 0.7713 0.9433 0.8179 0.1784 0.8695 
80:20 0.7564 0.9386 0.8064 0.1951 0.8589 
90:10 0.7277 0.9075 0.8072 0.1958 0.8369 
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Table 4 
Performance metrics for each configuration (B max - average across all folds) 

Train:Test Split Accuracy Precision Sensitivity Specificity F1 Score 
60:40 0.6643 0.6050 0.3462 0.8595 0.4403 
70:30 0.6595 0.56042 0.4014 0.8192 0.4430 
80:20 0.6763 0.6310 0.3647 0.8676 0.4621 
90:10 0.6600 0.6156 0.3533 0.8551 0.4487 

 
Table 5 
Performance metrics for each configuration (B standard - average across all folds) 

Train:Test Split Accuracy Precision Sensitivity Specificity F1 Score 
60:40 0.3138 0.5498 0.1715 0.6494 0.25857 
70:30 0.3381 0.3241 0.3708 0.4579 0.2570 
80:20 0.3422 0.5250 0.1751 0.6832 0.2599 
90:10 0.3212 0.5508 0.1781 0.6463 0.2666 

Explanation of Model Variants: 

● A Max – Logical rules generated using attribute selection based on correlation analysis, 
combined with permutation-based enhancement to maximize clause relevance. 

● A Standard – Logical rules generated using only correlation analysis for attribute selection, 
without applying permutation. 

● B Max – Logical rules generated using randomly chosen attributes but enhanced through 
permutation to identify the best clause combinations. 

● B Standard – Logical rules generated from randomly selected attributes without any 
permutation or optimization. 

 
4.2 Discussion on Metrices Performances Tables 
 

The experimental results demonstrate a clear distinction in performance across the four 
evaluated configurations: A Max, A Standard, B Max, and B Standard. These configurations differ 
based on their attribute selection strategy and whether permutation was applied, significantly 
impacting their ability to extract meaningful and precise logical rules for predicting loan approvals. 
Among all variants, the A Max model achieved the highest performance across key evaluation 
metrics, particularly F1 Score and precision. This model employed a combination of correlation-based 
attribute selection and permutation, which together helped to refine the input features and optimize 
the logical structure derived from the 2-Satisfiability Re- verse Analysis. The high F1 Score indicates 
that the model effectively balances precision and recall, minimizing both false positives and false 
negatives. The increased precision specifically suggests that the logical rules formed are not only 
accurate but also reliable in identifying true loan approvals without misclassifying non-eligible cases. 
When comparing A Max to B Max, the performance gap is noticeable. While B Max also utilizes 
permutation, its use of randomly selected attributes (without correlation analysis) results in a lower 
F1 Score and reduced precision. This implies that although permutation helps fine-tune the model, 
its effectiveness is limited when the foundational attributes lack relevance. In other words, the 
quality of the input features is a critical factor—models built on randomly selected variables cannot 
perform well consistently, even if optimized through permutation. The comparison between A 
Standard and B Standard further reinforces this point. A Standard, which relies solely on correlation-
based feature selection without permutation, still outperforms B Standard in all considered metrics.  
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This finding underscores the value of selecting meaningful features based on correlation analysis, 
even when no additional optimization (such as permutation) is applied. In contrast, B Standard, which 
uses both random feature selection and no permutation, shows the weakest performance, with 
lower precision and F1 Score. This confirms that both attribute relevance and optimization are 
essential for logical rule mining to be effective. Overall, models within the A group (A Max and A 
Standard) significantly outperform those in the B group (B Max and B Standard). The results clearly 
highlight the importance of integrating correlation-based feature selection in the modeling process. 
While permutation helps improve model performance further, it cannot fully compensate for poor 
feature selection. The A group’s superior F1 Scores and precision values demonstrate that correlation 
is a reliable method for identifying influential attributes and forming logi- cal rules that generalize 
well. Therefore, combining statistical correlation techniques with logical rule induction methods 
results in more accurate, interpretable, and robust models for bank loan approval prediction. 
 
