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In the subject of temperature distribution in a rod, the problem that is dealt with in the 
literature is one in which heat is transferred only through the cross section of a rod, 
without heat sources and with homogeneous boundary conditions. In this article, the 
one-dimensional heat equation is studied, considering heat transfer by convection on 
the lateral surface of a rod, Dirichlet boundary conditions and an initial arbitrary 
temperature distribution. This heat equation is derived from Fourier's law of 
conduction, the conservation of thermal energy, and Newton's law of cooling. A variant 
of an analytical method was used to find a solution, which meets the established initial 
condition and the boundary conditions. In the case of the initial condition, the 
convergence is not good at the ends of the rod due to the Gibbs phenomenon in the 
Fourier series. It is proved that such a solution can model the solution of less general 
problems. The solution found, contains a discontinuity when the convective thermal 
conductance is equal to zero, but taking the limit at this value, the function converges 
to the analytical solution where the convection factor is equal to zero. 
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1. Introduction 
 

The study of the theory of energy conduction by heat leads to a Partial Derivative Equation (PDE), 
known as the diffusion equation. When heat conduction is restricted to a spatial dimension, the 
diffusion equation is called the "heat equation" or one-dimensional heat equation. This equation 
plays an important role in a wide range of practical applications in different areas, such as 
thermodynamics and fluid mechanics, etc [1-4].  

The equation that is addressed in this article is the heat Eq. (1) with its boundary condition in the 
Eq. (2) (Dirichlet conditions) and its initial condition in the Eq. (3), which is a non-homogeneous linear 
PDE with boundary conditions also inhomogeneous, which makes it difficult to use general solution 
methods. This equation has a more practical meaning than the classical equation, since being 𝐻 ≠ 0, 
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convection is considered within the heat transfer process. A heat transmission mechanism that is 
generally considered is radiation [5], however in this work it is assumed that the rod is perfectly 
reflective on its surface. 

 
𝜕𝑇

𝜕𝑡
=  𝐷

𝜕2𝑇

𝜕𝑥2 − 𝐻(𝑇 − 𝑇𝑎),   0 < 𝑥 < 𝐿 , 𝑡 > 0         (1) 

 
𝑇(0, 𝑡) = 𝑇𝐴 , 𝑇(𝐿, 𝑡) = 𝑇𝐵, 𝑡 > 0             (2) 
 
𝑇(𝑥, 0) = 𝑓(𝑥), 0 < 𝑥 < 𝐿                  (3) 

  
The inhomogeneous heat equation is commonly studied in university textbooks on differential 

equations and advanced mathematics, for this reason it is important to verify that Eq. (1) with its 
conditions (2) has not been solved. In [6,7] the Eq. (4) with its conditions (5) and (6) is proposed and 
the solution in stable state is requested, that is, when 𝑡 → ∞, that in this case the solution is Eq. (7). 
The approach to this problem with values at the boundary (BVP) is similar to the BVP of equation (1), 
with the difference that 𝐿 = 1, 𝑇(𝐿, 𝑡) = 0,  but what is asked is not its general solution. Also, these 
references the BVP for Eq. (8) is proposed, where 𝑇𝑎 = 0 y 𝑇(0, 𝑡) = 0, constituting a particular case 
of the BVP of Eq. (1) with the corresponding conditions, see Eqs. (9) and (10).  

 
𝜕𝑇

𝜕𝑡
= 𝐷

𝜕2𝑇

𝜕𝑥2 − 𝐻(𝑇 − 𝑇𝑎)  ,   0 < 𝑥 < 𝐿 , 𝑡 > 0         (4) 

 
𝑇(0, 𝑡) = 𝑇𝑎  , 𝑇(1, 𝑡) = 0,    𝑡 > 0             (5) 
 
𝑇(𝑥, 0) = 𝑓(𝑥), 0 < 𝑥 < 1               (6) 
 

 𝜓(𝑥) = 𝑇𝑎 (1 −
𝑠𝑖𝑛ℎ√𝐻/𝐷𝑥

𝑠𝑖𝑛ℎ√𝐻/𝐷
)                  (7) 

 
𝜕𝑇

𝜕𝑡
= 𝐷

𝜕2𝑇

𝜕𝑥2 − 𝐻𝑇  ,   0 < 𝑥 < 𝜋 , 𝑡 > 0          (8) 

 
𝑇(0, 𝑡) = 0, 𝑇(1, 𝑡) = 𝑇𝑎,    𝑡 > 0              (9) 
 
𝑇(𝑥, 0) = 𝑓(𝑥), 0 < 𝑥 < 𝜋                          (10) 

 
The method of separation of variables is used directly when both the partial derivative equation 

and the boundary conditions are homogeneous [8]. The boundary conditions with prescribed 
temperature can be temporary or non-temporary, in this article they are considered non-temporary. 
In [9], the BVP of Eq. (1) is not stated. In [10] the problem proposed in this article is presented in the 
section "Some important partial differential equations". Conditions (2) and (3) are stated and the 
deduction of Eq. (1) is assigned, but the solution of the PDE is not requested nor is it indicated how 
to solve it. 

