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Geometric modeling has evolved significantly since its inception, with pioneers like 
Pierre Bézier laying the foundation for curve modeling. Concurrently, fuzzy set theory, 
introduced by Lotfi A. Zadeh in 1965, addressed uncertainty in decision-making 
processes. Integrating fuzzy set theory with geometric modeling has led to 
advancements in handling imprecise data and uncertainty. This paper proposes a novel 
approach, the hesitant fuzzy Bézier surface (HFBS) approximation model, which 
combines geometric modeling with hesitant fuzzy sets to address uncertainty in surface 
approximation. The model utilizes hesitant fuzzy control net relations to construct 
HFBSs, enabling visualization of surfaces under varying degrees of uncertainty. A 
biquartic HFBS example is presented, demonstrating the model’s ability to handle 
hesitancy among experts’ opinions. The paper discusses the properties of HFBS and 
suggests its extension to interpolation models for broader applicability. Ultimately, the 
HFBS model offers an approach to geometric modeling in situation where uncertainty 
is inherent, which aim to handle complex data in real-world applications.  
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1. Introduction 
 

Geometric modeling, pivotal across numerous fields, has significantly influenced modern 
technological progress since its inception. Pierre Bézier introduced geometric modeling in the 1960s, 
aiming to mathematically represent intricate shapes and surfaces via parametrization [1]. The history 
of curve modeling traces back to the seminal work of mathematicians such as Pierre Bézier and Paul 
de Casteljau in the 1940s and 1950s, who pioneered Bézier curves for automotive design [2]. 
Simultaneously, mathematicians like Isaac Jacob Schoenberg laid the groundwork for spline 
functions, which are crucial for curve approximation [3]. The emergence of computational geometry 
in the 1970s led to advancements by researchers such as Carl de Boor in B-Spline curve techniques 
[2]. The introduction of NURBS by Dale Myers and John Hart in the 1980s revolutionized curve 
modeling, providing enhanced flexibility [3]. Geometric modeling finds applications in engineering, 
computer graphics, and data visualization, facilitating the creation and analysis of complex structures 
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across various fields [4,5]. Geometric modeling goes beyond curves to represent 3D objects with 
surfaces. Techniques like B-spline surfaces and NURBS, evolving from Bézier's work, are widely used 
in engineering and computer graphics [1-3]. These methods enable the creation and analysis of 
complex structures in fields like CAD, computer graphics, and data visualization [4,5]. 

Uncertainty in data collection arises from measurement errors, sampling variability, and 
contextual influences, leading to a lack of confidence in the collected data [6]. It can be attributed to 
various factors, for example measurement errors, which are due to inaccuracies in instruments or 
human errors during data collection. Fuzzy set theory, proposed by Lotfi A. Zadeh in 1965, addressed 
the challenges of uncertainty in decision-making processes [7]. Fuzzy sets introduced membership 
degrees, enabling flexible reasoning and inference in domains such as control systems and pattern 
recognition. Jerry Mendel extended this concept with type-2 fuzzy sets in 1975, accommodating 
uncertainty about the membership function itself [8]. Intuitionistic fuzzy sets, proposed by Krassimir 
Atanassov in 1986, introduced non-membership degrees alongside membership, offering a more 
comprehensive representation of uncertainty [9]. Extensions like hesitant fuzzy sets by Torra and 
Narukawa in the early 2000s allow for multiple membership degrees, reflecting varying confidence 
levels in assigning membership [10]. Integrating fuzzy set theory with geometric modeling has 
garnered significant research interest. Anile et al. implemented fuzzy arithmetic for handling 
imprecise data, applied in environmental impact analysis [11]. Subsequently, Wahab et al. explored 
fuzzy Bézier and B-spline curves [12], extending to interpolation and surface modeling [13-19]. 
However, a gap remains in integrating hesitant fuzzy sets with geometric modeling, necessitating a 
more nuanced approach to uncertainty management [10]. 

