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Risk assessment is fundamental to determine if an investment in stocks is worthwhile 
and what steps may be taken to alleviate risk. It determines what rate of return is 
necessary to make a particular investment in a stock succeed. One method to gauge 
the market risk is by calculating the Value-at-Risk (VaR) of the stock. VaR measures 
statistically, the potential loss amount of a risky asset or investment portfolio on the 
stock over a defined timeframe for a given confidence level. In this study, VaR of stocks 
for companies listed by the Kuala Lumpur Stock Exchange are being measured using 
the non-parametric approach which is the historical simulation method. Geometric 
Brownian Motion is then used to predict the stock prices for the first two weeks. The 
outcome shows that Malaysia Building Society Berhad is the riskiest as it gives the 
highest value at risk while Hong Leong Bank Berhad shows the lowest. 
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1. Introduction 
 

A stock is a type of security that represents ownership in a listed company and a claim on part of 
the corporation’s assets and earnings. They are shares or equities in a business that entitles the 
owners to receive dividends, vote and to have an ownership that is proportional to the amount of 
share owned. Stocks are traded in Bursa Malaysia, the Malaysian stock exchange market, which is a 
place where the buying and selling of shares take place. For example, an investor purchases a stock 
or share of the company like Apple, he now owns a part of it at a small fraction of it because Apple is 
huge with a large market capitalization and they go public so that when investors purchase the stock, 
he is buying a part of the company. Typically, companies do this for investors to invest in the company 
to gain revenue so they can build or grow the company and to sell more of its products and by that 
they will be needing different kinds of equipment and labor, and it may require a huge amount of 
capital. In order to make this happen, instead of going to the bank and applying for loans which can 
be more costly and difficult for the loan to be approved, companies will find investors to put in their 
money in return with a financial gain where a fixed percentage of equity or ownership on the 
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company within a fixed period of time until their investments are paid back. Either way both parties 
benefit from these investments where the investors are always looking to be a part of the company 
and gain revenues while the company itself can expand their business to globalize to better educate 
their customers about their products and innovations. 

According to Harrington et al., [15], risk involves the uncertainty of outcomes in any given 
situation. Risk management refers to the process by which organizations identify their exposure to 
risks and implement the most suitable strategies to minimize their potential impact. Risk assessment 
is a widely applied concept across various industries, used to evaluate the probability of loss 
associated with an asset, investment, or loan. This process helps in determining whether investing in 
stocks or shares is viable and what measures can be implemented to mitigate potential risks. It also 
aids in identifying the required rate of return needed for an investment to be considered successful 
[6]. Risk assessment involves a thorough evaluation of the potential risks associated with a particular 
investment. Financial analysts typically examine numerous factors such as volatility, historical 
performance, predictability, the experience of the investment management team, and the capital 
invested. For instance, a highly volatile investment that yields consistently low returns may be 
deemed unfavourable. Therefore, higher-risk investments should only be pursued when there is a 
corresponding potential for substantial returns [11]. 

The Value-at-Risk, VaR model is applied in most financial institutions in measuring risk 
management to make better decisions and avoid huge losses in stocks investments and equity. In its 
most general form, VaR measures statistically the potential loss of a risky asset or investment 
portfolio on the stock over a defined timeframe for a given confidence level. VaR model measures 
market risk by determining how much value of a portfolio could drop over a given period with a given 
probability because of changes in market prices or rates. Companies can be prepared for losses when 
VaR is determined to lower the impact of the market risk upon the prices of shares. VaR has been 
introduced first in the late 1980s by brokerage and investment funds to gauge the risk of their trading 
portfolios. VaR is a quantile of a return distribution function where the portfolio represents the 
percentile of its return distribution of two parameters, a period and a confidence level. It measures 
the maximum loss of the portfolio value that will occur over some period at some specific confidence 
level due to risky market factors [21]. Various approaches to estimating Value-at-Risk (VaR), including 
historical simulation, parametric, and Monte Carlo methods, have been thoroughly discussed in the 
literature [9]. The Monte Carlo simulation is about imagining hypothetical future data whereas the 
non-parametric approach uses actual historical data while the parametric approach does not require 
any data. Monte Carlo simulation is a widely used method in financial engineering to model the risk 
and uncertainty of complex portfolios [13].  

The historical simulation is a non-parametric approach to find VaR where the return on the 
portfolio is calculated over a period using historical data and the VaR is taken to be the loss that is 
exceeded within the sample. Historical simulation provides a practical, non-parametric method of 
estimating VaR without relying on distributional assumptions [2]. It uses past data as a guide to what 
will happen in the future. As discussed by Hull and White [17], the first step is to determine the 
market variables affecting portfolio typically be interest rate, equity prices and so on. Specifically, in 
the case of historical simulation, this applies to the asset or the portfolio, the historical returns are 
taken and sorted from worst to gains to provide a normal distribution curve and a confidence level is 
selected, for example a confidence level at 95% represents such that 95% of the historical returns 
were gains and the remaining five percent were worse, therefore we can say that on a historical basis, 
we are 95% confident that our losses will not be worse than the 5% lower level. Nevertheless, the 
historical simulation method assumes that the future return distribution for a portfolio will be like 
that of the past. As stated by the Bank Negara Malaysia, the Basel committee has fixed a definitive 
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confidence level of 99% used in any official reports as a higher confidence level is required to measure 
the capital demand, but the 95% confidence level can be used for verifying the VaR model. 