In [11], the Eq. (1) is not proposed, the closest that is done is to propose the substitution of 
𝑇(𝑥, 𝑡) = 𝜙(𝑥, 𝑡)𝑒−𝐻𝑡  where 𝐻 is a constant, to reduce Eq. (1) with 𝑇𝑎 = 0 to a homogeneous heat 
equation. 

A search was performed using the keyword Heat equation on google scholar and no analysis or 
solution for this equation was found. Science Direct searched the 2010-2024 interval with the words 
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"Heat equation", "inhomogeneous heat equation" in the area of "Find articles with these terms”. The 
“Title” field was also placed with the phrase “An inhomogeneous heat equation with inhomogeneous 
boundary conditions: an analytical solution”. About 28 articles containing the keywords were found, 
but the approach or solution of Eq. (1) was not found.  Al-Nuaimi et al., [12] performed a study on 
the transient temperature response of a cracked plate under thermal shock; with the methodology 
they proposed, partial derivation was avoided as well as discontinuity problems.  Kovács [13] carried 
out a review of the equations used to analyze heat transfer in models not based on the law of heat 
conduction. 

 
1.1 Statement of the Problem and Physical Interpretation 

 
In the Eq. (1), the term 𝐻(𝑇 − 𝑇𝑎) represents convective heat transfer between a surface and a 

surrounding fluid [14], where H is the convective thermal conductance in W/K or W/ C 
° , 𝑇 is the 

temperature on the surface of the rod and 𝑇𝑎 is the temperature of the surrounding fluid or ambient 

temperature, both in K or C 
° . The term 𝜕2𝑇 𝜕𝑥2⁄  represents the extent to which the material 

surrounding a point is hotter or colder than the point on the rod [1]. According to the second law of 
thermodynamics, energy flows from bodies with a higher temperature to those with a lower 
temperature, so the temperature at a point x on the rod will vary at a rate ∂T⁄∂t which will depend 
on the fact that so cold or hot (expression 𝐷(𝜕2𝑇 𝜕𝑥2⁄ )) and now the term 𝐻(𝑇 − 𝑇𝑎)) is also 
considered is the surrounding medium, in Figure 1 a diagram is shown physics of the heat flow in the 
thin rod. The derivation of Eq. (1) is based on the law of conservation of energy, Fourier's law of 
conduction, and Newton's law of cooling; its deduction without considering convection can be found 
in different sources [7,8]. The deduction of Eq. (1) is shown in the section 2.2. 

 
The main contributions of this work are: 
 
i) Find a function of the temperature 𝑻(𝒙, 𝒕) that satisfies the conditions (1), (2) and (3). 

ii) Analyze how the solution found can model less general problems posed in the literature. 
 

 
Fig. 1. Heat flow in a through a cross section A in an interval of length L 

 
2. Methodology and problem solving 
 

The method used to solve Eq. (1), is a variant of an analytical method presented by Zill and Gullen 
[6], which is used to solve non-homogeneous equations or with non-homogeneous boundary 
conditions, such as the one shown in shown in Eq. (11) with its conditions (12) and (13). This method 
consists of applying the substitution 𝑇1(𝑥, 𝑡) = 𝑣1(𝑥, 𝑡) + 𝜓1(𝑥)  to reduce the original problem to 
two problems, problems A and B as can be seen below.  

𝑥 = 𝐿 𝑥 = 0 

𝑇 = 𝑇𝐴 𝑇 = 𝑇𝐵 

𝑥 

Cross section  Cross heat flow  

Lateral heat 

flow  
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𝜕𝑇

𝜕𝑡
= 𝐷

𝜕2𝑇

𝜕𝑥2   ,   0 < 𝑥 < 𝐿 , 𝑡 > 0                      (11) 

 
𝑇(0, 𝑡) = 𝑇𝐴  , 𝑇(𝐿, 𝑡) = 𝑇𝐵, 𝑡 > 0                        (12) 
 
𝑇(𝑥, 0) = 𝑓(𝑥), 0 < 𝑥 < 𝐿                           (13) 

 
Problem A:          
 

{
𝑘 𝜓1

′′ + 𝐹(𝑥) = 0           

 𝜓1(0) = 𝑇𝐴                          

 𝜓1(0) = 𝑇𝐵                        

                                             

 
Problem B:   

 

{

∂v1

∂t
= D

∂2v1

∂x2                    

v1(0, t) = 0, v1(L, t) = 0         

v1(x, 0) = f(x) − ψ(x)          

                      

 
When developing the method of [6], it is found that the solution of Eq. (11) and that satisfies the 

conditions (12) and (13) is 
 

𝑇1(𝑥, 𝑡) = 𝑉1(𝑥, 𝑡) + 𝜓1(𝑥) = ∑ 𝐴𝑛𝑒−𝐷𝜆2𝑡𝑠𝑒𝑛 (
𝑛𝜋

𝐿
𝑥)∞

𝑛=1 + (
𝑇𝐵−𝑇𝐴

𝐿
) 𝑥 + 𝑇𝐴                (14) 

 
where 

 

𝐴𝑛 =
2

𝐿
∫ [𝑓(𝑥) − 𝜓(𝑥)]

𝐿

0

𝑠𝑒𝑛
𝑛𝜋

𝐿
𝑥𝑑𝑥 . 

