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This study presents a semi-analytical solution to a two-dimensional moving boundary 
problem governed by the classical heat equation. The physical model represents heat 
conduction within a rectangular domain, where the boundary evolves dynamically over 
time due to phase change phenomena. A Stefan-type condition is imposed at the 
moving interface to capture the effect of latent heat exchange. The Homotopy Analysis 
Method (HAM) is employed to construct convergent series solutions for both the 
temperature field and the moving boundary function. Unlike standard applications of 
HAM where convergence control is achieved via an auxiliary parameter, the 
convergence of the series solution in this work is inherently guided by the imposed 
boundary conditions. This boundary-driven convergence ensures consistency between 
the evolving interface and the thermal field without requiring external tuning of 
convergence control parameters. The analytical results are compared with numerical 
benchmarks to validate the accuracy and reliability of the proposed approach. The 
study demonstrates that HAM provides a robust framework for analyzing two-
dimensional moving boundary problems with analytically tractable and physically 
consistent solutions. 
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1. Introduction 

 
Modeling heat transfer in systems undergoing phase change is a classical yet continually evolving area of 

applied mathematics and thermal physics. A prominent class of such problems is known as Stefan problems, 
where the domain boundary is not fixed but evolves over time due to latent heat exchange during phase 
transition [3,4]. These moving boundary problems arise naturally in numerous scientific and engineering 
contexts, including melting and solidification of materials, ice formation, thermal ablation, laser heating, and 
crystal growth [1,11]. Traditional approaches to solving Stefan problems often rely on numerical techniques 
such as finite difference, finite element, or front-tracking methods [2,10]. While powerful, these methods 
typically require discretization, introduce numerical diffusion, and often struggle with the accurate resolution 
of the moving boundary, especially in two-dimensional settings. Furthermore, they provide limited analytical 
insight into the structure of the solution and the interplay between the temperature field and the moving 
interface. 
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In contrast, semi-analytical techniques offer a valuable alternative for exploring such problems, 
particularly when a closed-form understanding of the solution structure is desired. Among these, the 
Homotopy Analysis Method (HAM)—first developed by Liao [6]—has emerged as a flexible and systematic 
approach for handling nonlinear problems without relying on small parameters or linearization. HAM 
constructs a convergent series solution through an embedding process that continuously deforms a simple 
initial guess toward the true solution [7, 8]. In this work, we apply HAM to a two-dimensional moving boundary 
problem governed by the classical heat conduction equation. A Stefan-type condition is imposed at the moving 
interface to capture the thermal flux associated with the phase change. Unlike conventional HAM 
implementations, the convergence control parameter ℏ is determined using the prescribed boundary 
conditions, rather than through the classical approach of minimizing the residual square of the original 
governing equation or using ℏ-level curves [13,14]. This boundary driven convergence ensures compatibility 
between the temperature solution and the evolving free boundary, leading to a physically consistent and 
analytically elegant solution framework [5,9,12,15]. 
 
2. Governing Equations 

 
Let Ω = {(𝑥, 𝑦, 𝑡) ∈ ℝ!|0 < 𝑥 < 1,0 < 𝑦 < 𝑝(𝑥, 𝑡), 0 < 𝑡 < 1} be the solution domain, where 𝑝(𝑥, 𝑡) is an 
unknown part of the boundary to be determined see Figure 1 for an illustration. The temperature distribution 
𝑢(𝑥, 𝑦, 𝑡) is unknown and to be determined during the solution process. The mathematical formulation for a 
moving boundary problem is given by 

𝑢" = 𝑢## + 𝑢$$ , 0 < 𝑥 < 1,0 < 𝑦 < 𝑝(𝑥, 𝑡), 0 < 𝑡 < 1                                                         (1) 

where the initial condition is  

𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦), 0 < 𝑥 < 1, 0 < 𝑦 < 𝑝(𝑥, 𝑡)                                                                   (2) 

with the following boundary conditions 

𝑢#(0, 𝑦, 𝑡) = 𝑎(𝑦, 𝑡), 0 < 𝑦 < 𝑝(𝑥, 𝑡), 0 < 𝑡 < 1                                                                   (3) 