The Geometric Brownian Motion (GBM) is a continuous stochastic process where the logarithm 
of the randomly varying quantity follows the Brownian Motion or the Wiener process. GBM is 
commonly used in financial mathematics to compute stock prices so that forecasting can be made. 

Investors face market risk in stocks investment every day and experience losses due to factors 
that affect the overall performance of the financial markets in which the investors are involved. To 
hedge against it, Value at Risk can show the probability of how much loss can occur by using the 
historical simulation method. Therefore, in this study, two main objectives were proposed, to 
compute the VaR value of ten stocks based on the top 10 companies to invest in the first quarter of 
2017 listed by the Malaysian Stock Exchange using the non-parametric approach of historical 
simulation method, and to use the Geometric Brownian Motion to predict the future prices of stocks 
for the 14 days and calculate the Mean Absolute Percentage Error (MAPE). 
 
2. Literature Review  

 
VaR can be calculated with various methods and research has been carried out to analyse each 

result obtained from all methods. Bo and Dai [4] studied on both parametric and non-parametric 
approach in calculating VaR and concluded that the VaR modelling is the prediction of the highest 
expected loss for a given portfolio and estimate losses by approximating the lower quantile in the 
portfolio return distribution. 

Later, Kondapaneni and Rajesh [22] described the Delta-Normal method of computing VaR and 
compared it to the Historical Simulation and Monte Carlo method. He found out that Delta-Normal 
would be suitable if the distribution is normal and Historical Simulation method of calculating Value-
at-Risk would be ideally suited if the distribution is non-normal, based on the normality of the 
distribution of the portfolio risk factors. The risk factors refer to represent market variables such as 
prices, interest rates, spreads or implied volatility. 

VaR can calculate the probability of maximum loss not only in stocks investment but also for 
bonds, securities, commodities and others. Haugland and Jone [16] did a study on the historical 
simulation VaR on oil prices and showed that the amount of subadditivity is found to be strongly 
dependent on the correlation is steadily dependent between the individual portfolios. 

The research department of J.P. Morgan has been actively studying VaR and produced a program 
called RiskMetrics to easily calculate VaR. In the September 2008 Investment Analytics and 
Consulting Newsletter by Berry and Romain [3] demonstrated the analytical VaR by collecting the 
historical data on securities in a portfolio and estimated the expected prices, volatility and 
correlations, and focused on market risk. He uses two sophisticated stages to computing VaR: 
outlining the positions to risk factors and choosing the volatility model of a portfolio after expressing 
the VaR mathematically. 

Malaysian investment firms have also started to use VaR and research has been made to support 
the application of VaR on the Malaysian Stock Exchange. Dargiri et al., [7] presented a study on the 
application of VaR and Conditional VaR (CVaR) method with both parametric and non-parametric 
approaches on the shares of Malaysian Industries and put into use the backtesting technique to 
measure the accuracy of predicted VaR and CVaR. The result shows a significant difference between 
both VaR models where VaR is likely to underrate the risk while CVaR overrates it. Recent literature 
has expanded the application of VaR models with enhancements that incorporate machine learning 
and real-time data modelling to increase accuracy and responsiveness [26]. These developments 
reflect a broader shift toward adaptive and data-driven forecasting in financial risk management. 
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Recent studies have extended traditional VaR estimation approaches. For instance, Xie [25] conducts 
a comparative evaluation of historical simulation, variance-covariance, and Monte Carlo methods 
using NASDAQ data and finds that Monte Carlo and parametric models are more responsive to tail 
risk. Huo et al., [18] propose a novel Period VaR (PVaR) methodology that measures risk over intervals 
rather than at a fixed horizon, using Monte Carlo estimation to improve precision. Darmawan et al., 
[8] compare all three major VaR approaches in Indonesian mining sector stocks, demonstrating 
distinct sensitivity by method. On the forecasting side, Ibrahim et al., [20] assess GBM, fractional 
GBM, and Jump-Diffusion models for Malaysian rubber prices, highlighting the efficacy of 
jump-diffusion in capturing volatility shocks. 

Investors will have a better insight into the investments or trading that they have made if they 
are enlightened or know the worst loss they may face in their investments. Nevertheless, it will be 
better if the investors can forecast the prices of the stocks for the next day to have a more reliable 
and safer trading and investments. Ladde et al., [23] worked on research where historical stock prices 
and basic statistics have been used to test the accuracy of the GBM model. The results showed that 
data partitioning produces a better outcome on the usage of GBM model and the historical data. In 
addition, environmental random disruptions affect an alteration on the parameters in the GBM 
model. 