 
2.1 Problem Solving 
 

In order to transform Eq. (1) into homogeneous, we substitute 𝑇 − 𝑇𝑎 = 𝑢 in Eq. (1), so that Eq. 
(15) is obtained with its conditions (16) and (17). 

 

𝐷
𝜕2𝑢

𝜕𝑥2 − 𝐻𝑢 =  
𝜕𝑢

𝜕𝑡
  , 0 < 𝑥 < 𝐿 , 𝑡 > 0                       (15) 

 
𝑢(0, 𝑡) = 𝑇𝐴 − 𝑇𝑎, 𝑢(𝐿, 𝑡) = 𝑇𝐵 − 𝑇𝑎                          (16) 
 
𝑢(𝑥, 0)  = 𝑓(𝑥) − 𝑇𝑎                                (17) 

 
Now it is replaced  𝑢(𝑥, 𝑡) = 𝑉(𝑥, 𝑡) + 𝜓(𝑥) in Eq. (15), obtaining: 
 

𝐷
𝜕2𝑉

𝜕𝑥2
+ 𝐷

𝑑2𝜓

𝑑𝑥2
− 𝐻𝑉 − 𝐻𝜓 =  

𝜕𝑉

𝜕𝑡
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This equation can be separated, and equalize the separation constant to zero, in order that the 
equations are homogeneous, which will allow to use the method of separation of variables 

 

𝐷
𝜕2𝑉

𝜕𝑥2
+ −𝐻𝑉 −

𝜕𝑉

𝜕𝑡
=  − 𝐷

𝑑2𝜓

𝑑𝑥2
+ 𝐻𝜓 = 0  

 
From this assumption, two differential equations to be solved are derived, Eqs. (18) and (19); 

when it is applying the conditions (16) and (17) to this equations, two non-homogeneous boundary 
conditions are obtained, as can be seen in the Eqs. (20)-(22). 

 

− 𝐷
𝑑2𝜓

𝑑𝑥2 + 𝐻𝜓 = 0                         (18) 

 

𝐷
𝜕2𝑉

𝜕𝑥2 − 𝐻𝑉 −
𝜕𝑉

𝜕𝑡
= 0                            (19) 

 
𝑉(0, 𝑡) = 𝑇𝐴 − 𝑇𝑎 − 𝜓(0)                      (20) 
 
𝑉(𝐿, 𝑡) = 𝑇𝐵 −  𝑇𝑎 − 𝜓(𝐿)                           (21) 
 
𝑉(𝑥, 0) = 𝑓(𝑥) − 𝜓(𝑥) − 𝑇𝑎                           (22) 
 

From Eqs. (20) and (21) it follows that  𝑉(0, 𝑡) and 𝑉(0, 𝑡) are constants, which are chosen as 
𝑉(0, 𝑡) = 𝑉(L, 𝑡) = 0 to have conditions of homogeneous boundary and thus be able to use the 
method of separation of variables in Eq. (19). The boundary conditions and the initial condition that 
will be applied in the resolution of Eqs. (18) and (19) are shown in (23). 

 

{

𝜓(0) = 𝑇𝐴 −  𝑇𝑎   

𝜓(𝐿) = 𝑇𝐵 −  𝑇𝑎  

𝑉(𝑥, 0) = 𝑓(𝑥) − 𝜓(𝑥) − 𝑇𝑎    

                     (23) 

 
The general solution of the ordinary differential Eq. (18) is the Eq. (24): 
 

𝜓(𝑥) = 𝑐1𝑐𝑜𝑠ℎ(√𝐻/𝐷 𝑥) + 𝑐2𝑠𝑖𝑛ℎ(√𝐻/𝐷 𝑥)                   (24) 

 
where 𝑐1 and 𝑐2 are obtained by applying the boundary conditions in (23), result: 
 

𝑐1 = 𝑇𝐴 − 𝑇𝑎  , 𝑐2 =
𝑇𝐵 − 𝑇𝑎 − (𝑇𝐴 − 𝑇𝑎 ) 𝑐𝑜𝑠ℎ(√𝐻/𝐷 𝐿)

𝑠𝑖𝑛ℎ(√𝐻/𝐷 𝐿)
 .  