 

𝑢(𝑥, 𝑝(𝑥, 𝑡), 𝑡) = 𝑏(𝑥, 𝑡),				0 < 𝑥 < 1, 0 < 𝑡 < 1                                                                   (4) 

   

Fig. 1. Solution domain 
     
3. Application of the Homotopy Analysis Method (HAM) 

Consider the differential equation 



Semarak International Journal of Fundamental and Applied Mathematics  
Volume 7, Issue 1 (2025) 15-22 

 

17 
 

ℵ[(𝜉, 𝑡)] = 𝜔(𝜉, 𝑡)                                                                                                                                 (5) 

where 𝜉 ∈ (𝑥, 𝑦). Using homotopy, a basic concept in topology 

(1 − 𝑞)ℒ[𝜑(𝜉, 𝑡; 𝑞) − 𝑢%(𝜉, 𝑡)] = ℏ𝑞ℋ(𝜉, 𝑡)ℵ[𝜑(𝜉, 𝑡; 𝑞) − 𝜔(𝜉, 𝑡)]                                          (6) 

where  ℒ is an auxiliary linear operator with the property 

ℒ[0] = 0                                                                                                                                                   (7) 

ℵ  -  the nonlinear operator related to the original equation (5), 

 𝑞 ∈ [0,1]  - the embedding parameter in topology (called the homotopy parameter), 

 𝜑(𝜉, 𝑡; 𝑞) -  the solution for equation (6) for 𝑞 ∈ [0,1], 

𝑢%(𝜉, 𝑡) –  the initial guess for 𝑢(𝜉, 𝑡), 

ℏ ≠ 0 -  the convergence control parameter, 

ℋ(𝜉, 𝑡) – an auxiliary function that is non – zero almost everywhere 

When 𝑞 = 0 due to the property ℒ[0] = 0 , equation (2) becomes 

𝜑(𝜉, 𝑡; 0) = 𝑢%(𝜉, 𝑡)                                                                                                                             (8) 

  

When 𝑞 = 1 , with ℏ ≠ 0 and ℋ(𝜉, 𝑡) ≠ 0 equation (2) becomes equivalent to the original nonlinear 
equation (5) so that we have 

𝜑(𝜉, 𝑡; 1) = 𝑢(𝜉, 𝑡)                                                                                                                             (9) 

 where 𝑢(𝜉, 𝑡) is the solution to equation (5).  As the homotopy parameter 𝑞 increases from 0 to 1, the 
solution 𝜑(𝜉, 𝑡; 𝑞) of equation (6) varies (or deforms) continuously from the initial guess 𝑢%(𝜉, 𝑡) to the 
solution 𝑢(𝜉, 𝑡) of the original equation (5). This is why equation (6) is called the zeroth-order deformation 
equation. 

If ℒ,ℋ(𝜉, 𝑡) and ℏ are properly chosen so that the solution 𝜑(𝜉, 𝑡; 𝑞) of the zeroth-order deformation 
equation (6) always exists for 𝑞 ∈ [0,1] and it is analytic at 𝑞 = 0; the Maclaurin series solution for 𝜑(𝜉, 𝑡; 𝑞) 
with respect to 𝑞, i.e. 

