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This research addresses the challenge of managing and securing external assets in an 
organization’s digital infrastructure. As the attack surface grows due to factors like 
software updates, configuration changes, outdated security policies, and the addition 
of new assets, organizations become increasingly vulnerable to security threats. 
Without proper forecasting and analysis, these trends can lead to inefficiencies in 
resource allocation and expose critical assets to cyberattacks. the Autoregressive 
Integrated Moving Average model was employed to forecast changes in the external 
attack surface and prediction the quantity of total assets exposed over time. Next, 
multivariate linear regression was used to analyse the relationships between various 
factors. Influence diagrams was used to visualize the different factors, uncertainties, 
and decisions interact in the context of resource allocation and security planning. The 
results presented those certain factors, such as frequent software updates and the 
addition of new assets, significantly contributed to the expansion of the attack surface. 
Then, the strongest predictors of asset exposure were identified, which allowed for 
more targeted interventions. The influence diagrams provided a clear, visual 
representation of how these factors interact, aiding in the understanding of complex 
security scenarios. This research analysing critical relationships with multivariate linear 
regression, organizations can better allocate resources to mitigate risks.  
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1. Introduction 
 

Today's IT ecosystems encompass numerous endpoints and assets spread across diverse 
locations and devices, including core networks, regional offices, subsidiaries, and third-party hosting 
providers. This dispersion presents challenges in monitoring and increases the risk of exploitation by 
adversaries. Failing external assets effectively can lead to unauthorized access, data breaches, service 
disruptions, malware infections, and reputational loss. Determining the external attack surface is 
crucial, especially for government entities aiming to bolster the security of digital assets facing the 
internet [1,2]. External Attack Surface Management (EASM) plays a vital role in identifying, assessing, 
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and managing risks associated with internet-facing assets and systems. By deploying EASM, 
organizations can evaluate their external attack surface, which comprises potential entry points or 
weaknesses accessible from the outside world and exploitable by adversaries. This evaluation 
enables preemptive security measures to mitigate potential threats [3-5]. 

There are various approaches to analyzing external attack surfaces, including utilizing the STRIDE 
framework, Risk-Based Vulnerability Management (RBVM), and Attack Tree Analysis. According to 
[6], STRIDE represents several exploitable security threats and suggests a five-phase threat analysis 
process like threat trees. The framework for determining quantitative vulnerability measures is based 
on the attack tree model [7]. Meanwhile, RBVM is used to identify and address vulnerabilities based 
on the risk they pose to the organization. Remediation efforts are prioritized by combining threat 
intelligence, asset criticality, and vulnerability data. 

Time series analysis is employed in this research to determine trends in exposed vulnerabilities 
and forecast future trends, enabling organizations to proactively reduce vulnerabilities and enhance 
security [8-10]. By leveraging Multivariate Linear Regression (MLR), correlations between various 
independent and dependent variables are uncovered. In [11-13], additionally, Influence Diagrams are 
constructed to visually represent decision-making processes and causal relationships within the 
security framework. Through these methodologies, this research aims to enhance risk assessment 
strategies and empower decision-makers to proactively manage cybersecurity challenges. 

This research consists of four sections: introduction, methodology, results and discussion, and 
conclusion. A brief explanation of the research is provided in Section 1 (Introduction). The techniques 
employed in this study, including influence diagrams, ARIMA, and multivariate linear regression 
(MLR), are described in Section 2. The results of each method are discussed in Section 3, while the 
concise conclusion is presented in Section 4." 
 
2. Methodology 
 

This section discussed methodology on data requirements, Multivariate Linear Regression (MLR), 
Autoregressive Integrated Moving Average (ARIMA), Influence Diagram and Evaluation Method. 
   
2.1 Data Requirements 

 
This research employs MLR, ARIMA and Influence Diagrams to analyze and forecast total assets 

and total exposed assets. There are seven variables used in this research, two are dependent 
variables (Total Exposed, Total Asset) and the others include Low, Medium, High and Critical are 
categorized as independent variables. By leveraging MLR, correlations between various independent 
and dependent variables are uncovered, shedding light on factors influencing total exposed and total 
asset values. ARIMA is applied to forecast significant independent variables and then the ARIMA 
output is used in predicting dependent variables by using multivariate linear regression model. 
Additionally, Influence Diagrams are constructed to visually represent decision-making processes and 
causal relationships within the security framework.  