 
To solve Eq. (15) we substitute the expression the product of functions 𝑉(𝑥, 𝑡) = 𝜙(𝑥) ℎ(𝑡), 

obtaining   𝜙′′/𝜙 = (ℎ′ + Hℎ)/𝐷ℎ, since these expressions must be equal to a constant, the 
constant−𝜆2 is chosen which guarantees a solution with physical significance for both ordinary 
differential equations,  𝜙′′/𝜙 = (ℎ′ + Hℎ)/𝐷ℎ = −𝜆2, from which the differential equations are 
obtained 

 
 𝜙′′ + 𝜆2𝜙 = 0                        (25) 
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 ℎ′ + (𝐻 + 𝐷𝜆2)ℎ = 0                      (26) 
 

whose solutions are: 
 
𝜙(𝑥) = 𝑐3 𝑐𝑜𝑠(𝜆𝑥) + 𝑐4 𝑠𝑖𝑛(𝜆𝑥)                     (27) 
 

ℎ(𝑡) = 𝑐5𝑒−(𝐻+𝐷𝜆2)𝑡                          (28) 
 

Substituting Eqs. (27) and (28) in 𝑉(𝑥, 𝑡) = 𝜙(𝑥) ℎ(𝑡)  we obtain the preliminary solution 

presented in the Eq. (29), where   𝑐3 = 0;   𝑐4 sin(𝜆𝐿) = 0 → 𝜆𝐿 = 𝑛𝜋 →   𝜆 =
𝑛𝜋

𝐿
, 𝑛 =

1,2,3,4 … . ;  𝐴 = 𝑐4𝑐5, this is due to the boundary conditions 𝑉(0, 𝑡) = 𝑉(𝐿, 𝑡) = 0. 
 

𝑉(𝑥, 𝑡) = [𝑐3 𝑐𝑜𝑠(𝜆𝑥) +  𝑐4 𝑠𝑖𝑛(𝜆𝑥)][𝑐5𝑒−(𝐻+𝐷𝜆2)𝑡]  = 𝐴𝑒−(𝐻+𝐷𝜆2)𝑡𝑠𝑖𝑛 (
𝑛𝜋

𝐿
𝑥)              (29) 

 
Now A must be determined, for which the initial condition 𝑉(𝑥, 0) = 𝑓(𝑥) −  𝜓(𝑥) − 𝑇𝑎 is 

applied, in this case, we cannot find a simple value for the coefficient A that satisfies With this 
condition, this coefficient is obtained by applying the orthogonality of the sine function on the 
interval (0, 𝐿). By means of the superposition principle [15] the solution for Eq. (19) is established: 

         

𝑉(𝑥, 𝑡) = ∑ 𝐴𝑛𝑒−(𝐻+𝐷𝜆2)𝑡𝑠𝑖𝑛 (
𝑛𝜋

𝐿
𝑥)∞

𝑛=1                                (30) 

 
where 
 

𝐴𝑛 =
2

𝐿
∫ [𝑓(𝑥) − 𝜓(𝑥) − 𝑇0]

𝐿

0
𝑠𝑖𝑛 (

𝑛𝜋

𝐿
𝑥) 𝑑𝑥   

 
Finally, we have that the solution of Eq. (1), subject to the boundary conditions (2) and initial 

condition (3) is 𝑇(𝑥, 𝑡) = 𝑉(𝑥, 𝑡) + 𝜓(𝑥) + 𝑇𝑎, that is to say:  
 

𝑇(𝑥, 𝑡) = 𝑒−𝐻𝑡 ∑ 𝐴𝑛𝑒−𝐷𝜆2𝑡𝑠𝑖𝑛 (
𝑛𝜋

𝐿
𝑥)∞

𝑛=1 + 𝑐1𝑐𝑜𝑠ℎ(√𝐻/𝐷 𝑥) + 𝑐2𝑠𝑖𝑛ℎ(√𝐻/𝐷 𝑥) + 𝑇𝑎             (31) 

 
where:  
 
𝑐1 = 𝑇𝐴 − 𝑇𝑎 

𝑐2 =
𝑇𝐵−𝑇𝑎−(𝑇𝐴−𝑇𝑎 )𝑐𝑜𝑠ℎ(√𝐻/𝐷 𝐿)

𝑠𝑖𝑛ℎ(√𝐻/𝐷 𝐿)
  

𝐴𝑛 =
2

𝐿
∫ [𝑓(𝑥) − 𝜓(𝑥) − 𝑇𝑎]

𝐿

0
𝑠𝑖𝑛

𝑛𝜋

𝐿
𝑥𝑑𝑥, 𝑛 = 1,2,3,4, … ..  

