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This paper investigates the flow and heat transfer of Jeffrey micropolar fluid across a 
stretching sheet with the effect of convective boundary conditions. The governing 
boundary layer equation in the form of partial differential equations are transformed 
into ordinary differential equations and solved numerically using RKF45 approach by 
Maple Software. The effects of Prandtl number, Deborah number, velocity slip, 
material parameter, Biot number, concentration of microelement and stretching 
parameter on the velocity, microrotation and temperature profiles as well as skin 
friction coefficients and the local Nusselt number are presented and discussed. There 
is excellent agreement between the current and previously published data. The results 
revealed that as Pr increases, the boundary layer becomes thinner and reduces the 
temperature. The effect of Deborah number are increased the relaxation time and 
velocity while increasing the velocity slip parameter k, concentration of 
microelements, stretching stretch parameter and Biot number increases the heat 
transfer coefficient which improves the fluid's temperature as well as the thickness of 
its thermal boundary layer. It has been discovered that increasing material parameter 
K causes a decrease in fluid velocity while for microrotation profiles K gradually 
increases until one maximum value and then gradually decreases until it is 
asymptotically zero. 
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1. Introduction 
 

The study of non-Newtonian fluids continues to be a hot issue. The unique characteristics of non-
Newtonian fluids in pharmaceuticals, physiology, fibers technology, food products, wire coating, 
crystal growth, and other fields have generated interest in this field of research. Several research of 
non-Newtonian fluids in various geometries have been carried out due to the practical and 
fundamental relation of these fluids to industrial applications.  
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In an asymmetric channel, Nadeem et al., [1] demonstrated the peristaltic flow of a Jeffrey fluid 
with changing viscosity. Khan et al., [2] documented some unsteady Jeffrey fluid flows between two 
side walls over a plane wall, whereas Hayat et al., [3] studied the boundary layer flow of a Jeffrey 
fluid with the influence of convective boundary conditions. Hayat et al., [4] also discusses the effects 
of thermal radiation endoscope and magnetic field on the mixed convection stagnation point flow of 
Jeffery fluid. In addition, research activities on magnetic field flow under various circumstances have 
been discovered by several authors [5,6]. 

Vajravelu et al., [7] on the other hand, investigated the impact of heat transfer on the peristaltic 
transport of Jeffrey fluid in a vertical porous stratum. Turkyilmazoglu and Pop [8] found an exact 
numerical model for flow and heat transmission around the stagnation point on a 
stretching/shrinking sheet. Zin et al., [9] analyzed the effect of Newtonian heating and thermal 
radiation on the combined heat and mass transfers for an unstable free convection MHD flow of 
Jeffrey fluid through an oscillating vertical plate. Another study by  

Although many publications have been focused on the Jeffrey fluid: however, the numerical 
solution considering the microrotation effect is very scarce. Eringen [10] established the theory of 
micropolar fluid, which includes microscopic characteristics such as microrotation and rotational 
inertia of microelements and belongs to the class of non-symmetric stress tensors. This theory is 
capable of explaining the deformation of complex engineering structures, whereas the Navier–Stokes 
model is incapable to explain [11]. Micropolar fluid is a subset of Eringen's micromorphic fluid theory, 
which he introduced first. This fluid is designed to simulate fluids with hard randomly oriented 
particles suspended in a viscous medium with an important micro motion in rotation. Colloidal fluids, 
biological fluids in thin vessels and polymeric suspensions are examples of micropolar fluids in real 
life [12].  

Most previous studies were specifically directed to Jeffrey fluid only, whereas very few were 
found to include the microrotation effect. Therefore, the present study aims to explore the Jeffrey 
fluid flow over a stretching sheet with microrotation effect under convective boundary condition. 
The governed partial differential equations (PDEs) are reduced to ordinary differential equations 
ODEs by applying the similarity transformation variables. The resulting ODEs will be tackled via 
Runge-Kutta Fehlberg Method encoded in Maple software. 
 