This article aims to contribute to the development of a novel geometric model, namely hesitant 
fuzzy Bézier surface (HFBS) approximation model. It will begin by exploring the background and 
evolution of geometric modeling and hesitant fuzzy sets, followed by a review of pertinent literature. 
Section 2 will cover the fundamentals of hesitant fuzzy sets, providing detailed explanations of 
hesitant fuzzy set (HFS), hesitant fuzzy point (HFP), and hesitant fuzzy relation (HFR). Toward the end 
of this section, definitions of hesitant fuzzy point relation (HFPR) and hesitant fuzzy control net 
relation (HFCNR) will be introduced and utilized in the construction of the HFBS approximation model 
in Section 3. Section 4 will present visualizations of the output of the HFBS approximation model 
using an example of a biquartic Bézier surface. Section 5 will delve into visualization techniques, while 
Section 6 will summarize the key insights presented in the paper. 
 
2. Preliminaries  
 

This section will cover fundamental concepts such as HFS, HFP, and HFR. Following that, 
definitions for HFPR and HFCPR will also be defined. Torra introduced HFS in 2010 with the aim of 
addressing scenarios where elements display uncertainty or ambiguity regarding their membership 
in fuzzy sets, which is a common occurrence in real-world contexts [10]. Rather than assigning a single 
membership degree to elements, HFS allows for the representation of multiple membership degrees 
by various parties for each specific element. 

 
Definition 1. [10, 20, 21] Let X be a fixed set. A hesitant fuzzy set (HFS) on X is in terms of a function 
applying to X and returns a subset of [0,1]. Mathematically, a HFS can be described as follows: 
 
𝐴 = {〈𝑥, ℎ𝐴(𝑥)〉|𝑥 ∈ 𝑋}                    (1) 
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where ℎ𝐴(𝑥) is a set of some values in [0,1], denotes the possible membership degrees of the 
element 𝑥 ∈ 𝑋 to the set 𝐴. In that the case, ℎ = ℎ𝐴(𝑥) is called as a hesitant fuzzy element (HFE), 
while Θ represents the set of all HFEs. 

As the HFEs can consist of more than one membership degrees, some special HFEs for 𝑥 ∈ 𝑋 are 
given as follows [10]: 

 
i. Empty set: ℎ = {0}, denoted as 𝑂∗ as simplification. 

ii. Full set: ℎ = {1}, denoted as 𝐼∗. 
iii. Complete ignorance (all are possible), ℎ = [0,1] ≜ 𝑈∗. 
iv. Nonsense set: ℎ = ∅∗. 

 
Definition 2. [22] Let 𝑌 ⊆ 𝑋 and 𝐴 = {〈𝑥, ℎ𝐴(𝑥)〉|𝑥 ∈ 𝑋} such that ℎ𝐴(𝑥) ⊆ [0,1].Then,  𝐴𝑌 ∈ 𝐻𝐹(𝑋) 
is defined as follows: 
 

𝐴𝑌(𝑥) = {
𝐴, 𝑓𝑜𝑟 𝑥 ∈ 𝑌

{0}, 𝑓𝑜𝑟 𝑥 ∈ 𝑋\𝑌
                             (2) 

 
If 𝑌 is a singleton, namely {𝑦}, then 𝐴{𝑦} is called as a hesitant fuzzy point (HFP) or hesitant fuzzy 

singleton, which denoted by 𝑦𝐴. 
 

Definition 3. [23, 24] Suppose 𝑋 and 𝑌 are universal sets. A hesitant fuzzy subset ℛ of 𝑋 × 𝑌 is defined 
as a hesitant fuzzy relation (HFR) from 𝑋 to 𝑌, that is, 
 
ℛ = {〈(𝑥, 𝑦), ℎℛ(𝑥, 𝑦)〉|(𝑥, 𝑦) ∈ 𝑋 × 𝑌}          (3) 
 

For all (𝑥, 𝑦) ∈ 𝑋 × 𝑌, ℎℛ(𝑥, 𝑦) is a set of values in [0,1], which are the possible membership 
degrees or the relations for respective 𝑥 and 𝑦. 
 