In research conducted by Brewer et al., [5], a financial modeling of the Geometric Brownian 
Motion process is computed using a simulation with Windows Excel following a stochastic process of 
the stock price shift. This exercise is based on the Black-Scholes option pricing model and is widely 
used in investment firms as it is the simplest stochastic method. Abidin et al., [1] have used the 
Geometric Brownian Motion method in their research where they made a forecast on the stock prices 
of SMEs or small and medium sized companies listed by Bursa Malaysia. They showed how GBM is 
used and proved that GBM is suitable for short-term investment since investors are looking to make 
a profit in a short period of time. Later, they used the Mean Absolute Percentage Error (MAPE) 
method to calculate the error between the actual closing price and the forecasted price. It has been 
identified that a one-week historical price is sufficient to generate the predicted prices under the 
GBM process. 

Estember et al., [10] carried out research to prove that GBM is a method that is effective and 
accurate in predicting future daily stock prices as compared to the Artificial Neural Network where 
the historical prices of companies are taken from the Philippine Stock Exchange. It produced a 
positive result as proposed earlier that the GBM method is more accurate than the Artificial Neural 
Network and hence GBM method gives investors’ confidence to choose which stocks to invest in. 
Other than stock prices, the GBM method can also be used to forecast the price of precious metals 
and commodities. As shown in research by Ibrahim and Iqmal [19], the GBM method is being 
demonstrated in computing the predicted future price of rubber and latex. Similarly, the mean, 
volatility and drift are required for the parameters of the GBM method. The MAPE is later calculated 
to identify the error difference between the actual and forecasted price.  
 
3. Methodology  
3.1 Value-at-Risk 
 

We know that VaR represents the worst expected loss, then we will identify the distribution of 
portfolio return. The data of the stock prices must be normally distributed with mean, 𝜇, and 
standard deviation, 𝜎. Let 𝑓!" be the probability distribution function (pdf) of Δ𝑃 and 𝑐 be the 
confidence level. Then, we have: 
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1 − 𝑐 = ∫ 𝑓!"(𝑥)𝑑𝑥
#$%&
#' .                        (1) 

 
To obtain VaR, let: 
 
𝛼 = (#)

*
.                          (2) 

 
Then, we have 𝑧 = −𝑉𝑎𝑅 and 𝛼 = −𝛼, since VaR represents loss in negative value. Hence, 
 
𝑉𝑎𝑅 = 𝛼𝜎 − 𝜇,             (3)           
 
where 𝜎 can be obtained from the standard normal table corresponding to the confidence level. In 
this case, we know that 𝛼 is 2.33 if 𝑐 is 99% and 𝛼 is 1.65 if c is 95%. But since VaR is located at the 
left tail, we take 𝛼 = −𝛼. 

Fransson et al., [12] presented with the mathematical representation of VaR as follows: 
 
𝑃(𝑅 ≤ −𝑥%) = 1 − 𝛼,            (4)
          
where the probability of return, R, is less than −𝑥% and equals to the complement of the significance 
level 𝛼. The portfolio return, Δ𝑃, is denoted by, 
 
Δ𝑃 = 𝑃+,- − 𝑃+ ,                         (5) 
 
where 𝑃+ and 𝑃+,- are the portfolio values at time 𝑡 and 𝑡 + 1, respectively. The arithmetic rate of 
return, 𝑅% is given by: 
 
𝑅% =

"!,"!"#
"!"#

.                             (6) 

 
The geometric rate of return 𝑅+ is given by: 
 
𝑅+ = ln "!

"!"#
= ln(1 + 𝑅%).                        (7) 

 
where 𝑃 is the price and 𝑡 is the number of days. Let 𝑅+,/  be the rate of return during the last n 
periods, the geometric return would be: 
 
𝑅+,/ = ln "!

"!"$
= ln "!

"!"#
+ ln "!

"!"%
+⋯+ ln "!

"!"$
= 𝑅+ + 𝑅+#- +⋯+ 𝑅+#/,-.    (8) 

 
where 𝑅+,/ is the rate of return during the last n periods is the sum of 𝑛 previous rate Jorion [21]. 
Therefore, VaR can be written as: 
 
𝑉𝑎𝑅-#0 = −𝑥0𝑅+ .                         (9) 
 
Assume that a portfolio of 𝑛 financial assets and denote the price of 𝑖-th financial asset at day 𝑡 as 
𝑃+1(𝑖 = 1,… ,𝑁; 𝑡 = 𝑇 − 𝑛 + 1) where 𝑇 is today. The portfolio value at time 𝑇 is given by: 
  
𝑃2 = ∑ 𝑤+𝑃+13

+4- ,                       (10) 
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where 𝑤+ is the weight of each stock in the portfolio at time 𝑇. The relative return of each stock is 
given by: 
 
𝑅+ = Dln "!

"!"&
E 100𝑦,                       (11) 

 
Where 𝑦 denotes the investment value. Since 𝑧_𝛼 is the left-tail 𝛼 percentile of a standard normal 
distribution, we have: 
 
𝑧0 =

5'#)
*
,                                     (12) 

 
and 𝑥0  can be written as 𝑥0 = 𝜇 + 𝜎𝑧0 . Hence, VaR can be obtained by: 
 
𝑉𝑎𝑅-#0 = −(𝜇 + 𝜎𝑧0)𝑅+ ,                                   (13) 
 
where 𝜇 is the weighted mean of the asset, and 𝜎 is the standard deviation.   