2. Problem Formulation 

 
Consider the steady two-dimensional flow over a stretching sheet submerged in an 

incompressible and electrically conducting Jeffrey fluid at ambient temperature 𝑇∞. The rectangular 
Cartesian coordinates (𝑥, 𝑦) are applied with the 𝑥 and 𝑦 axes being measured parallel to and normal 
to the plate, respectively, and the fluid occupying the region 𝑦 ≥ 0. A uniform magnetic field of 
strength 𝐵0  is applied normal to the stretching sheet and directed in the positive y direction. Since 
the magnetic Reynolds number is considered to be small, the induced magnetic field is negligible. 
Figure 1 illustrates the physical model and coordinate system of this problem.  
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Fig. 1. Physical model of the coordinate system 

 
The PDEs involving the continuity, momentum, microrotation and energy can be expressed as 

follows: 
 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0              (1) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

𝑣+
𝜅

𝜌

1+𝜆1
[

𝜕2𝑢

𝜕𝑦2 + 𝜆2 (𝑢
𝜕3𝑢

𝜕𝑥𝜕𝑦2 −
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑦2 +
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑣

𝜕3𝑢

𝜕𝑦3)] + 𝑢𝑒
𝜕𝑢𝑒

𝜕𝑥
+

𝜅

𝜌

𝜕𝑁

𝜕𝑦
     (2) 

 

𝑢
𝜕𝑁

𝜕𝑥
+ 𝑣

𝜕𝑁

𝜕𝑦
=

𝛾

𝜌𝑗

𝜕2𝑁

𝜕𝑦2 −
𝜅

𝜌𝑗
(2𝑁 +

𝜕𝑢

𝜕𝑦
)                       (3) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘∗

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2                         (4) 

 
subject to boundary conditions:  
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where 𝑢 and 𝑣 are the velocity components along the 𝑥 and 𝑦-axes, 𝜈 is the kinematic viscosity, 𝜅 is 
a vortex viscosity, 𝜌 is the fluid density, 𝑢𝑒 is the velocity outside the boundary layer, 𝑁 is the 
component of microrotation vector normal to the 𝑥 and 𝑦-axes, 𝛾 the spin gradient, 𝑗 = 𝑣/𝑎 is the 
microinertia density, 𝑎 is an arbitrary constants, 𝑇 is the temperature, 𝑘∗ is the thermal conductivity, 
𝑐𝑝 is the specific heat capacity, 𝑐 is an arbitrary constants, 𝑔𝑥 is slip constant depending on the 𝜆1 

and 𝑛 is the concentration of microelements in the range of 0 ≤ 𝑛 ≤ 1 respectively. Here, 𝑛 =
0 indicates the concentrated particle flows in which the microelements close to the wall surface are 
unable to rotate (𝑁 = 0). The disappearance of the anti-symmetric component of the stress tensor 

is represented by 𝑛 =
1

2
 which is referred as the weak concentration. 𝛾 is defined as 
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where 𝜇 is a dynamic viscosity and 𝐾 = 𝜅/𝜇 is denoted as material parameter. The following 
similarity transformation variables are introduced to the Eq. (1)-(5). 

 

𝜂 = 𝑦√
𝑐(1+𝜆1)

𝜐
   , 𝑢 = 𝑐𝑥

𝜕𝑓

𝜕𝜂
,  𝜐 = −√

𝑐𝜐

1+𝜆1
𝑓(𝜂)   , 𝑁 = 𝑐𝑥√

𝑐(1+𝜆1)

𝜐
𝑔(𝜂) ,   𝜃 =

𝑇−𝑇∞

𝑇𝑓−𝑇∞
                (7) 

 
The resulting equations can then be expressed as 
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𝜃′′ + 𝑃𝑟𝑓𝜃′ = 0                                                                        (10) 

 
where the transformed boundary conditions take the following form: 

 

𝑓(0) = 0 , 𝑓′ = 1 + 𝑘𝑓′′(𝜂) ,  𝑔(𝜂) = −𝑛𝑓
′′

(𝜂),  𝜃′ = −𝐵𝑖(1 − 𝜃) at 𝜂 = 0 

𝑓′ → 𝛿 , 𝑓′′ → 0 ,  𝑔 → 0 ,  𝜃 → 0 as 𝜂 → ∞                                                             (11) 

 
3. Result and Discussion 

 
The resulting equations (8)–(11) are solved numerically by using the RKF45 method encoded in 

Maple software. The numerical analysis is presented graphically on the velocity 𝑓′(𝜂), microrotation 
profiles 𝑔(𝜂) and temperature profiles 𝜃′(𝜂) to investigate the various parameters of Prandtl 
number, Deborah number, velocity slip, material parameter, Biot number, concentration of 
microelement and stretching parameter. The results of this research are first validated by comparing 
them with the previously published study as shown in Table 1. For various values of Prandtl number 
Pr, the presented heat transfer −𝜃′(𝜂) results are compared with Turkyilmazoglu and Pop [8] and 
Rawi et al., [12]. The table clearly shows that the comparison values are in a strong agreement. As a 
result, it is possible to conclude that the RKF45 method is effective, and the results presented in this 
study are accurate and reliable. 

