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In the work reported herein, numerical solutions of a memory-type generalized Fisher-
integro-differential equation is presented.  A composite weighted trapezoidal rule is 
manipulated to handle the numerical integration and   the governing partial differential 
equation is converted to a system of nonlinear algebraic equations. These procedures 
are explained in detail and solved straightforwardly. Different types of boundary 
conditions are examined; including the non-trivial Robin types.  Accuracy properties of 
the numerical scheme are confirmed by comparing the numerical results with analytical 
solutions obtained from literature. 
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1. Introduction 
 

The addition of a memory component into a partial differential equation defines an evolution 
equation that combines differential and integral operators. Such an equation otherwise known as a 
partial integro-differential equation (PIDE) is used to describe complicated systems where the rate 
of change of a scalar variable depends on its past and present values. It has an enormous application 
in various fields of science. For instance, PIDEs are used to model transport phenomena in such 
diverse areas as biomedical engineering [1], economics [2], population [3], heat and mass transfer 
[4], reaction-transport systems [5]. 

They have proven to be reliable especially in addressing cases where the determination of a scalar 
profile requires information from a preceding time interval. For example, a standard heat equation 
assumes a constant diffusion coefficient and instantaneous response to concentration. This cannot 
be valid especially for non-homogeneous media or high viscosity fluids conditioned by their complex 
internal structure. For example, a particle transported in a cellular environment is influenced by a 
non-constant or time dependent diffusivity. This is also relevant in social network where past 
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opinions or exposures for example ‘fake news’ can affect subsequent response via a diffusion 
process. 

Scientific literature is replete with information leading to different methods for the study of these 
type of equations. These include finite difference (FD), spectral and collocation techniques [6-20]. 
Continuous and discrete models have been applied to describe reaction transport systems with long 
range and memory interactions designed to achieve thermal efficiencies Ferreira and Pinto [21]. H 
eat equation with memory was further explored by Branco and Ferreira [22] by using the multiplier 
method and a general lemma about convergent and divergent series. Their study considered the 
hyperbolic equation as a singular perturbation of the heat equation with memory within the context 
of decay of solutions. A comprehensive treatment of finite difference (FD) based solutions of time-
memory diffusion can be found in [23]. 

 Basically, two important variables come into play, namely the proportionality of a flux gradient 
accompanied by the distribution of a scalar variable.  This idea finds relevance in several fields such 
as in the case of momentum flux caused by velocity gradients, in heat flux giving rise to temperature 
gradients   or in an electric current caused by an electric field. The introduction of a ‘memory’ term 
component in an integro-differential equation is an attempt to address an unphysical infinite 
propagation velocity that accompanies the appearance of flux at the onset of a gradient [21]. This 
has continued to be an active area of scientific research [6-20]. A good many of the numerical 
techniques applied to address this challenge often involves rigorous numerical techniques that do 
not guarantee straightforward application. Quite often the mathematical rigor alone obfuscates the 
physics of the problem. 

We address this concern by deliberately introducing an FD based method that is accurate, flexible 
and inexpensive. Problems with closed form solution taken from literature were used for comparison, 
and in all cases very accurate results were obtained in their overall analysis.  

The integro-differential equation to be discussed herein, represents a Fisher-type prototypical 
reaction-diffusion equation that includes the derivatives and the integration of the unknown function 
together with independent variables. Equations of this type have found application in various 
branches of science and engineering. A typical challenge encountered here is the numerical 
complication from both the nonlinearity and the integral component of the governing equation.   To 
prevail over this problem  Araujo et al.[24] , took into account the boundness of the transport process 
by introducing  a relaxation parameter   which represents the waiting time between two successive 
jumps of the particles whose movement we want to determine. 

In this paper, we adopt a numerical method based on a finite difference technique for dealing 
with both the derivative and an integral component of equation (1) in a straightforward manner. We 
obviate the numerical challenges encountered in the numerical solution especially in the resolution 
of the memory component by modifying the technique proposed by [24].  
 