We take the initial price of a portfolio 𝑃6, and the rate of return 𝑅 for this portfolio is normally 
distributed with mean 𝜇, and standard deviation 𝜎, the portfolio value at the end of the time horizon 
is 𝑃- =	𝑃6(1 + 𝑅) with mean 𝑃6(𝜇) and standard deviation 𝑃6(𝜎). Denoting the lowest portfolio 
value at some confidence level, 𝐶 as 𝑃-∗ = 𝑃6∗(1 + 𝑅). Then, the VaR relative to the expected return 
is 𝑉𝑎𝑅(𝑚𝑒𝑎𝑛) = 𝑃6(𝜇 − 𝑅∗). Assuming the expected return is zero, then 𝑉𝑎𝑅	(𝑧𝑒𝑟𝑜) = −𝑃6𝑅∗. 
Transforming 𝑅∗ = −(𝛼𝜎 − 𝜇), we have 𝑉𝑎𝑅(𝑚𝑒𝑎𝑛) = 𝑃6𝛼𝜎. 
 
3.2 Historical Simulation 
 

Halulu and Sila [14] states that the non-parametric approach uses historical data to run the 
simulation statistically and produces a cumulative distribution function to compute the VaR for the 
relative returns. The data used are the daily prices of stocks of companies listed in Bursa Malaysia for 
a ten-year period and the data was obtained from Yahoo Finance. 

The first step to compute the Value-at-Risk in Microsoft excel is to find the logarithmic return of 
the closing prices as stated in Eq. (7) where the current price is divided by the price of the previous 
day and the natural logarithm is applied to it. Secondly, we set the value of portfolio investment to 
RM10,000 so that we can calculate the relative daily return value and compare among all other 
stocks. This will produce a series of return values, and it will then be inserted into the excel formula 
as discussed above. In this research both 99% and 95% confidence level is computed as a comparison. 

 
3.3 Geometric Brownian Motion 
 

In this section, we will show how the future stock prices of the 10 companies listed previously 
using the Geometric Brownian Method (GBM) as it is suitable to forecast the short-term investment 
whereas the Markov-Fourier grey model can be used for long-term investment. In this case, investors 
can gain more profit after investment even in a short period of time and they can decide immediately. 
This section discusses the results obtained from the surface pressure measurement study. The effects 
of angle of attack, Reynolds number and leading-edge bluntness are discussed in the next sub section. 

The daily closing prices of the stocks are collected daily for a two-week period and the prices are 
forecasted for the next two weeks. The GBM follows the Markov and Martingale properties. A 
stochastic process has the Markov property if the conditional probability distribution of future states 
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of the process which is conditional on both past and present states, depends only upon the present 
state, not on the sequence of events that preceded it. Whereas the Martingale property states that 
the expectation of the next value in the sequence is equal to the present observed value even given 
knowledge of all prior observed values.  

The GBM process depends on four main requirements which are the volatility, randomness, 
return on investment and drift to form the stochastic differential equation. Wilmott and Paul [24] 
states that investors are more interested in the return on investment or simply the growth in their 
portfolio value. Therefore, we take the previous definition of the arithmetic rate of return in Eq. (6). 
We take 𝑛 as the number of returns in this observation, then we represent the mean of the return’s 
distribution as the drift 𝜇 as follows: 
 
𝜇 = 𝑅%OOOO =

-
/
∑ 𝑅%/
+#- .                                                (14) 

 
Now we represent the sample standard deviation as the volatility 𝜎 as follows: 
 

𝜎 = P -
/#-

∑ 𝑅%/
+#- − 𝑅%OOOO.                                               (15) 

 
Now we form the stochastic model with the price of stock at time, 𝑃, the volatility 𝜎,	the random 
value at time 𝑡, 𝑋6, and the drift 𝜇, represented as follows: 
 
Given that 𝑒8 = 𝑃6, then the stochastic differential equation for ln 𝑃 is: 
 

𝑃+ = 𝑃6𝑒
9)##%*

%:+,*(<!#<().                                                (16) 
 
3.4 Mean Absolute Percentage Error (MAPE) 
 
The computation of the MAPE is defined as such: 
 

𝑀𝐴𝑃𝐸 =
∑?)!"*!)!

?

/
,                                                 (17) 

 
where 𝐴+ is the actual price at time 𝑡, 𝑛 is the number of forecast periods, and 𝐹+ is the forecast price 
at time 𝑡. Table 1 shows the scale of judgement of forecasting accuracy using MAPE as stated by 
Abidin et al., [1]. 
 

Table 1 
Scale of judgement of forecast accuracy 
MAPE Accuracy 
≤ 10% Highly accurate 
11 − 20% Good 
21 − 50% Reasonable 
≥ 51% Inaccurate 

 
The lower the MAPE value, the forecasting model gets more accurate as the error difference between 
the actual price At and forecast price Ft is relatively small. With this MAPE method and the forecasting 
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scale stated in Table 1, some analysis can be made on the forecast price computed by the GBM 
method. 
 