 
Table 1 
Comparative values of heat transfer coefficient −𝜃′(0) for various values of Prandtl number 𝑃𝑟 
when 𝐾 = 0, 𝑘 = 0, 𝑛 = 0, 𝛽 = 2, 𝛿 = 1, 𝐵𝑖 → ∞, 𝑏𝑙𝑡 = 12 
𝑃𝑟 Turkyilmazoglu and Pop [8] Rawi et al., [12] Present results 

2 1.12837917 1.128732 1.12834543 
5 1.78412412 1.785519 1.78405347 
10 2.52313252 2.527078 2.52305404 

 
Figures 1 - 10 show the distribution of velocity 𝑓′(𝜂), microrotation 𝑔(𝜂), and temperature 𝜃(𝜂) 

at a fixed value of 𝑛 = 0 for various physical parameters of interest. The boundary condition 𝑛 =
0 corresponds to the no spin condition, which occurs when the particle density is sufficiently high 
that the microelements close to the wall are unable to rotate. These results also support the 
computation for this investigation because they satisfy the boundary condition used.  
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Figure 1 shows the effect of the Prandtl number on the temperature profile 𝜃(0). It is observed 
that as the Prandtl number increases, the temperature profiles rapidly decrease. This behaviour is 
expected because fluid has high thermal conductivity at lower 𝑃𝑟 values and heat diffuse away from 
the surface faster than at higher 𝑃𝑟 values. As a result, as 𝑃𝑟 increases, the boundary layer becomes 
thinner and reducing the temperature. 

 

 
Fig. 1. The temperature profiles for various values of 𝑃𝑟 
when 𝐾 = 0.5, 𝑘 = 0.2, 𝑛 = 0, 𝛽 = 0.5, 𝛿 = 0.1, 𝐵𝑖 =
1.5, 𝑏𝑙𝑡 = 5 

 
Figures 2 and 3 depict the distribution of velocity and microrotation for various values of Deborah 

number. The velocity increases as the Deborah number increases, whereas the temperature profile 
shows the opposite behaviour. This is in line with the fact that a larger Deborah number corresponds 
to a longer relaxation time. It is also observed that the microrotation profile decreases near the sheet 
but twists the pattern where the profiles begin to increase and become zero far away from the sheet. 
For a fluid with extremely small relaxation time, a very small Deborah number can be obtained and 
the fluid will act like a solid if the Deborah number is very large. 
 

  
Fig. 2. The velocity profiles for various values of 𝛽 
when 𝐾 = 0.5, 𝑘 = 0.2, 𝑛 = 0, 𝛿 = 0.1, 𝐵𝑖 =
1.5, 𝑃𝑟 = 0.71, 𝑏𝑙𝑡 = 20 

Fig. 3. The microrotation profiles for various 
values of 𝛽 when 𝐾 = 0.5, 𝑘 = 0.2, 𝑛 = 0, 𝛿 =
0.1, 𝐵𝑖 = 1.5, 𝑃𝑟 = 0.71, 𝑏𝑙𝑡 = 20 
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Figures 4 and 5 show the effects of material parameter 𝐾 on velocity 𝑓′(𝜂) and microrotation 
𝑔(𝜂). It has been discovered that increasing 𝐾 causes a decrease in fluid velocity. Meanwhile, for 
microrotation profiles, the rate of microrotation gradually increases with 𝐾 until one maximum value 
and then gradually decreases until it is asymptotically zero. 
 