Data for this study is sourced from the CrowdStrike application [14], which provides 
comprehensive insights into an organization's external assets categorized by risk levels. The data 
acquired for this project contains information related to risk assessment or exposure of certain 
assets. The dataset includes several key attributes, each with a specific explanation. The Date 
attribute indicates when the data was collected. Total Exposed represents assets that are visible or 
accessible to potential attackers, making them vulnerable due to their exposure on external networks 
or to unauthorized users. Total Asset refers to the total number of components within the system, 
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including servers, workstations, databases, applications, network devices, and any other essential 
infrastructure elements. Low Risk Level signifies assets with minimal vulnerabilities, posing less 
critical risks. Medium Risk Level indicates assets with moderate vulnerabilities that could impact 
organizational security if exploited. High Risk Level represents assets with significant vulnerabilities, 
which could have serious security implications if compromised. Finally, Critical Risk Level designates 
essential assets whose breach would immediately and severely impact project operations, data 
integrity, or confidentiality. 

 
2.2 Multivariate Linear Regression (MLR) 
 

In this research, MLR is used when there is more than one dependent variable and independent 
variables. It can identify the relationship between several independent variables and a dependent 
variable. The equation for MLR given as follows: 

 

0 1 1 2 2 n nY x x x   = + + + +                                                                                                                        (1) 

  

where 1 2, , , nx x x  is independent variables, Y  is a dependent variable, 0  is intercept and 

1 2, , , n    is coefficient. Since there are seven variables in this project, two of variables are 

dependent variables, namely Total Exposed and Total Asset. Meanwhile, all the variables except for 
the date are categorized as independent variables. These independent variables include low, high, 
medium, and critical categories. 
 
2.3 Autoregressive Integrated Moving Average (ARIMA) 
 

This project fully utilizes the ARIMA method due to its suitability for the characteristics of our 
dataset. ARIMA is equipped to handle both autocorrelation and noise in the data. ARIMA can capture 
correlations between observations and take irregular fluctuations into consideration, even with a 
smaller sample. Even though having more data is usually preferable, 31 rows may be enough to fit a 
simple ARIMA model. Given the dataset's size, ARIMA also is suitable for short-term forecasting. It 
can provide meaningful insights into short-term future values by leveraging its components 
effectively. The general ARIMA model is denoted as ARIMA (p, d, q), where p is the number of lagged 
observations (autoregressive terms), d is the degree of differencing required to make the series 
stationery and q is the number of lagged forecast errors (moving average terms). The ARIMA model 
can be represented by the following formula: 

 

1 1 2 2 ...t t t p t p tY Y Y Y   − − −= + + + +                                                                                                                              (2) 

 

where tY  is the value at time t ,   are the parameter to be estimated, p  is the number of lagged 

observations and t  is the error term. 

 
2.4 Influence Diagram 
 

An influence diagram is a simple visual representation of a decision-making process. The essential 
components are shown as nodes of various forms and colors, including decisions, uncertainties, and 
objectives. As arrows, it depicts the influences between them. However, nodes are not required to 
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be used to make a suitable influence diagram. It depends on the available variables. Figure 1 
presented the list of nodes in the influence diagram. 

 

 
Fig. 1. List of nodes in influence diagram 

 
2.5 Evaluation Method 
 

Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and Mean Absolute 
Error (MAE) are applied to performance of the model [15]. The statistic known as Mean Absolute 
Percentage Error (MAPE) is frequently used to assess a forecasting model's accuracy. It calculates the 
average percentage difference, represented as a percentage, between the anticipated values and the 
actual values. The equation for MAPE is as follows.  
 

1

ˆ1
| | 100

n t t

t
t

Y Y
MAPE

n Y=

−
=                                                                                                                                                  (3) 

 

where n is the number of observations, tY   is the actual value of the time series at time, t and ˆtY   is 

the forecasted value at time. A typical statistic for assessing a forecasting or regression model's 
accuracy MAE. It calculates the average size of the discrepancies between the expected and actual 
values. The equation is given as follows. 
 

1

1 ˆ| |
n

t tt
MAE Y Y

n =
= −                                                                                                                                                       (4) 

 

where n is the number of observations in the dataset, tY  is the actual value of the time series at time   

and ˆ
tY  is the forecasted value at time. MAE is frequently used to evaluate model performance and 

contrast various methodologies in a variety of fields, including regression analysis, machine learning, 
and time series forecasting. Better accuracy is indicated by a lower MAE since it suggests less 
differences between actual and anticipated values. 

The accuracy and precision of a forecasting or regression model are frequently assessed using the 
RMSE statistic. It calculates the average square root of the disparities between the expected and 
actual values. The RMSE equation is as follows: 
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where n is the number of observations in the dataset, tY  is the actual value of the time series at time   

and ˆtY  is the forecasted value at time. The square of the differences gives greater errors more weight. 

The average squared differences can be translated and made easier to compare across different 
datasets or models by taking the square root of the average squared differences. Since smaller 
variances between projected and actual values are implied by a lower RMSE, it denotes more 
accuracy and precision.  