𝜑(𝜉, 𝑡; 𝑞) = 𝑢%(𝜉, 𝑡) + ∑ 𝑢&(𝜉, 𝑡)𝑞&'
&()                                                                                (10) 

 converges at 𝑞 = 1 . Then, due to equation (9), we have the approximation series 

𝑢(𝜉, 𝑡) = 𝑢%(𝜉, 𝑡) + ∑ 𝑢&(𝜉, 𝑡)'
&()                                                                                           (11) 

 

Substituting the series equation (10) into the zeroth-order deformation equation (6), we have the high-order 
approximation equations for 𝑢&(𝜉, 𝑡) called the mth-order deformation equation 

ℒ[𝑢&(𝜉, 𝑡) − 𝜒&𝑢&*)(𝜉, 𝑡)] = ℏℋ(𝜉, 𝑡)𝑅&(𝑢&*)(𝜉, 𝑡))                                                             (12) 

 

where 
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𝑅&(𝑢&*)(𝜉, 𝑡)) =
)

(&*))!
.!"#

./!"# H
.0(1,";/)

."
− (ℵ[𝜑(𝜉, 𝑡; 𝑞)] − 𝜔(𝜉, 𝑡))IJ

/(%
                                (13) 

and 

  𝜒& = K0, 𝑚 ≤ 1,
1,𝑚 > 1                                                                                                                                   (14) 

 

For our governing equations, equation (1) – equation (4) 

𝑅&O𝑢&*)(𝜉, 𝑡)P =
.4!"#(1,")

."
− .4!"#(1,")

.#$
− .4!"#(1,")

.$$
                                                                   (15) 

 

Now the solution of mth-order deformation equation (12) for 𝑚 ≥ 1 reads 

𝑢&(𝜉, 𝑡) = 𝜒&𝑢&*)(𝜉, 𝑡) + ℏℒ*)[ℋ(𝜉, 𝑡)𝑅&(𝑢&*)(𝜉, 𝑡))] + 𝑐                                                  (16) 

where 𝑐 is the integration constant which is determined by the initial condition 𝑢%(𝜉, 𝑡). 

Now from equation (16) the values 𝑢&(𝜉, 𝑡) for 𝑚 = 1,2,3, … can be obtained and the series solutions are 
thus gained. Finally, the approximate solution is gained by truncating the series as 
 
𝑢&(𝜉, 𝑡) = ∑ 𝑢5(𝜉, 𝑡)&

5(%                                                                                                                             (17) 
 
It is clear from equation (17) that 𝑢&(𝜉, 𝑡) contains the convergence control parameter ℏ , which determines 
the convergence region and rate of the homotopy series solution.  
 
Unlike the conventional Homotopy Analysis Method (HAM) where ℏ is found by using ℏ -level curves or by 
finding minimizing the residual square of the governing equation; we ℏ by setting 
 
(𝑢#(0, 𝑦, 𝑡))678 = 𝑎(𝑦, 𝑡)                                                                                                                         (18) 
 
for every time step. 
 
and the unknown boundary 𝑝(𝑥, 𝑡) is found by setting 
 
(𝑢(𝑥, 𝑝(𝑥, 𝑡), 𝑡))𝐻𝐴𝑀 = 𝑏(𝑥, 𝑡)                                                                                                                  (19) 
 
 
4. HAM Solutions to Some Examples 
 
 Consider equations (1) – (4), equation (18) and equation (19) 
 
Example 1 
 
𝑓(𝑥, 𝑦) = 𝑒𝑥𝑝 X#<$*=

>
Y − 1                                                                                                       (20) 

𝑎(𝑦, 𝑡) = )
>
𝑒𝑥𝑝 X"

?
+ $*=

>
Y                                                                                                          (21) 

𝑏(𝑥, 𝑡) = 0                                                                                                                                    (22) 
 
With the Exact Solutions as 
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𝑢(𝑥, 𝑦, 𝑡) = 𝑒𝑥𝑝 X"

?
+ #<$*=

>
Y − 1 , 𝑝(𝑥, 𝑡) = 2 − 𝑥 − )

=
𝑡                                                   (23) 

Using the methodology discussed in Section 3, we have the following error analysis for 𝑢(𝑥, 𝑡) and 𝑝(𝑥, 𝑡)  
when 𝑥 = 0.75	 and 𝑦 = 0.80 
 