4.3 Best Induced Logic 
 

The best induced logic derived from the enhanced S2SATRA framework reflects a clear and 
interpretable decision-making pattern. This rule, selected through correlation-guided feature 
selection and optimized clause induction, aligns closely with established banking practices, 
reinforcing the model’s validity. Its simplicity enhances transparency, enabling stakeholders to 
understand and justify approval decisions while maintaining strong predictive performance. 
 
Best Induced Logic: 
 
(FV_B) ^ (EV_D) ^ (CV_A) 
(FV_B) ^ (EV_C) ^ (DV_A) 
 
from Train:Test Split (60:40) Fold 3 
Explanation of Variables: 
A - person_income 
B - person_home_ownership 
C - loan_amount 
D - loan_int_rate 
E - loan_percent_income 
F - previous_loan_defaults_on_tile 

4.4 Discussion on Best Induced Logic  
 

The best induced logic expressions provide meaningful insight into predicting the loan status, 
which is the target variable indicating whether a loan is approved or results in default. The presence 
of previous loan defaults (F) combined with home ownership status (B) as a common factor in both 
expressions suggests that these borrower characteristics strongly influence loan outcomes. 
Borrowers with a history of defaults are more likely to default again, making this a critical predictor 
of loan status. Meanwhile, home ownership typically signals greater financial stability, increasing the 
likelihood of loan approval. Moreover, the interaction between loan characteristics  such as loan 
amount (C), loan interest rate (D), and the percentage of income spent on the loan (E) with borrower 
income (A) reflects the borrower's capacity to repay. For example, a high loan amount or interest 
rate may lead to default if the borrower’s income is insufficient to handle the repayment burden. 
Conversely, when the borrower’s income is adequate relative to these loan parameters, loan 
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approval becomes more probable. The two induced logic expressions capture different but 
complementary scenarios leading to loan approval or default. One emphasizes the role of loan 
interest rate with loan percent income, and the other focuses on loan amount with loan percent 
income, both combined with borrower income and previous default/home ownership status. These 
expressions effectively classify loan applications into “approved” or “default” categories based on 
the interplay of financial risk factors. In essence, the induced logic links the borrower’s financial 
history and current loan terms directly to the likelihood of loan approval or default. This logical 
framework not only supports accurate predictions of loan status but also provides transparency in 
decision-making by highlighting the critical factors leading to approval or default outcomes. 
 
5. Conclusions 
 

This research has presented a refined approach to bank loan approval prediction by combining 
logic-based reasoning with supervised machine learning, using the Supervised 2-Satisfiability Reverse 
Analysis (S2SATRA) framework. The study addressed key challenges associated with traditional ”black 
box” machine learning models, particularly the lack of transparency, interpretability, and regulatory 
compliance in decision-making pro- cesses. Through the incorporation of correlation analysis, K-
Means clustering, and structured train-test evaluation, the enhanced S2SATRA model was able to 
derive logical rules that are both explainable and statistically robust. Among the four evaluated 
configurations, the A Max model—featuring correlation-guided attribute selection and permutation- 
based clause enhancement—consistently outperformed other variants in accuracy, precision, recall, 
specificity, and F1 Score. These results highlight the critical role of meaningful feature selection in 
optimizing rule quality and predictive performance. The findings reinforce that interpretable logic 
models can be both effective and reliable when coupled with rigorous data preprocessing and 
validation strategies. By providing clear, human-readable rules for loan approvals, the proposed 
framework supports fairer and more transparent decision-making in banking applications. Moreover, 
it sets the foundation for integrating logic-based AI methods in other domains where explainability 
and accountability are paramount. Future work can focus on extending this methodology to handle 
multi-class loan outcomes, temporal loan repayment behaviors, or integrating fuzzy logic for handling 
uncertainties. Additionally, deploying this model in real-time banking systems could provide further 
insights into its practical effectiveness and scalability. 
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