4. Results Summary 
 

In the beginning of this chapter, we present the numerical results of the value-at-risk of the stocks 
listed by the Malaysian Stock Exchange under the historical simulation method. All investigations 
were carried on using Microsoft Excel as stated in the previous chapter. The following table is the list 
of top 10 stocks to invest in the first quarter of 2017 provided by Yahoo! Finance. 
 

Table 2 
Top 10 stocks to invest in 2017 
 Code Symbol Name 
1  1155  MAYBANK  Malayan Banking Berhad 
2  5347  TNB  Tenaga Nasional Berhad 
3  1023  CIMB  Cimb Group Holdings Berhad 
4  5819  HLBANK  Hong Leong Bank Berhad 
5  1066  RHB  Rhb Bank Berhad 
6  3336  IJM  Ijm Corporation Berhad 
7  5099  AIRASIA  Airasia Berhad 
8  1015  AMMB  Ammb Holdings Berhad 
9  5014  MAHB  Malaysia Airports Holdings Bhd 
10  1171 MBSB  Malaysia Building Society Bhd 

 
First, we show that the historical data of each stocks follows a log-normal distribution based on the 
logarithmic returns calculated form the set of data of daily prices for 10 years from January 2007 to 
December 2016 and the pattern is shown as Figure 1 – Figure 10 below: 
 

 

  
Fig. 1. MAYBANK Fig. 2. TNB 

  

  
Fig. 3. CIMB Fig. 4. HLBANK 
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Fig. 5. RHB Fig. 6. IJM 

  

  
Fig. 7. AIRASIA Fig. 8. AMMB 

  

  
Fig. 9. MAHB Fig. 10. MBSB 

 
As we can see from all the charts above, they show a similar trend or pattern on the distribution of 
the returns on the daily investment but there may be an outlier as it is possible for a high jump or 
drop in the prices to occur under several circumstances, that effects the distribution to have an 
anomaly in the charts. Since, the distribution is log-normally distributed, we can now find the Value-
at-Risk of each stocks using the historical data and a confidence level of 99% and 95% with an 
investment value of RM10,000. The result is shown in Table 3. 
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Table 3 
VaR value of each stock 
 Stocks VaR 

99% 95% 
1 HLBANK 2.93% 1.74% 
2 TNB 3.92% 2.11% 
3 MAYBANK 4.04% 1.81% 
4 AMMB 4.45% 2.02% 
5 CIMB 4.54% 2.55% 
6 RHB 4.62% 2.40% 
7 MAHB 4.79% 2.83% 
8 IJM 4.90% 2.79% 
9 AIRASIA 5.76% 3.37% 
10 MBSB 6.72% 3.24% 

 
Now we calculate the forecasted price under the GBM model and the MAPE of each stock, and we 
display the results in Tables 4 - 13. 
 

Table 4 
MAYBANK 
Date Actual Forecast Error 
12/14/2016 7.95 8.16 0.03 
12/15/2016 7.92 8.46 0.07 
12/16/2016 7.94 7.71 0.03 
12/19/2016 7.92 7.66 0.03 
12/20/2016 7.91 7.85 0.01 
12/21/2016 7.87 7.79 0.01 
12/22/2016 7.76 7.58 0.02 
12/23/2016 7.74 7.68 0.01 
12/26/2016 7.74 7.78 0.01 
12/27/2016 7.75 8.03 0.04 
12/28/2016 7.95 8.13 0.02 
12/29/2016 7.98 8.25 0.03 
12/30/2016 8.20 8.11 0.01 
Total   0.31 
Daily Variance    0.00 
Annualized 
Variance 

  0.02 

Annualized 
Standard Deviation 

  0.15 

n    13 
MAPE   2.41% 
VaR (99%)  (RM404.11) 4.04% 
VaR (95%)  (RM181.15) 1.81% 
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Table 5 
TNB 
Date Actual Forecast Error 
12/14/2016 13.78 13.69 0.01 
12/15/2016 13.76 13.41 0.03 
12/16/2016 13.76 13.42 0.02 
12/19/2016 13.70 13.61 0.01 
12/20/2016 13.72 13.92 0.01 
12/21/2016 13.76 14.26 0.04 
12/22/2016 13.74 14.13 0.03 
12/23/2016 13.66 14.29 0.05 
12/26/2016 13.66 13.85 0.01 
12/27/2016 13.62 13.85 0.02 
12/28/2016 13.60 13.55 0.00 
12/29/2016 13.90 13.45 0.03 
12/30/2016 13.90 13.10 0.06 
Total   0.31 
Daily variance    0.00 
Annualized 
Variance 