 
2.2 Deduction of Eq. (1) 
 

Let us consider any segment of finite length , 𝑥 = 𝑎 to 𝑥 = 𝑏, of the rod (see Figure 2), in this 
figure 𝜙(𝑥, 𝑡) is the heat flux, quantity of thermal energy per unit time that flows through cross 
section A per unit area, in J/m2s ; 𝑄(𝑥, 𝑡) is the thermal energy generated per unit volume and per 
unit time, in J/m3s. 
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Fig. 2. Heat flux in a through a cross section A in an interval of length [𝑎, 𝑏] 

 

The total thermal energy in the interval [𝑎, 𝑏] is 𝐸𝑇,𝑡𝑜𝑡𝑎𝑙 = ∫ 𝑒(𝑥, 𝑡)𝐴
𝑏

𝑎
𝑑𝑥, where 𝑒(𝑥, 𝑡) is the 

thermal energy density in J/m3 and A is transverse of the rod in m2, as shown in Eq. (32). For 
conservation of energy, this energy must equal the energy transferred on the cross surface (𝐸𝐶𝑟𝑜𝑠𝑠)  
and the energy transferred on the lateral surfaces (𝐸𝐿𝑎𝑡𝑒𝑟𝑎𝑙), as well as the energy due to heat 
sources, as shown in Eq. (35). In Eq. (34), 𝑤(𝑥, 𝑡) is a surface energy density in J/m2, defined for the 
energy transferred on the lateral surface. 

 

𝐸𝑇,𝑡𝑜𝑡𝑎𝑙 = ∫ 𝑒(𝑥, 𝑡)𝐴
𝑏

𝑎
𝑑𝑥 = 𝐸𝐶𝑟𝑜𝑠𝑠 + 𝐸𝐿𝑎𝑡𝑒𝑟𝑎𝑙 + 𝐸𝑄                   (32) 

 

𝐸𝐶𝑟𝑜𝑠𝑠 = ∫ 𝜙(𝑎, 𝑡)𝑑𝐴
 

𝑆
+ (− ∫ 𝜙(𝑏, 𝑡)𝑑𝐴

 

𝑆
) = 𝐴[𝜙(𝑎, 𝑡) − 𝜙(𝑏, 𝑡)] = −𝐴 ∫

𝜕𝜙

𝜕𝑥

𝑏

𝑎
𝑑𝑥              (33) 

 

𝐸𝐿𝑎𝑡𝑒𝑟𝑎𝑙 = ∫ 𝑤(𝑥, 𝑡)𝑑𝐴
 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒
= ∫ ∫ 𝑤(𝑥, 𝑡) 𝑑𝑥 𝑟𝑑𝜃

𝜃=2𝜋

𝜃=0

𝑥=𝑏

𝑥=𝑎
= 2𝜋𝑟 ∫ 𝑤(𝑥, 𝑡)

𝑏

𝑎
               (34) 

 

𝐸𝑄 = ∫ 𝑄
𝑏

𝑎
𝐴𝑑𝑥 = 𝐴 ∫ 𝑄

𝑏

𝑎
𝑑𝑥                       (35) 

 
Substituting these last three expressions in the Eq. (32) we obtain 
 

∫
𝜕𝑒

𝜕𝑡
 𝑑𝑥

𝑏

𝑎
= −𝐴 ∫

𝜕𝜙

𝜕𝑥

𝑏

𝑎
𝑑𝑥 + 2𝜋𝑟 ∫ 𝑤(𝑥, 𝑡)

𝑏

𝑎
𝑑𝑥 + 𝐴 ∫ 𝑄

𝑏

𝑎
𝑑𝑥   

∫ (
𝜕𝑒

𝜕𝑡
+

𝜕𝜙

𝜕𝑥
− 𝑄 − 2𝜋𝑟

𝑤

𝐴
)  𝑑𝑥

𝑏

𝑎
= 0  

 
where from 
 
𝜕𝑒

𝜕𝑡
= −

𝜕𝜙

𝜕𝑥
+ 𝑄 + 2𝜋𝑟

𝑤

𝐴
                       (36) 

 
Specific heat and temperature can be related by the equation ecuación 𝑒(𝑥, 𝑡) = 𝜌 𝑐(𝑥) 𝑇(𝑥, 𝑡) 

[8], substituting this expression in Eq. (36), the Eq. (37) is obtained. 
 

𝑐(𝑥)𝜌(𝑥)
𝜕𝑇

𝜕𝑡
= −

𝜕𝜙

𝜕𝑥
+ 𝑄 + 2𝜋𝑟

𝑤

𝐴
                     (37) 

 
The next step is to apply Fourier's law of heat conduction, which is based on the following 

observations: 1) if the temperature is constant in a region, the thermal energy does not flow; 2) If 
there are temperature differences, the energy flows from the hottest to the coldest region; 3) the 
greater the temperature difference (for the same material), the greater the flow of thermal energy; 
4) the flow of thermal energy is different for different materials, even with the same temperature 
difference. These observations are summarized by Eq. (38), known as Fourier's law. In Eq. (38), 𝜕𝑇 𝜕𝑥⁄  
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represents the change in temperature per unit length, and the sign “-” indicates that the heat flow is 
in the direction in which the temperature decreases. The coefficient of proportionality K0 measures 
the ability of the material to conduct heat and is called thermal conductivity. Experiments indicate 
that K0 depends on the type of material. A material with a high value of K0 is a good conductor of 
thermal energy, whereas a material with a small value of K0 could function as an insulator of thermal 
energy. 