   
3. Results  
 

This section presents the results of our ARIMA and MLR models, with a primary focus on 
predicting the external attack surface. Additionally, MLR is used to assess feature correlations and 
employs an influence diagram to illustrate causal relationships, aiding in risk assessment. 
 
3.1 Multivariate Linear Regression 
 

The main goals of employing multivariate linear regression are twofold. First, to identify the most 
effective model that includes only the significant variables. Second, to use this model to predict Total 
Exposed and Total Assets. Figure 2 illustrates the relationships between each independent variable 
and the dependent variables (Total Exposed and Total Asset). 
 

 
(a) 

 
(b) 

Fig. 2. The relationship for each independent variable to (a) Total Exposed (b) Total Asset 

 
Based on Figure 2, the p-values for both dependent variables are 0.0000, which means that the 

model is significant where at least one of the independent variables is related to the dependent 
variable. The significant variables for Total Exposed and Total Assets are low and critical. It is because 
their p-value is less than α (0.05).  

Figure 3(a) shows that three variables—Low, High, and Critical—fit the developed model, as their 
p-values are less than α (0.05). The reduced model of MLR is given as follows. 
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1 1 3 4

2 1 3 4

348.6 0.02002 0.0309 0.1378

42.39 0.0257 0.0021 0.0625

y x x x

y x x x

= − + − +

= + − +
                                                                                              (6) 

 

 
(a) 

 
(b) 

Fig. 3. The output for (a) MANOVA (b) ANOVA 

 
Next, the difference between the full model and the reduced model is evaluated using ANOVA. 

Based on Figure 3(b), the full model (mvlr) does not offer a statistically significantly better fit than 
the reduced model (mvlr1) since its p-value exceeds α (0.05). Therefore, the best multivariate model 
is the reduced model, which includes only the significant variables. Thus, the forecasting process will 
use five variables: Total Exposed, Total Asset, Low, High, and Critical. Here, Total Exposed and Total 
Asset are the dependent variables, while Low, High, and Critical serve as the independent variables. 

Finally, the trained multivariate linear regression model is applied to predict Total Exposed and 
Total Asset. Multivariate linear regression enables analysis of the relationships between multiple 
independent variables (Low, High, and Critical) and multiple dependent variables (Total Exposed and 
Total Asset). By incorporating the forecasted values of Low, High, and Critical from Section 3.2 as 
input features, the model leverages these variables to make predictions about Total Exposed and 
Total Asset. Figure 4 presented the output of forecasted dependent variable. 
 

 
Fig. 4. Forecast output for dependent variables 

 
3.2 AutoRegressive Integrated Moving Average (ARIMA) 

 
For ARIMA model, the dataset used for conducting SES consists of 31 rows, with 24 rows used for 

training and seven rows for testing. First, ARIMA models were used to fit the time series data for the 
Low, High, and Critical variables. Model fit refers to how well the selected ARIMA model aligns with 
the observed data, capturing the patterns, trends, and variability present in the dataset. Model fit is 
evaluated using metrics such as log likelihood, AIC, AICc, and BIC, as well as by comparing predicted 
values to actual data points. A well-fitted model provides reliable predictions and insights, while a 
poorly fitted model may produce inaccurate or misleading results. Table 1 presents the output of the 
fitting process. 
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Table 1 
The Output of ARIMA model 
Variables Output Explanation 

Low 

 

i) ARIMA model used is ARIMA(1,0,0) 
ii) The autoregressive coefficient (ar1) is 0.7222, 

indicating the strength and direction of the rel
ationship between current and past values in t
he time series.  

iii) The standard errors ar1 is 0.1156. 

High 

 

i) ARIMA model used is ARIMA(0,1,0) 
ii) An ARIMA model with no AR or MA terms (AR

IMA(0,1,0)) indicates that the model does not 
consider past values or forecast errors when p
redicting future values. 

iii) Hence, there are no model coefficients or stan
dard errors associated. 

Critical 

 

 
The next output presents the forecast for the Low, High, and Critical variables, based on the 

ARIMA models fitted to the training data. Table 2 displays the first 10 forecasted rows for each 
significant variable. From the table, the predicted values for high and critical produce a flat forecast, 
meanwhile the predicted value for low variable produce an increasing trend. Then this output is used 
as the as input variables in regression models (Eq. (6)). Therefore, by utilizing the information from 
these ARIMA models, we can forecast Total Exposed and Total Asset by using multivariate linear 
regression. 
   