2.1 Hesitant Fuzzy Point Relation 

 
Eq. (3) defined the HFR from 𝑋 to 𝑌, where 𝑋 and 𝑌 are universal sets, while Eq. (2) describes the 

HFP. With these inspirations, the hesitant fuzzy point relation (HFPR) is defined to describe the 
relation between two HFPs. 

 
Definition 4. Suppose 𝑋 and 𝑌 are universal sets. Let 𝑃 ⊆ 𝑋, 𝑄 ⊆ 𝑌, 𝐴 = {〈𝑥, ℎ𝐴(𝑥)〉|𝑥 ∈ 𝑋 } and 𝐵 =
{〈𝑦, ℎ𝐵(𝑥)〉|𝑦 ∈ 𝑌}. Then by Definition 1, ℎ𝐴(𝑥) and ℎ𝐵(𝑥) are two sets of some possible values in 
[0,1]. Let 𝑃 and 𝑄 are two HFPs, then by Definition 2, 𝐴𝑃={𝑝} = {〈𝑥, ℎ𝐴(𝑥)〉|𝑥 ∈ 𝑃} and 𝐵𝑄={𝑞} =
{〈𝑦, ℎ𝐵(𝑥)〉|𝑦 ∈ 𝑄}, where {𝑝} and {𝑞} are two singletons for sets 𝑃 and 𝑄 respectively. A hesitant 
fuzzy subset ℛ∗ of 𝑃 × 𝑄 is defined as a hesitant fuzzy point relation (HFPR) from 𝑋 to 𝑌, as follows: 
 

ℛ∗ = {〈(𝑥𝑖, 𝑦𝑗), ℎ𝑅∗(𝑥𝑖 , 𝑦𝑗)〉|𝑥𝑖 ∈ 𝑃𝑖, 𝑦𝑗 ∈ 𝑄𝑗, (𝑥𝑖 , 𝑦𝑗) ∈ 𝑃𝑖 × 𝑄𝑗}                     (4) 

 

For all (𝑥𝑖 , 𝑦𝑗) ∈ 𝑃 × 𝑄, ℎ𝑅∗(𝑥𝑖 , 𝑦𝑗) ∈ ℎ𝐴(𝑥𝑖) × ℎ𝐵(𝑦𝑗) are the set of values in [0,1], which 

denotes the possible membership degrees of the HFPR for 𝑥𝑖 and 𝑦𝑗. 
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2.2 Hesitant Fuzzy Control Net Relation 
 
As discussed in the first section, control net (CN) plays an important role in the surface 

approximation model. CN are a set of points, which can affect the behaviours of a surface. Any slight 
change in the location of the CN will lead to a different approximation of geometry. In order to apply 
the concept of HFS in the Bézier surface approximation model, it is necessary to define hesitant fuzzy 
control net (HFCN) and hesitant fuzzy control net relation (HFCNR) as well based on the fundamental 
concept by Wahab et al. [16] and Eq. (4). 

 
Definition 5. Suppose 𝑃 represents the control net vertices of a Bézier surface such that 
 

𝑃 = {𝑃𝑖,𝑗}
𝑖∈𝐼,𝑗∈𝐽

,             (5) 

 
where 𝐼 = {0,1,2, … , 𝑛}, 𝐽 = {0,1,2, … , 𝑚}and 𝑃 is a set of (𝑛 + 1)(𝑚 + 1) points denoting the 
coordinates of each control net vertices. Let ℛ∗ be a HFPR, then the hesitant fuzzy control net relation 
(HFCNR) is defined as a relation of (𝑛 + 1)(𝑚 + 1) points with different number of choices as 
follows: 
 