 

𝜙 = −𝐾0
𝜕𝑇

𝜕𝑥
                        (38) 

 

Substituting 𝜙 from Eq. (38) into Eq. (37) we obtain Eq. (39).  
 

𝑐𝜌
𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐾0

𝜕𝑇

𝜕𝑥
) + 𝑄 +

2𝜋𝑟

𝐴
𝑤                       (39) 

 
To continue with the deduction, the following is assumed: 
 
i) There are no sources, that is, 𝑄 = 0 

ii) The rod is uniform, so 𝑐 , 𝜌 , 𝑦 𝐾0 are constants 
iii) The speed with which the energy (power) flows in the lateral area is given by Newton's law 

of cooling:  𝑃𝑙 = −ℎ𝐴𝑙(𝑇 − 𝑇0 )  , where ℎ is the convection coefficient (the larger this 
value, faster energy is transferred) The units of ℎ are W/m2K. 

 
Since the intensity in the lateral area (power per unit area) is represented, it will be expressed as 
 

𝑤 =
𝑃𝑙

𝐴𝑙
= −ℎ(𝑇 − 𝑇0 )                      (40) 

 
Applying these assumptions in Eq. (39), the Eq. (1) is obtained: 
 

𝜕𝑇

𝜕𝑡
=  𝐷

𝜕2𝑇

𝜕𝑥2 − 𝐻(𝑇 − 𝑇0 ).  

 
In the Eq. (1), 𝐻 is the convective thermal conductance with units of s−1 and 𝐷 is the thermal 

diffusivity of the rod with units of m2 s⁄  in the SI units’ system. The expressions to obtain the values 
of 𝐻 and 𝐷 from more basic properties are shown in Eqs. (41) and (42), respectively. 

 

𝐻 =
2𝜋𝑟

𝑐𝜌𝐴
ℎ =

2𝜋𝑟

𝑐𝜌𝜋𝑟2 ℎ =
2ℎ

𝑐𝜌𝑟
                      (41) 

 

𝐷 =
 𝐾0

𝑐𝜌
                          (42) 

 
3. Discussion 
3.1 Analytic Expression Analysis 
 

It can be easily verified that Eq. (31) satisfies the boundary conditions (2) and (3). Regarding the 
initial condition, for an infinite summation of terms in 𝑉(𝑥, 𝑡) with 𝑡 = 0, the summation must 
converge to the function 𝑓(𝑥) − 𝜓(𝑥) − 𝑇𝑎 that when added to 𝜓(𝑥) + 𝑇𝑎 would give 𝑓(𝑥) which is 
what is required in condition (3). 
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When we take 𝑇(0, 𝑡) = 𝑇𝐴 = 𝑇𝑎 , 𝑇(𝐿, 𝑡) = 𝑇𝐵 = 0, 𝐿 = 1 in Eq. (31), we obtain Eq. (43), which 
is the general solution of Eq. (4) with its boundary conditions in the Eqs. (5) and (6). Taking the limit 
lim
𝑡→0

𝑇(𝑥, 𝑡)  in (43) we obtain the solution in steady state of (4). Therefore, function (43) is a more 

general solution than Eq. (30).  
 

𝑇(𝑥, 𝑡) = 𝑒−𝐻𝑡 ∑ 𝐴𝑛𝑒−𝐷𝜆2𝑡𝑠𝑖𝑛 (
𝑛𝜋

𝐿
𝑥)∞

𝑛=1 + 𝑇𝑎 (1 −
𝑠𝑖𝑛ℎ(√𝐻/𝐷𝑥)

𝑠𝑖𝑛ℎ(√𝐻/𝐷)
)                 (43) 

 
Solution (31) cannot be considered as a solution that models the case 𝐻 = 0 directly, since this 

solution becomes indeterminate when H equals zero, because 𝑐2 tends to infinity when 𝐻 tends to 
zero. Next, it is determined whether solution (31) converges to Eq. (14) when 𝐻 approaches zero. 

We take the limit 𝐻 → 0 in Eq. (31), 
 

𝑙𝑖𝑚
𝐻→0

𝑇(𝑥, 𝑡) = 𝑙𝑖𝑚
𝐻→0

 {𝑒−𝐻𝑡 ∑ 𝐴𝑛𝑒−𝐷𝜆2𝑡𝑠𝑖𝑛 (
𝑛𝜋

𝐿
𝑥)∞

𝑛=1 } + 𝑙𝑖𝑚
𝐻→0

{𝜓(𝑥)} + 𝑇𝑎  

= ∑ 𝐴𝑛𝑒−𝐷𝜆2𝑡𝑠𝑖𝑛 (
𝑛𝜋

𝐿
𝑥)∞

𝑛=1 + 𝑙𝑖𝑚
𝐻→0

{𝜓(𝑥)} + 𝑇𝑎  

 
It is observed that the time-dependent part of (31) converges to the time-dependent part in Eq. 