Table 2 
Forecast output for significant independent variables 
 Variable 

 Low High Critical 

32 52704 30818 15509 
33 52844 30818 15509 
34 52946 30818 15509 
35 53020 30818 15509 
36 53073 30818 15509 
37 53111 30818 15509 
38 53139 30818 15509 
39 53159 30818 15509 
40 53173 30818 15509 
41 53184 30818 15509 

 
3.3 Influence Diagram 

 
Next, the results on influence diagram. Figure 5 depicts an influence diagram created from a 

dataset containing two deterministic nodes (Total Assets and Exposed Assets) and five decision nodes 
(Low, Medium, High, Critical, and Risk Score). Deterministic nodes have fixed values that are known 
but may change over time due to factors such as system upgrades, asset additions or removals, 
network configuration changes, or updates to security controls. In contrast, decision nodes represent 
choices aimed at managing and reducing the attack surface. These decisions focus on minimizing 
vulnerabilities and decreasing the likelihood of successful attacks, involving actions such as risk 
mitigation, prioritization, change management, and resource allocation.  
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Fig. 5. Influence diagram 

 
The Risk Score decision node helps prioritize and identify areas of the attack surface that require 

immediate attention and resource allocation. For Low-risk decisions, actions include regular 
monitoring, implementing baseline security procedures, and ensuring ongoing maintenance. 
Medium risk decisions may involve adding extra security measures, performing periodic vulnerability 
assessments, and improving surveillance and incident response capabilities. High risk decisions 
typically require allocating additional resources, enforcing stricter security controls, and performing 
rapid remediation to minimize risk. Finally, Critical risk decisions call for urgent security audits, 
deploying robust security controls, assigning dedicated personnel for continuous monitoring and 
response, and conducting thorough vulnerability assessments. 

By employing this influence diagram, the impact of different decisions on the security of external 
assets can be systematically assessed. The deterministic nodes provide a stable basis for 
understanding the current state of assets, while the decision nodes guide the actions required to 
manage and reduce risks effectively. This structured approach facilitates a comprehensive analysis, 
enabling the identification of critical areas that require immediate attention and the formulation of 
targeted strategies to enhance security measures. 

 
3.4 Evaluation Model 

 
The model evaluations used in this project include MAPE, MAE, and RMSE for all risk levels, 

applied to a multivariate linear regression model. Table 3 shows that Total Asset recorded the lowest 
MAPE value, indicating that the forecasts have a relatively low error rate of 0.35% on average 
compared to the actual data. This suggests that the model’s predictions for Total Asset are highly 
accurate, with minimal variance from the true values. In contrast, Total Exposed recorded a higher 
MAPE value than Total Asset, with a deviation of 12.99% from the true values. This result indicates a 
relatively greater inaccuracy and high error, suggesting that the model needs improvement to 
achieve more precise predictions. 

Furthermore, Total Asset also recorded the lowest MAE value, at 9.071, meaning the projections 
deviate from the actual values by about 9.071 units on average. This level of deviation indicates 
moderate accuracy, suggesting that while the predictions are reasonably close, there is still room for 
improvement. However, Total Exposed recorded a much higher MAE value of 199.66, meaning the 
model’s predictions deviate by around 199.66 units on average from the actual values, indicating a 
significant discrepancy and poor accuracy. 

Additionally, Table 3 shows that the Low Risk Level recorded the lowest error, while the Medium 
Risk Level recorded the highest. The RMSE of 301.81 indicates that the average squared discrepancies 
between the model’s forecasts and the actual values result in an error of 301.81 units, representing 
a significant deviation. This suggests that the model’s performance needs improvement to reduce 
overall errors and produce more accurate predictions. For Total Exposed, the RMSE is 199.98, which 
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indicates an average deviation of approximately 199.98 units from the actual values. Meanwhile, 
Total Asset recorded an MAE of 7.11, indicating a much smaller average deviation and suggesting 
higher predictive accuracy. 

 
Table 3 
The Model Evaluation 
Evaluation Total Exposed Total Asset 

MAPE 12.99% 0.35% 
MAE 199.66 9.071 
RMSE 199.98 7.11 

 
4. Conclusions 
 

In this paper, three key objectives were pursued. First, using MLR, the goal was to uncover 
relationships between independent and dependent variables. This analysis revealed moderate to 
strong positive correlations and the absence of weak ones, resulting in the identification of the best 
model, validated through ANOVA testing, which included just three explanatory variables. Second, 
the project successfully achieved its objective of forecasting the dependent variable by using ARIMA 
results as inputs for the MLR model. The evaluation metrics, including RMSE, MAPE, and MAE, 
indicate varying levels of accuracy across different categories. While the MAPE values are relatively 
low—0.35% being the lowest for Total Asset—indicating a high level of accuracy, higher RMSE and 
MAE values for Total Exposed suggest limitations in the model's accuracy for predicting vulnerability 
levels within government organizations. Finally, the third objective was to represent deterministic 
relationships among variables through an influence diagram, with Total Asset and Total Exposed as 
deterministic nodes and Low, Medium, High, and Critical as decision nodes linked to the Risk Score. 
This understanding of deterministic nodes has the potential to enhance the efficient protection of 
external government assets. 
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