ℛ𝑐𝑝
∗ = {〈(𝒫𝑖,𝑗,𝑞𝑖𝑗

ℋ ) , ℎ𝑅∗ (𝒫𝑖,𝑗,𝑞𝑖𝑗

ℋ )〉 |𝒫𝑖,𝑗,𝑞𝑖𝑗

ℋ ∈ 𝒫𝑖,𝑗,𝑆𝑖𝑗

ℋ , (𝒫0,0,𝑞00

ℋ , … , 𝒫0,𝑚,𝑞0𝑚

ℋ , … , 𝒫𝑛,𝑚,𝑞𝑛𝑚
ℋ ) ∈ 𝒫0,0,𝑆00

ℋ ×

… × 𝒫0,𝑚,𝑆0𝑚

ℋ × … 𝒫𝑛,𝑚,𝑆𝑛𝑚

ℋ },            (6) 

 

where 𝑞𝑖𝑗 ∈ 𝑆𝑖𝐽, 𝑆𝑖𝑗 = {0,1,2, … , 𝑠𝑖𝑗} and 𝒫𝑖,𝑗,𝑀𝑖

ℋ  are the hesitant fuzzy control net vertices (HFCNVs) 

at (𝑖, 𝑗)-th term. Noted that 𝑞𝑖𝑗 = 𝑞𝑘𝑙 for (𝑖, 𝑗) ≠ (𝑘, 𝑙) is possible but not compulsory. For each 

𝒫𝑖,𝑗,𝑆𝑖𝑗

ℋ , there are 𝑞𝑖 number of possible memberships, therefore, the relation returns in a set of 

possible HFCNVs. The HFCNV at (𝑖, 𝑗)-th term are defined as follows: 
 

𝒫0,0,𝑞0,𝑜∈𝑆0,0

ℋ = {𝒫0,0,0
ℋ , 𝒫0,0,1

ℋ , … , 𝒫0,0,𝑠0,0

ℋ }  

⋮  

𝒫0,𝑚,𝑞0,𝑚∈𝑆0,𝑚

ℋ = {𝒫0,𝑚,0
ℋ , 𝒫0,𝑚,1

ℋ , … , 𝒫0,𝑚,𝑠0,𝑚

ℋ }          (7) 

⋮  
𝒫𝑛,𝑚,𝑞𝑛,𝑚∈𝑆𝑛,𝑚

ℋ = {𝒫𝑛,𝑚,0
ℋ , 𝒫𝑛,𝑚,1

ℋ , … , 𝒫𝑛,𝑚,𝑠𝑛,𝑚
ℋ } . 

 
In this case, HFCNVs is a set of (𝑛 + 1)(𝑚 + 1) control net vertices, where each control points 

has 𝑠𝑖 possibilities based on different hesitant fuzzy membership degrees assigned. Therefore, there 
are a variety number of possible HFCNRs, that is, a variety number of possible HFCNVs produced. The 
total number of HFCNRs, namely 𝑁ℛ𝑐𝑛𝑣

∗  is denoted by equation below: 

 
𝑁ℛ𝑐𝑛𝑣

∗ = ∏ 𝑠𝑖,𝑗
𝑛,𝑚
𝑖=0,𝑗=0 .             (8) 

 
The HFCP can be redefined as 

𝒫𝑘
ℋ = {{𝒫0,0,𝑞0,0

ℋ , … , 𝒫0,𝑚,𝑞0,𝑚

ℋ , … , 𝒫𝑛,𝑚,𝑞𝑛,𝑚
ℋ }|𝑞𝑖,𝑗 ∈ 𝑆𝑖,𝑗, 𝑆𝑖,𝑗 = {0,1,2, … , 𝑠𝑖,𝑗}, 𝒫𝑖,𝑗,𝑞𝑖,𝑗

ℋ ∈ 𝒫𝑖,𝑗,𝑆𝑖,𝑗

ℋ }.   (9) 

 
for 𝑁ℛ𝑐𝑛𝑣

∗  possibilities, where 𝑘 = 1,2, , … 𝑁ℛ𝑛𝑣
∗ . Therefore, the set of all HFCNs is described as follows: 
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𝓟𝓗 = {𝒫𝑘
ℋ|𝑘 = 1,2, … , 𝑁ℛ𝑐𝑛𝑣

∗ }.                     (10) 

 
3. Hesitant Fuzzy Bézier Surface Approximation Model 
 

A Bézier surface approximation model constructs its surface by using Bernstein basis as its 
surface-blending functions [3]. As the HFCNR successfully defined, a hesitant fuzzy Bézier Surface 
(HFBS) approximation model is proposed and constructed, which applies the Bézier surface 
approximation model with the HFS from Eq. (1). 