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝐸𝑟𝑟𝑜𝑟	𝑓𝑜𝑟	𝑢(𝑥, 𝑦, 𝑡) = J(4(#,$,"))%&'()*(4(#,$,"))*+,	

(4(#,$,"))%&'()
J                                         (24)         

 
                                                   

Table 1 
Error analysis of 𝑢(𝑥, 𝑦, 𝑡)  when 𝑥 = 0.75	 and 𝑦 = 0.80 

𝑡 ℏ 𝑅𝐸	𝑓𝑜𝑟	𝑢(𝑥, 𝑦, 𝑡) 
0.1 -1.006276124 9.562582066 × 10!" 
0.2 -1.012604819 1.795153671 × 10!# 
0.3 -1.018986590 0.000001065509475 
0.4 -1.025421928 0.000004078436894 
0.5 -1.031911342 0.00001256044231 
0.6 -1.038455346 0.00003503653303 
0.7 -1.045054450 0.00009822970254 
0.8 -1.051709181 0.0003381623359 
0.9 -1.058420062 0.0000068316920 
1.0 -1.065187625 0.0008404889568 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝐸𝑟𝑟𝑜𝑟	𝑓𝑜𝑟	𝑝(𝑥, 𝑡) = J(A(#,"))%&'()*(A(#,"))*+,	
(A(#,"))%&'()

J                                                                (25) 

Table 2 
Error analysis of 𝑝(𝑥, 𝑡) when 𝑥 = 0.75 

𝑡 ℏ 𝑅𝐸	𝑓𝑜𝑟	𝑝(𝑥, 𝑡) 
0.1 -1.006276124 3.333333333 × 10!" 
0.2 -1.012604819 5.652173913 × 10!$ 
0.3 -1.018986590 3.027272727 × 10!# 
0.4 -1.025421928 0.000001002857143 
0.5 -1.031911342 0.000002576000000 
0.6 -1.038455346 0.000005637052632 
0.7 -1.045054450 0.00001105100000 
0.8 -1.051709181 0.00002001658824 
0.9 -1.058420062 0.00003415800000 
1.0 -1.065187625 0.00005568266667 

 
Example 2 

𝑓(𝑥, 𝑦) = 𝑠𝑖𝑛 X$*)
√=
Y 𝑠𝑖𝑛 X#<)

√=
Y                                                                                                          (26) 

𝑎(𝑦, 𝑡) = )
√=
𝑠𝑖𝑛 X$*)

√=
Y 𝑐𝑜𝑠 X )

√=
Y                                                                                                        (27)                                                                                                          

𝑏(𝑥, 𝑡) = 0                                                                                                                                            (28) 
 
Where the Exact Solutions are 
𝑢(𝑥, 𝑦, 𝑡) = exp(−𝑡) 𝑠𝑖𝑛 X$*)

√=
Y 𝑠𝑖𝑛 X#<)

√=
Y   , 𝑝(𝑥, 𝑡) = 1                                                            (29)  

 
Using the methodology discussed in Section 3, we have the following error analysis for 𝑢(𝑥, 𝑡) and 𝑝(𝑥, 𝑡)  
when 𝑥 = 0.25	 and 𝑦 = 0.75 
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                              Table 3 
                              Error analysis of 𝑢(𝑥, 𝑦, 𝑡) when 𝑥 = 0.25	and 𝑦 = 0.75 

𝑡 ℏ 𝑅𝐸	𝑓𝑜𝑟	𝑢(𝑥, 𝑦, 𝑡) 
0.1 -0.9255635660 1.625558975 × 10!" 
0.2 -0.8591393414 8.982602517 × 10!%& 
0.3 -0.7996214267 0 
0.4 -0.7460911000 5.485687747 × 10!%& 
0.5 -0.6977793714 1.576281867 × 10!" 
0.6 -0.6540380759 9.380327803 × 10!%& 
0.7 -0.6143173183 1.184784627 × 10!" 
0.8 -0.5781478638 1.309389515 × 10!" 
0.9 -0.5451270969 1.266211810 × 10!" 
1.0 -0.5149078483 2.199026453 × 10!" 

