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The Benjamin-Bona Mahony (BBM) equation, a nonlinear dispersive wave model, plays 
a crucial role in fields such as fluid dynamics and plasma physics. Solving the BBM 
equation analytically is challenging, necessitating numerical and semi-analytical 
approaches. This study investigates the application of the Banach Contraction Method 
(BCM) to the BBM equation, comparing its performance with the Laplace Adomian 
Decomposition Method (LADM). By employing iterative approximations, BCM 
demonstrates convergence to unique solutions under specific conditions, ensuring 
reliability. Two examples of the BBM equation are analyzed, and absolute differences 
between BCM and LADM results are evaluated for varying spatial and temporal 
resolutions. The results reveal that both methods exhibit high accuracy, with smaller 
discrepancies observed for shorter time intervals. However, differences increase with 
spatial position, suggesting potential sensitivity to spatial dynamics. BCM shows an 
advantage over LADM due to its strong theoretical framework for ensuring 
convergence and uniqueness. While LADM offers flexibility in nonlinear term handling, 
BCM's robustness makes it preferable in critical applications. Recommendations for 
further research include exploring computational efficiency, extending the comparison 
to other wave equations, and analyzing higher-order solutions to broaden the 
applicability of these method. 
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1. Introduction 
 

The Benjamin-Bona Mahony (BBM) equation, introduced as an enhancement of the Korteweg-de 
Vries (KdV) equation, is a fundamental model for describing nonlinear and dispersive wave 
propagation. Its applications span fluid dynamics, plasma physics, and meteorology, where it 
effectively captures the behaviour of long waves in nonlinear dispersive. By incorporating both 
nonlinearity and dispersion effects, the BBM equation has become a pivotal tool for understanding 
wave dynamics in various scientific and engineering domains. 
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Solving the BBM equation analytically is often challenging due to its inherent complexity. 
Consequently, numerical and semi-analytical methods have become essential tools. Among these 
methods, the Banach Contraction Method (BCM) has garnered attention for its ability to provide 
reliable solutions for nonlinear differential equations. By leveraging fixed-point theory, BCM ensures 
convergence to a unique solution under specific conditions. This article explores the application of 
BCM to solve the BBM equation, focusing on its reliability, computational efficiency, and potential 
for broader applications. 

Over the years, researchers have proposed various methods to address the BBM equation, 
emphasizing both analytical and numerical approaches. These methods have significantly advanced 
the understanding and solution of this important equation. 

Analytical solutions provide valuable insights into the behavior of wave phenomena described by 
the BBM equation. Abbasbandy et al., [1] utilized the first integral method to derive new exact 
solutions for the modified BBM equation, revealing intricate relationships between wave 
parameters. Noor et al., [2] introduced the exp-function method, showcasing its capability to 
compute soliton solutions efficiently. Yokus et al., [3] explored the sine-Gordon expansion method, 
deriving solutions involving hyperbolic functions, which are crucial for understanding wave 
structures. Despite their utility, these approaches often rely on simplifying assumptions, limiting their 
applicability to more generalized scenarios. To overcome these limitations, researchers have turned 
to numerical techniques. 

Numerical methods are indispensable for solving the BBM equation in complex scenarios. Shi et 
al., [4] developed a Crank-Nicolson finite element method, emphasizing energy conservation and 
unconditional super convergence. Zhou et al., [5] proposed a predictor-corrector method tailored for 
time-fractional BBM equations, demonstrating increased accuracy and reduced computational cost. 
Similarly, Li et al., [6] employed local discontinuous Galerkin methods to achieve discrete 
conservation of mass and energy. 

Wavelet-based numerical techniques have also gained prominence. Shiralashetti et al., [7] 
applied Taylor wavelets in a collocation framework to solve BBM equations, achieving uniform 
convergence and reliable solutions. Mulimani et al., [8] proposed an ultraspherical wavelet method, 
showcasing its speed, flexibility, and convergence. 