2. Problem Formulation 

 
The governing differential equation for this work can be represented as: 

 

( ) ( )
( )/

,
0

t t sD
u q x t f u u u e u dsx xx xxt


 



− −
= + + + + 

 

(1) 

 
The initial and boundary conditions can generally be put in the form: 
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( ) ( )  

( ) ( ) ( )  

( ) ( ) ( )  

0 0 0

1 1 1

,0 , ,

, , ; 0,

, , ; 0,

x

x

u x p x x a b

u a t u a t b t t T

u b t u b t b t t T

 

 

= 

+ = 

+ = 
 

 

where ( ),u x t  is the unknown function;  2 2,t xxu u t u u x=   =    are the transient and diffusion 

terms.  , the relaxation parameter, ( ) ( ) ( ) ( )0 1, , , ,q x t p x b t b t  are prescribed functions which are 

continuous on the problem domain   . In addition, 0 1 0 1, , , , , , ,D and        are given constants 

and ( )f u   is a given function of the dependent variable or simply the reaction term. 

Consider nodal points ( ),k kx t  defined within a problem domain    , 0,a b T , 

 

1 2 1 1

1 2 1 1

where ...... , ,

and 0 ......... ,

M M i i

N N k k

a x x x x b x x x

t t t t T t t t

+ +

+ +

=    = − = 

=    = − = 
  

 
In a typical discrete representation of the space and time domains: 
 

( )

( )

1 1,2.... 1,

and 1 , 1,2,... 1

i

k

x a i x for i M

t k t k N

= + −  = +

= −  = +
   

 
A weighted trapezoidal rule is used to approximate the integral term.  

 

( ) ( ) ( )
1

1

1

12

Nt N

k k

kt

t
g s ds g t g t

+

+

=


 +    

(2) 

 
Hence, the diffusive integral kernel term is discretized as: 

 

( )

( ) ( )

1 1

1 1 1

1

,

0

, ,
12

N N s

N k N k

k k

t t

xx x s

t t t tN

xx x t xx x t
k

e u ds

t
e u e u



 

+ + −

+ + +

+

−

− −
− −

=



 
+ 

 





 

(3) 

 
A Taylor series central difference scheme is used for the flux or derivative term 
 

( )
( ) ( )1, 1,

,
2

x

u i k u i k
u i k

x

+ − −
=


 

(4) 

 
The boundary conditions, can be Dirichlet, Neumann or Robin. However, for the special case of 

the Robin; the discretization involving the boundary nodes ( ),x a x b= =   corresponding to 

1 1i and i M= = +  nodes respectively for M number of nodal spaces,  are represented  for the first 

and last nodes as: 
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( )
( ) ( )

( )2 0

1 0 0

, ,
,

2

k k

o k k

u x t u x t
u x t b t

x
 

− 
+ = 

 
 

(5) 

  

( )
( ) ( )

( )2

1 1 1 1

, ,
,

2

M k M k

M k k

u x t u x t
u x t b t

x
  +

+

− 
+ = 

 
 

(6) 

 
Eqs. (5) and (6) can be put in an easily computable form to read: 
 

( ) ( ) ( ) ( )0 0 2 0 1 0

0

1
, , 2 , 2k k k ku x t u x t x u x t xb t 


= +  −     

(7) 

  

( ) ( ) ( ) ( )2 1 1 1 1

1

1
, , 2 , 2M k M k M k ku x t u x t x u x t xb t 


+ += +  −     

(8) 

 
The above discretization stencils facilitate the application of a Crank-Nicolson (C-N) type scheme 

to the governing differential equation (equation (1.)) and is given as: 
 

( )
( )( ) ( )( )

( ) ( )

1
1 1 1

1 1 1 1

1 1

1 1 1 1 1 1

1 1 1 1 1 12 2
1

1

2 4

2 2 2
2 2

k k
k ki i k k k k k

i i i i ii i

t N t kN
k k k k k k k k k

i i i i i i i i i

k

u u
q f u f u u u u u

t x

D t
u u u u u u e u u u

x x








+
+ + +

+ − + −

+ − +
−

+ + + + + +

− + − + + −

=

−
   = + + + − + − +   


   − + + − + + − −    



 

(9) 

 

If the reaction function ( )f u  is nonlinear, it can be linearized via the Taylor series expansion as: 

 

( )( ) ( )( )
( ) ( ) ( ) ( )