 
During the solution process,  

(𝑝(𝑥, 𝑡))𝐻𝐴𝑀 = 1                                                                                                                                           (30)   

Example 3 

𝑓(𝑥, 𝑦) = exp	(𝑥 + 𝑦)                                                                                                                                  (31) 
𝑎(𝑦, 𝑡) = exp	(𝑦)                                                                                                                                          (32)                                                                                                          
𝑏(𝑥, 𝑡) = 𝑥𝑡                                                                                                                                                    (33) 
 
Where the Exact Solutions are 
 
𝑢(𝑥, 𝑦, 𝑡) = exp	(2𝑡 + 𝑥 + 𝑦) , 𝑝(𝑥, 𝑡) = −2𝑡 − 𝑥 + ln	(𝑥𝑡)                                                             (34) 
 
Using the methodology discussed in Section 3, we have the following error analysis for 𝑢(𝑥, 𝑡) and 𝑝(𝑥, 𝑡)   
 

Table 4 
Error analysis for  𝑢(𝑥, 𝑦, 𝑡) when 𝑥 = 0.58 and 𝑦 = 0.27 

𝑡 ℏ 𝑅𝐸	𝑓𝑜𝑟	𝑢(𝑥, 𝑦, 𝑡) 
0.01 -1.015962058 1.466330422 × 10!$ 
0.02 -1.032309928 2.402336154 × 10!# 
0.03 -1.049055180 0.000001243799852 
0.04 -1.066210820 0.000004024447845 
0.05 -1.083791582 0.00001005758706 
0.06 -1.101811114 0.00002135678020 
0.07 -1.120284291 0.00004053270019 
0.08 -1.139226508 0.00007086390154 
0.09 -1.158654147 0.0001163721309 
0.1 -1.178583924 0.0001819133892 
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Table 5  
Error analysis for 𝑝(𝑥, 𝑡) when 𝑥 = 0.58 

𝑡 ℏ 𝑅𝐸	𝑓𝑜𝑟	𝑝(𝑥, 𝑦) 
0.01 -1.015962058 2.434820671 × 10!" 
0.02 -1.032309928 4.727433721 × 10!$ 
0.03 -1.049055180 2.61725445 × 10!# 
0.04 -1.066210820 9.096657182 × 10!# 
0.05 -1.083791582 0.000002382152858 
0.06 -1.101811114 0.000005262758578 
0.07 -1.120284291 0.00001032979921 
0.08 -1.139226508 0.00001859777500 
0.09 -1.158654147 0.00003134641989 
0.1 -1.178583924 0.00005015531792 

 
5. Analysis and Conclusion 
 

The numerical results obtained using the Homotopy Analysis Method (HAM) for both the temperature 
distribution 𝑢(𝑥, 𝑦, 𝑡) and the moving boundary 𝑝(𝑥, 𝑡) show excellent agreement with known or exact 
solutions. A key innovation in this study was the use of the boundary condition 𝑢#(0, 𝑦, 𝑡) to compute the 
convergence control parameter ℏ at each time step. This dynamic, boundary-driven approach led to 
significantly faster convergence, reduced computational time, and minimized relative error (RE). 

Unlike earlier applications of HAM, which commonly determine ℏ using heuristic ℏ-curves or by 
minimizing the average residual error of the discretized solution—often applying a single ℏ value across all 
time steps—our method adapts ℏ	at each time level based on physical boundary data. This customization 
enhances the accuracy and efficiency of the solution process. 

This study presents a novel and elegant approach for determining the convergence control parameter ℏ, 
one that can be extended to a wide range of linear and nonlinear ordinary and partial differential equations. 
We have demonstrated that HAM is not only suitable for one-dimensional problems but is also a powerful and 
flexible tool for solving complex two-dimensional moving boundary problems with strong physical and 
mathematical consistency. 
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