  0.00 

Annualized 
Standard deviation 

  0.06 

n    13 
MAPE   2.41% 
VaR (99%)  (RM391.98) 3.92% 
VaR (95%)  (RM210.97) 2.11% 

 
Table 6 
CIMB 
Date Actual Forecast Error 
12/14/2016 4.65 4.64 0.00 
12/15/2016 4.62 4.80 0.04 
12/16/2016 4.60 4.49 0.02 
12/19/2016 4.60 4.33 0.06 
12/20/2016 4.60 4.49 0.02 
12/21/2016 4.54 4.60 0.01 
12/22/2016 4.57 4.70 0.03 
12/23/2016 4.58 4.63 0.01 
12/26/2016 4.58 4.68 0.02 
12/27/2016 4.58 4.57 0.00 
12/28/2016 4.56 4.23 0.07 
12/29/2016 4.56 4.36 0.04 
12/30/2016 4.51 4.03 0.1 
Total   0.45 
Daily variance    0.00 
Annualized 
Variance 

  0.02 

Annualized 
Standard deviation 

  0.16 

n    13 
MAPE   3.43% 
VaR (99%)  (RM454.38) 4.54% 
VaR (95%)  (RM254.75) 2.55% 
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Table 7 
HLBANK 
Date Actual Forecast Error 
12/14/2016 13.36 13.34 0.00 
12/15/2016 13.34 13.57 0.02 
12/16/2016 13.22 13.63 0.03 
12/19/2016 13.28 13.51 0.02 
12/20/2016 13.26 13.50 0.02 
12/21/2016 13.24 13.46 0.02 
12/22/2016 13.16 13.92 0.06 
12/23/2016 13.08 13.81 0.06 
12/26/2016 13.08 13.76 0.05 
12/27/2016 13.06 13.69 0.05 
12/28/2016 13.08 13.44 0.03 
12/29/2016 13.38 13.80 0.03 
12/30/2016 13.50 14.02 0.04 
Total   0.41 
Daily variance    0.00 
Annualized 
Variance 

  0.01 

Annualized 
Standard deviation 

  0.08 

n    13 
MAPE   3.18% 
VaR (99%)  (RM293.48) 2.93% 
VaR (95%)  (RM173.67) 1.74% 

 
Table 8 
RHB 
Date Actual Forecast Error 
12/14/2016 4.84 5.06 0.04 
12/15/2016 4.77 4.75 0.00 
12/16/2016 4.82 5.47 0.13 
12/19/2016 4.82 4.99 0.04 
12/20/2016 4.77 4.77 0.00 
12/21/2016 4.70 4.40 0.06 
12/22/2016 4.68 4.07 0.13 
12/23/2016 4.65 4.30 0.08 
12/26/2016 4.65 4.57 0.02 
12/27/2016 4.64 4.36 0.06 
12/28/2016 4.65 4.28 0.08 
12/29/2016 4.74 4.69 0.01 
12/30/2016 4.71 4.83 0.03 
Total   0.68 
Daily variance    0.00 
Annualized 
Variance 

  0.09 

Annualized 
Standard deviation 

  0.30 

n    13 
MAPE   5.24% 
VaR (99%)  (RM462.15) 4.62% 
VaR (95%)  (RM239.91) 2.40% 
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Table 9 
IJM 
Date Actual Forecast Error 
12/14/2016 3.30 3.32 0.01 
12/15/2016 3.30 3.49 0.06 
12/16/2016 3.30 3.46 0.05 
12/19/2016 3.30 3.49 0.06 
12/20/2016 3.40 3.65 0.07 
12/21/2016 3.40 3.41 0.00 
12/22/2016 3.42 3.60 0.05 
12/23/2016 3.42 3.78 0.11 
12/26/2016 3.42 3.93 0.15 
12/27/2016 3.42 3.78 0.11 
12/28/2016 3.40 3.48 0.02 
12/29/2016 3.40 3.29 0.03 
12/30/2016 3.40 3.38 0.01 
Total   0.72 
Daily variance    0.00 
Annualized 
Variance 

  0.13 

Annualized 
Standard deviation 

  0.36 

n    13 
MAPE   5.54% 
VaR (99%)  (RM489.72) 4.90% 
VaR (95%)  (RM279.11) 2.79% 

 
Table 10 
AIRASIA 
Date Actual Forecast Error 
12/14/2016 2.52 2.46 0.02 
12/15/2016 2.53 2.60 0.03 
12/16/2016 2.50 2.61 0.04 
12/19/2016 2.46 2.42 0.02 
12/20/2016 2.40 2.06 0.14 
12/21/2016 2.35 2.13 0.09 
12/22/2016 2.35 2.29 0.02 
12/23/2016 2.31 2.31 0.00 
12/26/2016 2.31 1.98 0.14 
12/27/2016 2.21 2.02 0.08 
12/28/2016 2.33 2.13 0.09 
12/29/2016 2.28 2.15 0.06 
12/30/2016 2.29 2.31 0.01 
Total   0.76 
Daily variance    0.00 
Annualized 
Variance 