 

Definition 6. Let 𝓟𝓗 = {𝒫𝑘
ℋ|𝑘 = 1,2, … , 𝑁ℛ𝑐𝑛𝑣

∗ } be the set of all HFCNs such that 𝒫𝑘
ℋ =

{{𝒫0,0,𝑞0,0

ℋ , … , 𝒫0,𝑚,𝑞0,𝑚

ℋ , … , 𝒫𝑛,𝑚,𝑞𝑛,𝑚
ℋ }|𝑞𝑖,𝑗 ∈ 𝑆𝑖,𝑗 , 𝑆𝑖,𝑗 = {0,1, … , 𝑠𝑖,𝑗}, 𝒫𝑖,𝑗,𝑞𝑖,𝑗

ℋ ∈ 𝒫𝑖,𝑗,𝑆𝑖,𝑗

ℋ } is the possible 

HFCNs. Let 𝐵𝑆(𝑢, 𝑤) as the surface position vector of a Bézier surface. A HFBS approximation model, 

namely 𝑩𝑺𝓗(𝑢, 𝑤) is defined as follows: 
 

𝑩𝑺𝓗(𝑢, 𝑤) = ∑ ∑ 𝑁𝑛,𝑖(𝑢) ⋅ 𝓟𝓗 ⋅ 𝑀𝑚,𝑗(𝑤)𝑚
𝑗=0

𝑛
𝑖=0 , 0 ≤ 𝑢 ≤ 1, 𝑜 ≤ 𝑤 ≤ 1                  (11) 

 
where 𝑢 and 𝑣 are the parameters and the Bernstein basis, 𝑁𝑛,𝑖(𝑢) and 𝑀𝑚,𝑗(𝑤) are 

 

𝑁𝑛,𝑖(𝑢) = (
𝑛
𝑖

) 𝑢𝑖(1 − 𝑢)𝑛−𝑖 𝑤𝑖𝑡ℎ (
𝑛
𝑖

) =
𝑛!

𝑖!(𝑛−𝑖)!
                   (12) 

 

𝑀𝑚,𝑗(𝑤) = (
𝑚
𝑗 ) 𝑤𝑗(1 − 𝑤)𝑚−𝑗 𝑤𝑖𝑡ℎ (

𝑚
𝑗 ) =

𝑚!

𝑗!(𝑚−𝑗)!
                    (13) 

 
Restrictions such as (0)0 ≡ 1 and 0! ≡ 1 are considered in this model. Since there are 𝑁ℛ𝑐𝑛

∗  

number of possible HFCNs, therefore, there are the same number of possible HFBSs equation as well. 

In other words, a 𝑩𝑺𝓗(𝑢, 𝑤) is the set of all possible HFBSs, 𝐵𝐶𝑘
ℋ(𝑡) such that 

 

𝑩𝑺𝓗(𝑢, 𝑤) = {𝐵𝑆𝑘
ℋ(𝑢, 𝑤) = ∑ ∑ 𝑁𝑛,𝑖(𝑢) ⋅ 𝒫𝑘

ℋ ⋅ 𝑀𝑚,𝑗(𝑤)𝑚
𝑗=0

𝑛
𝑖=0 |𝑘 = 1,2,3, … , 𝑁ℛ𝑐𝑛

∗ }              (14) 

 
where 𝑁ℛ𝑐𝑛

∗  number of HFBSs will be generated through the model based on Definition 5. 