(14), lim
𝐻→0

𝑉(𝑥, 𝑡) ≈ 𝑣1(𝑥, 𝑡), now we work with the independent part of time lim
𝐻→0

{𝜓(𝑥)} + 𝑇𝑎. 

 

𝑙𝑖𝑚
𝐻→0

{𝜓(𝑥)} + 𝑇𝑎 ≈ 𝑙𝑖𝑚
𝐻→0

{𝑐1𝑐𝑜𝑠ℎ(√𝐻/𝐷 𝑥) + 𝑐2𝑠𝑖𝑛ℎ(√𝐻/𝐷 𝑥)} + 𝑇𝑎 

= 𝑙𝑖𝑚
𝐻→0

{𝑐1𝑐𝑜𝑠ℎ(√𝐻/𝐷 𝑥)} + 𝑙𝑖𝑚
𝐻→0

{𝑐2𝑠𝑖𝑛ℎ(√𝐻/𝐷 𝑥)} + 𝑇𝑎              

= 𝑇𝐴 −  𝑇𝑎 + 𝑙𝑖𝑚
𝐻→0

{𝑐2𝑠𝑖𝑛ℎ(√𝐻/𝐷 𝑥)} + 𝑇𝑎                           

= 𝑙𝑖𝑚
𝐻→0

{
𝑇𝐵−𝑇𝑎−(𝑇𝐴−𝑇𝑎 )𝑐𝑜𝑠ℎ(√𝐻/𝐷 𝐿)

𝑠𝑖𝑛ℎ(√𝐻/𝐷 𝐿)
𝑠𝑒𝑛ℎ(√𝐻/𝐷 𝑥)} + 𝑇𝐴      

= 𝑙𝑖𝑚
𝐻→0

{𝑇𝐵 − 𝑇𝑎 − (𝑇𝐴 − 𝑇𝑎 )𝑐𝑜𝑠ℎ(√𝐻/𝐷 𝐿)} × 𝑙𝑖𝑚
𝐻→0

{
𝑠𝑖𝑛ℎ(√𝐻/𝐷 𝑥)

𝑠𝑖𝑛ℎ(√𝐻/𝐷 𝐿)
} + 𝑇𝐴  

= 𝑇𝐴 + (𝑇𝐵 − 𝑇𝐴) × 𝑙𝑖𝑚
𝐻→0

{
𝑠𝑖𝑛ℎ(√𝐻/𝐷 𝑥)

𝑠𝑖𝑛ℎ(√𝐻/𝐷 𝐿)
}    

 
It is observed in this last expression, that when substituting 𝐻 = 0  the expression 

sinh(√𝐻/𝐷𝑥)/sinh(√𝐻/𝐷 𝐿) gives an indeterminacy 0/0, this indeterminacy allows to use the rule 

of l'Hôpital: 
 

𝑙𝑖𝑚
𝐻→0

{𝜓(𝑥)} + 𝑇𝑎 ≈ (𝑇𝐵 − 𝑇𝐴) × 𝑙𝑖𝑚
𝐻→0

{
𝜕

𝜕𝐻
𝑠𝑖𝑛ℎ(√𝐻/𝐷 𝑥)

𝜕

𝜕𝐻
𝑠𝑖𝑛ℎ(√𝐻/𝐷 𝐿)

} + 𝑇𝐴  

= (𝑇𝐵 − 𝑇𝐴) × 𝑙𝑖𝑚
𝐻→0

{

1

2𝐷
(

𝐻

𝐷
)

−
1
2𝑥 𝑐𝑜𝑠ℎ(√

𝐻

𝐷
 𝑥)

1

2𝐷
(

𝐻

𝐷
)

−
1
2𝐿 𝑐𝑜𝑠ℎ(√

𝐻

𝐷
 𝐿)

} + 𝑇𝐴  

 = (𝑇𝐵 − 𝑇𝐴) ×
𝑥 𝑙𝑖𝑚

𝐻→0
{𝑐𝑜𝑠ℎ(√𝐻/𝐷 𝑥)}

𝐿 𝑙𝑖𝑚
𝐻→0

{𝑐𝑜𝑠ℎ(√𝐻/𝐷 𝐿)}
+ 𝑇𝐴  

 = (𝑇𝐵 − 𝑇𝐴) ×
𝑥 

𝐿
+ 𝑇𝐴 = (

𝑇𝐵−𝑇𝐴

𝐿
) 𝑥 + 𝑇𝐴 .   
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It has then been confirmed that lim
𝐻→0

𝑇(𝑥, 𝑡) ≈ 𝑇1(𝑥, 𝑡) , see in the Eq. (14).  This result implies 

that the solution in the Eq. (43) can be used for the case 𝐻 = 0, approaching 𝐻 to zero, in the next 
section a numerical evaluation is carried out to show this approximation. 