( )
1 1

k

k k k k

i ii i

i

f u f u u f u
f u f u t t u u

t u t u

+ +
         

 +  = =  −      
         

 
(10) 

 
Eq. (9) can be factorized to read: 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1 12 2
1 1

12 2 2 2
1 1

1 12
1

12 2
1

2

2

1
4 2 2 2 2

4 2 2

4 2 2

kt N t k t N t kN N
k k

i i

k ki

t N t kN
k

i

k

f uDt t D t t t D t
u u

x x x u x x

Dt t D t
u

x x x

Dt t D t

x x

 



  

 

 



 



+ − + + − +
− −

+ +

−

− −

+ − +
−

+

+

−

        
 − − + − + + +   

            

  
+ + = 

    

 
− + +

  

 



( ) ( ) ( ) ( ) ( )

( ) ( )

( )( )

1 1 1 12

12 2 2
1 1

1 12

12 2
1

1
2 2

4 2 2

kt N t k t N t kN N
k k

i i

k ki

t N t kN
kk k

i i i
k

f ut t D t
u u

x u x x

Dt t D t
u tq t f u

x x x

 







 



+ − + + − +
− −

−

− −

+ − +
−

+

−

      
 + − − − +   

         

  
+ + +  +  

    

 



 

             (11) 
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Further simplification leads to a tri-diagonal matrix form. Subsequently, the following time 
evolution equation is solved for each node: 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

( )

1 1 1 12 2
1 1

12 2 2 2

1 12
1

12 2

12

2 2

1
4 2 2 2 2

4 2 2

4 2 2

kt N t k t N t k
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i i

i

t N t k

k

i
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f ut t D t t t D t
e u e u

x D x x u x x

t t D t
e u

x D x x

t t D t
e

x D x x

 



  

 

 



 



+ − + + − +
− −

+ +

−

+ − +
−

+

+

+ −
−

         
 − − + − + +   

            

   
− + + = 

    

  
− + +
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( ) ( ) ( ) ( )

( ) ( )

1 1 12

1 2 2

1 12

12 2

1
2 2

4 2 2

kt k t N t k

k k

i i

i

t N t k

k

i

f ut t D t
u e u

u x x

t t D t
e u

x D x x

 







 



+ + − +
−

−

+ − +
−

+

      
 + − − −   

         

   
+ + + 

    

 

(12) 

 
Eq. (12) is put in a compact form to read: 

 

( )
( )

( )

( )
( )

( ) ( )( )

1 1 1

2 1 1 1 2 1 1

1

2 1 3 1 1 3 2 1 3 1

1 0.5 2 2

1 0.5 2 2

k

k k k

i i i

i

k

kk k k k

i i i i i

i

f u
z z z u t z z u z z z u

u

f u
z z z u t z z u z z z u tq t f u

u

+ + +

− +

+

− +

  
 − − + −  + + − + + = 
   

  
 − + + + −  − − + + + +  +  
   

     (13) 

 
where  
 

1 1 1
2 2

, , ,
1 2 32 2 242 2 2

t N t k t N t k
D t t t D t

z e z z z e
xx x x

  

 

      
      

      
+ − + + −

− −   
= = = =

  

 

 
The final form of Eq. (13) depends on the specified boundary conditions on the first and the last 

nodes  ( )1 1

1 1,k k

Mu u+ +

+ . For the Dirichlet boundary conditions both the coefficient matrix and the right-

hand side (RHS) vector should be configured to yield the specified values at the terminal nodes as 
shown in Figure 1. 
 

 

1 1

2 1 2

1

3 3

4

1

2 2

1

1 1

1 1

0 0 0 . . . 0

0 0 0 . . 0

0 0 . . . 0 0

. . . . . . . . . 0 .

0. . . . . . . . . . .

. . . . . . . . . . .

0 0 0

0 0 . . . 0

0 0 0 0 0 0 0

k k

k

k

M M

k

M M

k k

M M M

a b u cu D

c a b u D

c a b D

c a b u D

c a b u D

c a u cu D

+ +

+

+

− −

+

− −

+ +

− − + 
 

−
 
 −
 
 
  =
 
 
 −
 

− 
 

− +   
Fig. 1. Matrix stencil for Dirichlet boundary condition 
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where a, c are the coefficients of 1 1 1

1 1, ,k k k

i i iu u u+ + +

− +
  respectively. 