 
3.1 Properties of Hesitant Fuzzy Bézier Surface 

 
A Bézier surface is generated based on its control net, which is formed by control net vertices. As 

the Bézier basis follows the Bernstein basis, Bézier surfaces will have the same properties [3]. That 
is, HFBS has the properties as follows: 

 
i. The basis functions of HFBS are real. 

ii. The degree of the HFBS in both parametric directions is one less than the number of 
HFCNVs in that particular direction. 

iii. The continuity of the HFBS in both parametric directions is two less than he number of 
HFCNVs in that particular direction. 

iv. The shape of HFBS will always follow the shape of HFCN. 
v. The corner points of HFCNs are the only points which coincide with the resulting HFBS. 

vi. HFBS generated will always be bound by its respective HFCN. 
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vii. HFBS does not exhibit variation-diminishing property, which is both undefined and 
unknown for bivariant surfaces. 

viii. Under an affine transformation, HFBS is invariant. 
 

4. Biquartic Hesitant Fuzzy Bézier Surface Visualization 
 

In this section, a biquartic HFBS will be constructed and visualized. Suppose there is a square 
range with both length and width 4 meters, but the height varies. Two experts provide the height of 
the control net vertices to generate the surface in (𝑥, 𝑦, 𝑧) coordinates, but there exists 2 points, 
which occurs conflict. The second expert, 𝐸2 does not agree with the coordinates of those 2 points 
given by the first expert, 𝐸1, and he provides a new coordinate for the points respectively. As they 
cannot persuade each other, hesitancy occurs. In this case, HFBS approximation model is applied to 
model the surface with uncertainty. 

Let say the (𝑥, 𝑦)-coordinates of the control net vertices remained crisp, while the 𝑧-coordinates 
is represented by the membership degrees given by different experts. Table 1 below shows the 
possible (𝑥, 𝑦, 𝑧) coordinates for the HFCN. 
 

Table 1 
Possible (𝑥, 𝑦, 𝑧) coordinates for HFCNs 

(𝑥, 𝑦) 
𝑧-coordinate 

(𝑥, 𝑦) 
𝑧-coordinate 

𝐸1  𝐸2  𝐸1  𝐸2  
(0,0) 0.8147 0.1379 (2,3) 0.9706 - 
(0,1) 0.9134 - (2,4) 0.8003 - 
(0,2) 0.2785 - (3,0) 0.9134 - 
(0,3) 0.9649 - (3,1) 0.2785 - 
(0,4) 0.9572 0.2194 (3,2) 0.9649 - 
(1,0) 0.9058 - (3,3) 0.9572 - 
(1,1) 0.6324 - (3,4) 0.1419 - 
(1,2) 0.5469 - (4,0) 0.6324 - 
(1,3) 0.1576 - (4,1) 0.5469 - 
(1,4) 0.4854 - (4,2) 0.1576 - 
(2,0) 0.1270 - (4,3) 0.4854 - 
(2,1) 0.0975 - (4,4) 0.4218 - 
(2,2) 0.9575 -    

 
By Eq. (8), the 𝑁ℛ𝑐𝑛

∗  can be determined. 

 

𝑁ℛ𝑐𝑛
∗ = ∏ 𝑠𝑖𝑗

4,4
𝑖=0,𝑗=0 = 2 ⋅ 2 = 4, 

 

𝓟𝓗 = {𝒫1
ℋ , 𝒫2

ℋ, 𝒫3
ℋ𝒫4

ℋ}, 

 

𝑩𝑺𝓗(𝑢, 𝑤) = {𝐵𝑆𝑘
ℋ(𝑢, 𝑤) = ∑ ∑ 𝑁4,𝑖(𝑢) ⋅ 𝒫𝑘

ℋ ⋅ 𝑀4,𝑗(𝑤)𝑚
𝑗=0

𝑛
𝑖=0 |𝑘 = 1,2,3,4}. 