  
Fig. 4. The velocity profiles for various values of 𝐾 
when 𝛽 = 0.5, 𝑘 = 0.2, 𝑛 = 0, 𝛿 = 0.1, 𝐵𝑖 =
1.5, 𝑃𝑟 = 0.71, 𝑏𝑙𝑡 = 20 

Fig. 5. The microrotation profiles for various 
values of 𝐾 when 𝛽 = 0.5, 𝑘 = 0.2, 𝑛 = 0, 𝛿 =
0.1, 𝐵𝑖 = 1.5, 𝑃𝑟 = 0.71, 𝑏𝑙𝑡 = 20 

 

Figure 6 indicates that temperature increases for larger thermal Biot number 𝐵𝑖 as convective 
heat transfer coefficient enhances through increasing thermal Biot number 𝐵𝑖. The Biot number is a 
ratio of the temperature drop in the solid material to the temperature drop in the solid and the fluid. 
So, for smaller 𝐵𝑖, most of the temperature drop is in the fluid and the solid may be considered 
isothermal. Therefore, 𝐵𝑖 enhances both the temperature field and thermal boundary layer 
thickness. A lower 𝐵𝑖 means that the conductive heat transfer is much faster that the convective heat 
transfer. 

 

 
Fig. 6. The temperature profiles for various values of 
𝐵𝑖 when 𝛽 = 0.5, 𝑘 = 0.2, 𝐾 = 0.5, 𝑛 = 0, 𝛿 =
0.1, 𝑃𝑟 = 0.71, 𝑏𝑙𝑡 = 15 
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Figures 7 and 8 show that the microrotation profile and temperature profile is greatly influenced 
by the velocity slip parameter 𝑘. When the values of the velocity slip parameter increase, the 
temperature profile rises while velocity profile and microrotation profile drop. It is discovered that 
increasing the velocity slip parameter k increases the heat transfer coefficient which improves the 
fluid's temperature as well as the thickness of its thermal boundary layer. 

 

  
Fig. 7. The temperature profiles for various values of 
𝑘 when 𝛽 = 0.5, 𝐾 = 0.5, 𝑛 = 0, 𝛿 = 0.1, 𝑃𝑟 =
0.71, 𝑏𝑙𝑡 = 15, 𝐵𝑖 = 1.5 

Fig. 8. The microrotation profiles for various values 
of 𝑘 when 𝛽 = 0.5, 𝐾 = 0.5, 𝑛 = 0, 𝛿 = 0.1, 𝑃𝑟 =
0.71, 𝑏𝑙𝑡 = 15, 𝐵𝑖 = 1.5 

 
Figure 9 shows the distribution of velocity for various values of stretching parameter. The velocity 

and microrotation are increased as the values of stretching stretch parameter increases while the 
temperature profile shows the opposite behaviour. 

 

 
Fig. 9. The velocity profiles for various values of δ when 
𝛽 = 0.5, 𝐾 = 0.5, 𝑛 = 0, 𝑃𝑟 = 0.71, 𝑏𝑙𝑡 = 15, 𝐵𝑖 =
1.5, 𝑘 = 0.2 

 
Figure 10 shows the distribution of microrotation for various values of concentration of 

microelements. In the case of strong concentration, the microelements are not able to rotate near 
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the walls so it can be seen that the microrotation becomes zero at the plates. This figure shows that 
increasing the micropolar parameter causes an increase in the thermal boundary layer thickness, 
which causes the temperature profile to rise, but the increase is not considerable. 

 

 
Fig. 10. The microrotation profiles for various values of 
𝑛 when 𝛽 = 0.5, 𝐾 = 0.5, 𝑃𝑟 = 0.71, 𝑏𝑙𝑡 = 15, 𝐵𝑖 =
1.5, 𝑘 = 0.2, 𝛿 = 0.1 

 
4. Conclusions 
 

This paper aims to investigate at Jeffrey fluid flow over a stretching sheet with microrotation 
effect under convective boundary conditions. The partial differential equations of the proposed 
model are reduced into ordinary differential equations using the similarity transformation variables. 
The resulting equations have been solved by using the RKF45 method. The numerical algorithm was 
carried out by using the Maple software. The graph for velocity, microrotation, and temperature 
profiles is shown against several involved parameters. It is found that the parameters that have been 
discussed also improved with the addition of Biot number and concentration of microelements. The 
obtained numerical results can provide the theoretical prediction that may serve as a baseline for 
fluid flow in engineering applications and other fluid related fields. Note that, the Jeffrey fluid is 
important in pharmaceuticals, physiology, fibers technology, food products, wire coating, crystal 
growth and other fields. 
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