On the other hand, both the derivative-related boundary conditions (Robin and Neumann) 
depend on the solution. Without any loss in generality we construct the solution matrix equation for 
the Robin boundary condition to yield (see Figure 2): 
 

1
1 1 11

1
22

1
33

1
11

1

1
2 2 11

0 0 0 . . . 0

0 0 0 . . 0

0 0 . . . 0

. . . . . . . . . ..

0. . . . . . . . . ..

. . . . . . . . . ..

0 0 0 0 0 0

0 0 . . . 0

0 0 0 0 0 0 0

k

k

k

k
MM

k
MM

k
MM

c c b a Du

c a b Du

c a b Du

c a b Du

c a b Du

c b c a Du

+

+

+

+
−−

+

+
++

− + 
 

−
 
 −
 
 
  =
 
 
 −
 

− 
 − +   

Fig. 2. Matrix stencil for Robin boundary condition 
 

The following substitutions hold for the first and last nodes. 
 

( )

( ) ( )( )1 10
1 2 1 0

0 0

for 1 first node

2 2
1k k

i

c x c x
a u c b u D b t k



 

+ +

=

  
+ + − = + + 

 

 

(14) 

  

( )

( ) ( )( )1 11
1 1 1

1 1

for 1 last node

2 2
1k k

M M M

i M

b x b x
c b u a u D b t k



 

+ +

+ +

= +

  
− + + = + + 

 

 

(15) 

 
where 
 

( )
( )

( ) ( )( )

( )
( )

( )( ) ( )( )

1 2 3 1 1 3 1 2 3 1

0 1
2 1 1 2 1 1 2

0 1

1 0 2 1

0 1

1 2 2
2

2 2
, 1 2 2 , , , ,

2

2 2
1 , 1

k

kk k k k

i i i i i i

i

k

i

f ut
D z z z u z z u z z z u tq t f u

u

f u c x b xt
c z z z a z z b z z z c a c a

u

c x b x
a b t k a b t k

 

 

 

− +

  
 = − + + − − − + + + +  +  
   

   
= − − = − + + = + + = + = + 

 

 
= + = +

 

   

3. Numerical Experiments 
 

Four examples are presented to support the utility of this method. Two of them come with 
analytic solutions while for the remaining the exact solutions are unknown. The transient numerical 
solutions for all the examples are plotted to demonstrate the time evolution of the profiles; and 
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where the analytic solution exists, the absolute error is chosen as a means of ascertaining the error 
associated with the numerical computations. These examples are solved using MATLAB 

 
2.1 Example 1 

 
Consider IPDE with a nonlinear reaction term 

 

( ) ( ) ( )2

2

0

1
, ,

2

t s
t

t xx xxu u u e u x s ds q x t



−−

= − + +                      (16) 

( ) ( ) ( )2 2, sin sint tq x t te x e x  − −= −       

 
Initial condition is: 
 

 
( ) ( ),0 sinu x x=

 
 

  Robin-type boundary conditions are specified as:   
 

( ) ( ) ( )

( ) ( ) ( )

2

2

0, 0,

1, 1,

t

x

t

x

u t u t e

u t u t e





−

−

+ =

+ = −
  

 
The analytic solution is given as:  

 

( ) ( ) ( )2
, sin

t
u x t e x

−
=  [15] 

 
The problem is solved with a step size, .02x = , and time step .001t = . Figures 3 and 4 show 

the plots of the numerical solutions at different time levels as well as the absolute errors. Figure 3 
bears an excellent agreement with the diagram displayed in [15] for the solution of the same 
problem.  

The magnitude of the absolute errors is highest in areas corresponding to those with the highest 
gradients in Figure 3 and decreases significantly on both sides of Figure 4. On the whole the 
magnitude of the absolute error shows a downward trend. 
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Fig. 3. 3D Temperature profiles for Example 1 

 

 
Fig. 4. Absolute errors for Example 1 

 
2.2 Example 2 
 

Here, modifications to the previous IPDE to read: 
 

( ) ( )2

2

0

1
,

2

t

t xx xx

t s
u u u e u ds q x t ds



−
= + + − +  

(17) 

 

where ( x,t )(0,1)(0,1 

The nonlinear reaction term remains the same, but the initial condition, the source term and the 
exact solution are all piecewise continuous. 