  0.10 

Annualized 
Standard deviation 

  0.31 

n    13 
MAPE   5.82% 
VaR (99%)  (RM575.96) 5.76% 
VaR (95%)  (RM337.48) 3.37% 
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Table 11 
AMMB 
Date Actual Forecast Error 
12/14/2016 4.45 4.74 0.06 
12/15/2016 4.43 4.78 0.08 
12/16/2016 4.44 4.68 0.05 
12/19/2016 4.40 4.56 0.04 
12/20/2016 4.40 3.81 0.13 
12/21/2016 4.36 3.61 0.17 
12/22/2016 4.28 3.57 0.17 
12/23/2016 4.26 3.70 0.13 
12/26/2016 4.26 3.74 0.12 
12/27/2016 4.28 4.20 0.02 
12/28/2016 4.32 4.22 0.02 
12/29/2016 4.25 4.20 0.01 
12/30/2016 4.31 4.42 0.03 
Total   1.04 
Daily variance    0.00 
Annualized 
Variance 

  0.12 

Annualized 
Standard deviation 

  0.35 

n    13 
MAPE   8.00% 
VaR (99%)  (RM445.17) 4.45% 
VaR (95%)  (RM202.03) 2.02% 

 
Table 12 
MAHB 
Date Actual Forecast Error 
12/14/2016 6.06 6.66 0.10 
12/15/2016 6.00 6.19 0.03 
12/16/2016 6.00 5.48 0.09 
12/19/2016 5.97 5.49 0.08 
12/20/2016 6.01 5.55 0.08 
12/21/2016 6.01 5.80 0.04 
12/22/2016 6.06 5.91 0.02 
12/23/2016 6.19 6.15 0.01 
12/26/2016 6.20 6.43 0.04 
12/27/2016 6.23 6.30 0.01 
12/28/2016 6.25 6.57 0.05 
12/29/2016 6.32 6.30 0.00 
12/30/2016 6.37 6.99 0.10 
Total   0.64 
Daily variance    0.00 
Annualized 
Variance 

  0.06 

Annualized 
Standard deviation 

  0.25 

n    13 
MAPE   4.95% 
VaR (99%)  (RM478.67) 4.79% 
VaR (95%)  (RM282.8) 2.83% 
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Table 13 
MBSB 
Date Actual Forecast Error 
12/14/2016 0.90 0.93 0.04 
12/15/2016 0.91 0.89 0.02 
12/16/2016 0.90 0.95 0.06 
12/19/2016 0.90 0.91 0.01 
12/20/2016 0.90 0.84 0.06 
12/21/2016 0.90 0.85 0.06 
12/22/2016 0.91 0.89 0.02 
12/23/2016 0.91 0.89 0.02 
12/26/2016 0.91 0.86 0.06 
12/27/2016 0.92 0.86 0.06 
12/28/2016 0.92 0.91 0.01 
12/29/2016 0.90 0.94 0.05 
12/30/2016 0.90 0.95 0.05 
Total   0.51 
Daily variance    0.00 
Annualized 
Variance 

  0.03 

Annualized 
Standard deviation 

  0.17 

n    13 
MAPE   4.00% 
VaR (99%)  (RM671.62) 7.00% 
VaR (95%)  (RM323.79) 3.00% 

 
5. Conclusion 
 

In conclusion, this study successfully demonstrates the application of the Value-at-Risk (VaR) 
model using the historical simulation method to assess market risk in stock investments. The VaR 
model provides a quantitative measure of the potential loss in value of a portfolio under normal 
market conditions, thereby supporting investors and institutions in making informed risk 
management decisions. Additionally, the Geometric Brownian Motion (GBM) model was employed 
to forecast stock prices over a 14-day horizon, with the Mean Absolute Percentage Error (MAPE) used 
to evaluate the forecasting accuracy. The results indicate that both objectives of the study were 
achieved, affirming the effectiveness of non-parametric VaR analysis and GBM-based prediction for 
stock price behaviour. Future research can explore advanced risk estimation techniques such as the 
Delta-Normal and Delta-Gamma approaches, as well as integrating machine learning models to 
enhance forecasting precision and risk prediction in volatile markets. 
 
Acknowledgement 
This research was not funded by any grant.  
 
References  
[1] Abidin, Siti Nazifah Zainol, and Maheran Mohd Jaffar. "Forecasting share prices of small size companies in Bursa 

Malaysia using geometric Brownian motion." Applied Mathematics & Information Sciences 8, no. 1 (2014): 107. 
https://doi.org/10.12785/amis/080112 

[2] Alexander, Carol. Market risk analysis, quantitative methods in finance. John Wiley & Sons, 2008. 
[3] Berry, Romain. "Value-at-Risk: An overview of analytical VaR." Investment Analytics and Conculting, 

Septermber (2008). 
[4] Bo, Dai. "Value at risk." The National University of Singapore, Department of Mathematical (2001). 

https://doi.org/10.12785/amis/080112


Semarak International Journal of Fundamental and Applied Mathematics  
Volume 7, Issue 1 (2025) 23-38 

 

38 
 

[5] Brewer, Kevin D., Yi Feng, and Clarence CY Kwan. "Geometric Brownian motion, option pricing, and simulation: 
Some spreadsheet-based exercises in financial modeling." Spreadsheets in Education 5, no. 3 (2012): 4598. 