 

Therefore, there are 4 sets of 𝓟𝓗 and its respective 𝑩𝑺𝓗(𝑢, 𝑤) will be visualized by equations 

as above. The visualization of the possible HFBSs, 𝐵𝑆𝑘
ℋ(𝑢, 𝑤) are shown. Figure 1 below shows all of 

the possible HFBSs in one space, which includes 𝐵𝑆1
ℋ(𝑢, 𝑤), 𝐵𝑆2

ℋ(𝑢, 𝑤), 𝐵𝑆3
ℋ(𝑢, 𝑤) and 𝐵𝑆4

ℋ(𝑢, 𝑤). 
Obviously, any slight change is HFCNVs in HFCN will affect the visualization of surface. The hesitancy 
can be observed from the surface which does not overlap each other. To check the properties of 
those HFBSs, it is necessary to separate them into particular figures. 
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Fig. 1. Biquartic HFBSs in a same space, 𝐵𝑆𝑘

ℋ(𝑢, 𝑤), 𝑘 = 1,2,3,4 

 
Figure 2, Figure 3, Figure 4 and Figure 5 below shows the visualization of different HFBSs based 

on their vertices, HFCNVs, which along with their largest convex hull of control net, HFCNs. Based on 
each figure, all of the bicubic HFBSs visualized achieve the properties as a HFBS. Obviously, every 
HFBS here are bounded by the largest convex hull of their HFCNs respectively. Apart from that, the 
corner points of the HFCNs in every HFBSs constructed coincide with the surface, while the shape of 
HFBSs follow the shape of respective HFCNs. 

 

 
Fig. 2. Biquartic HFBS, 𝐵𝑆1

ℋ(𝑢, 𝑤) 
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Fig. 3. Biquartic HFBS, 𝐵𝑆2

ℋ(𝑢, 𝑤) 

 

 
Fig. 4. Biquartic HFBS, 𝐵𝑆3

ℋ(𝑢, 𝑤) 

 

 
Fig. 5. Biquartic HFBS, 𝐵𝑆4

ℋ(𝑢, 𝑤) 
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5. Discussion 
 

In Section 4, an example of biquartic HFBS approximation model was successfully constructed. As 
result, the model produces 4 different HFBSs based on their HFCNs. In short, every biquartic HFBSs 
visualized are satisfying the properties of being a HFBS. Every HFBC visualized are different, which is 
caused by the hesitancy. A HFBS approximation model can visualize all surfaces based on the 
hesitancy value (membership degree). It provides a clear method to analyze the uncertainty and 
make conclusions.  

The study introduces a novel approach to geometric modeling, focusing on hesitant fuzzy 
techniques, particularly in the context of Bézier surface approximation. It introduces models like 
HFCNR and HFBS for visualizing Bézier surfaces using hesitant fuzzy sets, offering a method to address 
uncertainty inherent in real-world scenarios. The mathematical framework of HFBS is defined and 
analyzed, along with the introduction and examination of its properties. This application of hesitant 
fuzzy sets provides a new avenue for handling uncertainty that is caused by hesitancy in geometric 
modeling, which is prevalent in practical applications. The study also suggests the potential extension 
of this approach to interpolation models, making it more applicable in real-world scenarios. 

 
6. Conclusion 
 

In short, the hesitant fuzzy Bézier surface (HFBS) model is successfully defined and constructed 
in this study. Besides, the properties of HFBS is introduced. HFBS approximation model has created 
a new way in surface modelling, which allows the model to visualize different surfaces based on 
hesitancy caused by different opinions (membership degrees). Every opinion involves in the 
construction of the model to visualize the surface. Nevertheless, the application of hesitancy in the 
model leads to a result of providing multiple output surface, which can only show the comparison 
but cannot contribute to making conclusions. Therefore, an appropriate justification method needs 
to be introduced as further study, which will justify the final result of the output. Apart from that, the 
study can be extended to an interpolation model, as an approximation model is the foundation of it. 
The interpolation model allows the application of data points rather than the control net vertices, 
which is more applicable in real-life problems. 
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