Initial condition: 
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( )
( )sin 0 0.5

,0
1 0.5 1

x x
u x

x

  
= 

 
 and boundary conditions ( ) ( )

( )
20, t 0, 1,

t

u u t e
−

= =  . The 

source term is given as 
 

( )
( ) ( )2 /2 2sin sin 0 0.5

, t
1 0.5 1.0

t tte x e x x
q x

x

  − − −  
= 

−  
 

 
And the exact solution: 
 

( )
( )/2 2

/2

sin 0 0.5
, t

0.5 1.0

t

t

e x x
q x

e x

−

−

  
= 

 
 

 
Unless expressed otherwise both the time and spatial step sizes remain the same. 
Figures 5, 6 and 7 display various aspects of the solution profiles at different time levels. Figure 5 

shows the shape of the numerical solution profiles as they evolve with time. The profiles of absolute 
errors at specific time periods are displayed in Figure 6. There is an overall downward trend as the 
computation proceeds. A 3D picture of the transient profiles is shown in Figure 7. This is in agreement 
with the profile shown in [15] for the solution of the same problem. 

 

 
Fig. 5. Time evolution of solution profiles for Example 2 
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Fig. 6. Magnitude of absolute errors at different time periods for Example 2 

 

 
Fig. 7. 3D temperature profiles for Example 2 

 
2.3 Example 3 

 
We consider the following IPDE for our third example. 

 

( )
( )

0.01

0

1 0.5 0.1 10
xx

t t s
u

t x xxu u u u u e ds
−

−
= − − + +   

(18) 

 

where ( x,t )(0,10)(0,10The following initial and boundary conditions apply: 
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( )
1, 0 5

,0
0, 5 10

x
u x

x

 
= 

 
 

 

Boundary conditions: ( ) ( )0, 1, 10, 0u t u t= = . 

Figures 8 and 9 are time evolution profiles of a problem whose analytical solution is not given. 
They are consistent with those displayed in [15] and [24] for an identical problem. 

 

 
Fig. 8. Transient solution profiles for Example 3 

 

 
Fig. 9. 3D solution profiles for Example 3 

 
 
 
 
 



Semarak International Journal of Fundamental and Applied Mathematics 

Volume 6, Issue 1 (2025) 14-27 

25 
 

2.4 Example 4 
 

Consider the following IPDE 
 

( )

( )2

0

2 0.1 ,

t t s

t xx xxu u u e u x s ds
−

−
= − + +   

(18) 

 

where ( x,t )(0,50)(0,1 Initial condition: ( ) ( )
2

,0 8.1sec 25u x h x= − . Dirichlet and homogeneous 

boundary conditions: ( ) ( )0, 0, 50, 0u t u t= = . 

Figures 10 and 11 obtained herein are found to be in good agreement with those in [15] and 
example 2 of [24]. It can be seen that not only do the solutions decay with time; they all attain an 
apogee at 𝑥 ≈ 25 for both diagrams in agreement with the specified initial condition. 

 

 
Fig. 10. Transient solution profiles for Example 4 
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Fig. 11. 3D solution profiles for Example 4 

 
4. Conclusions 
 

In this work, we have applied a straightforward technique to solve nonlinear integro-differential 
partial differential equations with diffusion type integral kernels and different boundary conditions. 
Results obtained are in agreement with those found in literature. Numerical experiments carried out 
support high accuracy as evidenced by comparing numerical and analytic solutions as well as the 
ability to effectively handle the delayed response of the diffusion process to changes in scalar 
gradient. This further confirms that our approach apart from its simplicity and applicability is able to 
handle transport processes that incorporates a ‘memory’ of the systems past behavior. Despite a 
better understanding of this process a lot of work still needs to be done in areas involving high-
viscosity fluids, nano fluids, biological systems involving transport in porous and heterogeneous 
media as well as electrochemical measurements. 
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