 
3.2 Numerical Evaluation of the Analytical Solution 

 
To numerically evaluate the analytical solution, use the data in Table 1, and the calculated 

parameters from Table 2. The values of D and H are determined with Eqs. (41) and (42). The 
temperature distribution in the rod is shown will assume as constant to simplify the calculations in 
this case 𝑓(𝑥) = 15.0 C 

° . The evaluation is carried out in MATLAB [16], 200 terms are used in the 
Fourier series, the solution (22) is evaluated in 8 times, from zero seconds to 5400 s (90 min). Values 
of 𝑥 range from 𝑥 = 0 to 𝑥 = 0.500m in steps of 0.0025 m. With these data, the graphs in Figure 3 
and Figure 4 are constructed, which show the temperature distribution along the rod, for 𝐻 =
8.3043 × 10−5𝑠−1 and  𝐻 = 8.3043 × 10−25𝑠−1, respectively. 

Figure 3 shows that 𝑥 = 0 and 𝑥 = 0.500m, the solution (30) diverges considerably from the 

expected value 𝑓(𝑥) = 15.0 C 
° , this is because these are points of discontinuity, for which the Gibbs 

phenomenon is presented. When 90 minutes have passed, a distribution is shown according to the 

function 𝜓(𝑥) = 𝑐1cosh(√𝐻/𝐷 𝑥) + 𝑐2sinh(√𝐻/𝐷 𝑥) that has the shape of a concave curve 

towards above. It is observed in Figure 4, that when 𝐻 ≈ 0 the final temperature distribution 
converges to the linear function 𝜓1(𝑥) as it was demonstrated analytically. 
 

Table 1 
Rod parameters and other data in equation (1) 
Parameter Value Units  

Material: steel -- -- 
Density (𝜌) 7850 kg/m3 
Thermal conductivity (𝐾0) 50 W/ms 
Specific heat (𝑐) 460 J/kg• C 

°  
Length (𝐿) 0.500 m 
Diameter  (𝑑) 0.0800 m 
Convection coefficient1 (ℎ) 5.867 W/m2 C 

°  
Temperature at the extreme A (𝑇𝐴) 70.0 C 

°  
Temperature at the extreme B (𝑇𝐵) 20.0 C 

°  
Temperature 𝑇𝑎 25.0 C 

°  

 
Table 2 
Calculated parameters 
Parameter Formula  Value Units  

Side area 𝐴𝑙 = (𝜋𝑑)𝐿 0.1257 m2 

Diffusivity 𝐷 =  𝐾0/(𝜌𝑐) 1.41x10−5 m2/s 

convective thermal conductance 𝐻 = 2ℎ /(𝑐𝜌𝑟) 8.30x10−5 s-1 

 
 
 
 
 
 
 

 



Semarak International Journal of Fundamental and Applied Mathematics  

Volume 5, Issue 1 (2025) 70-81 

80 
 

 
Fig. 3. Temperature distribution for 𝐻 = 8.3043 × 10−5𝑠−1 

 

 
Fig. 4. Temperature distribution for 𝐻 = 8.3043 × 10−25𝑠−1  

 
4. Conclusions 

 
In this article the problem of heat conduction along a rod with heat transfer by convection in the 

lateral surface was approached, the boundary conditions were those of Dirichlet and the condition 
the initial temperature distribution was an arbitrary function of 𝑥. The development of this problem 
leads to the non-homogeneous one-dimensional heat equation with boundary conditions that are 
also non-homogeneous. This equation was solved using the substitutions 𝑢(𝑥, 𝑡) = 𝑇(𝑥, 𝑡) − 𝑇𝑎 and 
𝑢(𝑥, 𝑡) = 𝑉(𝑥, 𝑡) + 𝜓(𝑥), and imposing homogeneous boundary conditions in the derived equations 

𝜓 (𝑥) = 𝑐1cosh(√𝐻/𝐷𝑥) + 𝑐2sinh(√𝐻/𝐷𝑥) 

𝜓 (𝑥) ≈ 𝜓1(𝑥) = (
𝑇𝐵 − 𝑇𝐴

𝐿
) 𝑥 + 𝑇𝐴 
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of the procedure. The obtained function was evaluated analytically and also numerically in MATLAB 
to analyze the temperature distribution in the rod. The main conclusions are presented below: 

 
i) The solution found for the one-dimensional heat equation with convection heat transfer on 

the lateral surface, meets the Dirichlet boundary conditions. In the case of the initial 
condition, the convergence is not good at the ends of the rod due to the Gibbs phenomenon 
in the Fourier series. 

ii) The solution obtained presents a discontinuity when the convective thermal conductance 
is zero, 𝐻 = 0. However, when taking the limit 𝐻 → 0 in the solution obtained, it converges 
to the solution of the case in which there is no convection 𝐻 = 0, so that the solution 
obtained can be considered as a general solution, since it can model convection and non-
convection on the lateral surface. 

iii) The steady-state solution of the solution to the heat equation raised (1) is a linear 
combination of the functions cosh and sinh, which presents a slight concavity, while if 
convection were negligible, the steady-state distribution it would be linear. 
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