The fractional versions of the BBM equation, modeling nonlocal and nonlinear phenomena, have 
been extensively studied. Oruc et al., [9] explored fractional BBM equations, deriving solitary wave 
solutions validated through numerical experiments. Abbas et al., [10] extended this analysis to the 
Wazwaz BBM equation, using optimal Lie infinitesimal generators to obtain traveling wave profiles. 

Modifications of the BBM equation often introduce additional complexities. Devi et al., [11] 
employed higher-order shape elements in the Galerkin finite element method to solve BBM-Burgers 
equations, achieving improved accuracy. Such studies underline the importance of innovative 
methods in tackling advanced forms of the BBM equation. 

Iterative methods have become popular for solving nonlinear differential equations due to their 
adaptability and computational efficiency. Olubanwo et al., [12] combined the Laplace transform 
with homotopy perturbation to address nonlinear terms in the BBM equation.  

Hybrid approaches incorporating numerical and analytical techniques have also shown promise. 
For example, Raslan et al., [13] integrated BCM with other methods to solve the Drinfeld-Sokolov-
Wilson system, demonstrating reduced errors and enhanced efficiency. 

BCM, rooted in fixed-point theory, offers a robust framework for solving nonlinear equations. By 
iteratively applying a contraction mapping, the method ensures convergence to a unique fixed point. 
Kittisopaporn et al., [14] employed BCM for Sylvester matrix equations, validating its convergence 
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and reliability. Ghitheeth et al., [15] demonstrated the method's efficiency in nonlinear functional 
equations when combined with numerical techniques like the trapezoid rule. 

The application of BCM to the BBM equation remains a relatively unexplored area. However, its 
proven effectiveness in other nonlinear and dispersive systems highlights its potential as a powerful 
tool for solving the BBM equation. In addition to introducing BCM to the BBM equation, this study 
provides a comparative analysis of BCM with the Laplace Adomian Decomposition Method (LADM), 
highlighting methodological variances and their implications for solution accuracy. This comparison 
offers deeper insights into the strengths and limitations of these methods, especially in regions with 
steep gradients or rapidly varying initial conditions. Furthermore, this work emphasizes the BBM 
equation’s practical significance in real-world applications, such as modeling tidal waves and plasma 
instabilities in fusion reactors, where accurate and efficient computational solutions are critical. 
 
2. Methodology  
2.1 Banach Contraction Method 

 
We start this section by stating some basic concepts [16]. 
Definition: Let 𝑋1 and 𝑋2 be two metrics and 𝐹 be a mapping from 𝑋1 into 𝑋2. 𝐹 is said to be 

Lipschitz if there exists a real number 𝑟 ≥ 0 for all 𝑥1, 𝑥2 ∈ 𝑋we have 𝑑(𝐹𝑥1, 𝐹𝑥2) ≤ 𝑟𝑑(𝑥1, 𝑥2), 𝐹 is 
said to contraction mapping if 𝑟 < 1. 

Theorem 1 Let 𝐹 be contraction mapping with a Lipschitz constant 𝑟, of a complete metric 
space 𝑋 into itself, then 𝐹 has a unique fixed point 𝑢 in the space 𝑋. An addition, if 𝑥0 is an arbitrary 
point in 𝑋 and 𝑥 is defined by 𝑥𝑛+1 = 𝐹(𝑥𝑛),  𝑛 = 0,1,2. .., the 𝑙𝑖𝑚

𝑥→∞
𝑥𝑛 = 𝑢 and 𝑑(𝑥𝑛, 𝑢) ≤

𝑟𝑛

1−𝑟
𝑑(𝑥1, 𝑥0). 

Theorem 2 Let 𝐹 be a mapping of a complete metric space 𝑋 into itself such that 𝐹𝑘 is a 
contraction mapping of 𝑋 for some positive integer 𝑘, then 𝐹 has a unique fixed point in 𝑋.   