[6] Christoffersen, Peter. Elements of financial risk management. Academic press, 2011. 
https://doi.org/10.1016/B978-0-12-374448-7.00011-7 

[7] Dargiri, M. N., H. A. Shamsabadi, C. K. Thim, D. Rasiah, and B. Sayedy. "Value-at-risk and conditional value-at-risk 
assessment and accuracy compliance in dynamic of Malaysian industries." Journal of Applied Sciences 13, no. 7 
(2013): 974-983. https://doi.org/10.3923/jas.2013.974.983 

[8] Darmawan, Muhammad Rizky, and Fathi Atha Putra Widyono. "Comparative Analysis: Value at Risk (VaR) with 
Parametric Method, Monte Carlo Simulation, and Historical Simulation of Mining Companies in 
Indonesia." International Journal of Quantitative Research and Modeling 5, no. 4 (2024). 
https://doi.org/10.46336/ijqrm.v5i4.834 

[9] Dowd, Kevin. Measuring market risk. John Wiley & Sons, 2007. 
[10] Estember, Rene D., and Michael John R. Maraña. "Forecasting of stock prices using Brownian motion–Monte Carlo 

simulation." In International conference on industrial engineering and operations management, pp. 8-10. 2016. 
[11] Fabozzi, Frank J., and Harry M. Markowitz, eds. The theory and practice of investment management: Asset 

allocation, valuation, portfolio construction, and strategies. Vol. 198. John Wiley & Sons, 2011. 
https://doi.org/10.1002/9781118267028 

[12] Fransson, Cecilia, and Behnaz Alimohammadisagvand. "Market risk in volatile times: a comparison of methods for 
calculating Value at Risk." (2011). 

[13] Glasserman, Paul. Monte Carlo methods in financial engineering. Vol. 53. New York: springer, 2004. 
https://doi.org/10.1007/978-0-387-21617-1 

[14] Halulu, Sıla. "Quantifying the risk of portfolios containing stocks and commodities." PhD diss., Master Thesis. 
Boğaziçi University, 2012. 

[15] Harrington, Scott E., and Greg Niehaus. "Risk management and insurance." (1999). 
[16] Haugland, Jone. "Value-at-risk: A coherent measure of risk?." management 53, no. 3: 483-494. 
[17] Hull, J. and White, A., 1998. Incorporating volatility updating into the historical simulation method for value-at-

risk. Journal of risk, 1(1), pp.5-19. https://doi.org/10.21314/JOR.1998.001 
[18] Huo, Yanli, Chunhui Xu, and Takayuki Shiina. "Period value at risk and its estimation by Monte Carlo 

simulation." Applied Economics Letters 29, no. 18 (2022): 1675-1679. 
https://doi.org/10.1080/13504851.2021.1958136 

[19] Ibrahim, Siti Nur Iqmal. "Modeling rubber prices as a GBM process." Indian J. Sci. Technol 9 (2016): 1-6. 
https://doi.org/10.17485/ijst/2016/v9i28/97353 

[20] Ibrahim, Siti Nur Iqmal, and Nasrin Zulaikha Muda. "Comparison of GBM, GFBM and MJD models in Malaysian 
rubber prices forecasting." Malaysian Journal of Fundamental and Applied Sciences 19, no. 1 (2023): 73-81. 
https://doi.org/10.11113/mjfas.v19n1.2763 

[21] Jorion, P. (1997). Value at risk. McGraw-Hill, New York. 
[22] Kondapaneni, Rajesh. "A Study of the Delta-Normal Method of Measuring VaR." PhD diss., Worcester Polytechnic 

Institute, 2005. 
[23] Ladde, G. S., and Ling Wu. "Development of modified geometric Brownian motion models by using stock price data 

and basic statistics." Nonlinear Analysis: Theory, Methods & Applications 71, no. 12 (2009): e1203-e1208. 
https://doi.org/10.1016/j.na.2009.01.151 

[24] Wilmott, Paul. Paul Wilmott on quantitative finance. John Wiley & Sons, 2013. 
[25] Xie, Y. "Historical Simulation, Variance-Covariance and Monte Carlo Simulation Methods for Market Risk 

Assessment": From NASDAQ Index 2015–2024. Advances in Economics, Management and Political Sciences, 171, 
24–31. (2025). DOI: 10.54254/2754-1169/2025.21835. https://doi.org/10.54254/2754-1169/2025.21835 

[26] Zhao, Y., Wang, J., & Li, X. "Stock price forecasting using GBM and deep learning hybrid models." Expert Systems 
with Applications, 179, 115059. (2021). 

 
  

 
 
 
 

https://doi.org/10.1016/B978-0-12-374448-7.00011-7
https://doi.org/10.3923/jas.2013.974.983
https://doi.org/10.46336/ijqrm.v5i4.834
https://doi.org/10.1002/9781118267028
https://doi.org/10.1007/978-0-387-21617-1
https://doi.org/10.21314/JOR.1998.001
https://doi.org/10.1080/13504851.2021.1958136
https://doi.org/10.17485/ijst/2016/v9i28/97353
https://doi.org/10.11113/mjfas.v19n1.2763
https://doi.org/10.1016/j.na.2009.01.151
https://doi.org/10.54254/2754-1169/2025.21835