To illustrate the basic concept of BCM, we introduce the following general form of differential 
equation: 

 
𝐷𝑡

𝑛𝑢(𝑡) = 𝐿(𝑢(𝑡)) + 𝐾(𝑢(𝑡)) + 𝑔(𝑡), 𝑛 ∈ ℕ,         (1) 

 
with initial condition 
 
𝑑𝑘

𝑑𝑡𝑘 𝑢(0) = ℎ𝑘 ,  𝑘 = 0,1,2, . . . , 𝑛 − 1,         (2) 

 
where 𝐿,  𝐾 are linear and nonlinear operators of orders less than or equal to 𝑛, 𝑔(𝑡) is a non-
homogeneous term and 𝐷𝑛

𝑡  classical differential operator of order 𝑛. Applying the classical integral 
operator with 𝑛 fold with respect to 𝑡, denoted by 𝐼𝑛

𝑡 , to both sides Eq. (1) we can obtain the following 
integral equation: 
 

𝑢(𝑡) = ∑ ℎ𝑘
𝑡𝑘

𝑘!
+ 𝐼𝑛

𝑡 𝑔(𝑡) + 𝐼𝑛
𝑡 (𝐿(𝑢) + 𝐾(𝑢))𝑛−1

𝑘=0 .         (3) 

 
To implement the BCM, we consider Eq. (3) as a general functional equation 
 

𝑢(𝑡) = 𝑓 + 𝑁(𝑢(𝑡)),         (4) 
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where 𝑓 = ∑ ℎ𝑘
𝑡𝑘

𝑘!
+ 𝐼𝑡

𝑛𝑔(𝑡)𝑛−1
𝑘=0  and 𝑁(𝑢) = 𝐼𝑛

𝑡 (𝐿(𝑢) + 𝐾(𝑢)).  

Then we define the successive approximation [17], 
 
𝑢0(𝑡) = 𝑓,  
𝑢1(𝑡) = 𝑢0(𝑡) + 𝑁(𝑢0(𝑡)),  
𝑢2(𝑡) = 𝑢0(𝑡) + 𝑁(𝑢1(𝑡)),                       
⋮  
𝑢𝑛+1(𝑡) = 𝑢0(𝑡) + 𝑁(𝑢𝑛(𝑡)),  𝑛 = 1,2, ….        (5) 

 
If 𝑁𝑘 is the contraction for some positive integer, 𝑘then 𝑁(𝑢(𝑡)) has a unique fixed point. Hence 

the sequence defined by Eq. (5) is convergent according to Theorem 2 and the solution of Eq. (1) is 
given by 

 
𝑢(𝑡) = 𝑙𝑖𝑚

𝑛→∞
𝑢𝑛(𝑡).              (6) 

 
2.2 The Benjamin-Bona-Mahonay Equations  
 

The BBM equation, a partial differential equation, models the propagation of long waves in 
nonlinear dispersive media. It is expressed as:   
 
𝑢𝑡 + 𝛼𝑢𝑥 + 𝑢𝑛𝑢𝑥 − 𝑢𝑥𝑥𝑡 = 0                        (7) 

 
In this equation, 𝑢 represents the wave function, which depends on both time, 𝑡 and the spatial 

coordinate 𝑥. The constants 𝛼 and 𝑛 are arbitrary. The term 𝑢𝑡  denotes the rate of change of 𝑢 with 
respect to time, while 𝑢𝑥 signifies its spatial gradient. The nonlinear term, 𝑢𝑛𝑢𝑥, reflects the 
interaction between 𝑢 and its spatial gradient, introducing nonlinearity into the equation.   

 
2.3 Implementation of BCM on The Benjamin-Bona-Mahonay Equations 

 
For this purpose, we considered the BBM Eq. (7) with 𝛼 = 1 and 𝑛 = 1 The initial condition is given 

by 𝑢(𝑥, 0) = 𝑔(𝑥). Because of the BCM, we obtained: 
 
𝑢0 = ∫ 𝑔(𝑥)𝑑𝑡,              
𝑢1 = 𝑢0 − ∫(𝑢0𝑥 + 𝑢0𝑢0𝑥 − 𝑢0𝑥𝑥𝑡)𝑑𝑡, 

𝑢2 = 𝑢0 − ∫(𝑢1𝑥 + 𝑢1𝑢1𝑥 − 𝑢1𝑥𝑥𝑡)𝑑𝑡, 

⋮ 
𝑢𝑛+1 = 𝑢0 − ∫(𝑢𝑛𝑥 + 𝑢𝑛𝑢𝑛𝑥 − 𝑢𝑛𝑥𝑥𝑡)𝑑𝑡.         (8) 
 

Therefore, the solution yield as: 
 
𝑢(𝑥, 𝑡) = 𝑙𝑖𝑚

𝑛→∞
𝑢𝑛(𝑥, 𝑡).             (9) 
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3. Results and Discussion  
3.1 Example 1 
 

We considered the BBM Eq. (7) where 𝛼 = 1 and 𝑛 = 1 and 𝑔(𝑥) = 𝑒𝑥. Using the BCM we obtained 
the following iterative solutions: 
 
𝑢0(𝑥, 𝑡) = 𝑒𝑥 , 
𝑢1(𝑥, 𝑡) = 𝑒𝑥 − (𝑒𝑥 + 𝑒2𝑥)𝑡, 

𝑢2(𝑥, 𝑡) = 𝑒𝑥 − 𝑒𝑥 (
2𝑒3𝑥𝑡3

3
+ 𝑒2𝑥𝑡3 −

3𝑒2𝑥𝑡2

2
+

𝑒𝑥𝑡3

3
− 2𝑒𝑥𝑡2 + 5𝑒𝑥𝑡 −

𝑡2

2
+ 2𝑡),               (10) 

⋮ 
and so on. 

 
Figures 1- 3 illustrate the solution of the BBM equation 𝑢2(𝑥, 𝑡), using LADM [18] and BCM 𝑡 =

0.001, 𝑡 = 0.01 and 𝑡 = 0.1, respectively. At 𝑡 = 0.001 both methods produce almost identical 
results, showing high accuracy over small time intervals when nonlinear effects and dispersion are 
minimal. At 𝑡 = 0.01, a slight difference in values starts to appear, especially when moving away 
from the spatial position 𝑥 with the BCM giving a steeper decline of 𝑢2(𝑥, 𝑡), compared to the 
smoother behavior of LADM. For 𝑡 = 0.1, significant differences between the two methods are 
evident, especially for larger 𝑥. While the BCM shows a rapid and abrupt decrease, characteristic of 
nonlinear effects and strong dispersion, the LADM produces an increasing trend in 𝑢2(𝑥, 𝑡), for the 
same region, deviating from the expected behavior of the solution. This shows that the BCM provides 
a more stable and accurate representation of the wave dynamics in this scenario, while the LADM 
struggles with capturing the qualitative behavior of the solution as 𝑥 increases, possibly due to 
resistance in handling non-linearity or fundamental dispersion at this spatial region. 

 

  
Fig. 1. Solution of Example 1 for 𝑡 = 0.001 Fig. 2. Solution of Example 1 for 𝑡 = 0.01 
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Fig. 3. Solution of Example 1 for 𝑡 = 0.1 

 

3.2 Example 2 
 

We considered the BBM Eq. (7) where 𝛼 = 1 and 𝑛 = 1 and 𝑔(𝑥) = 𝑥2. Using the BCM we obtained 
the following iterative solutions: 
 
𝑢0(𝑥, 𝑡) = 𝑥2, 
𝑢1(𝑥, 𝑡) = 𝑥2 − (2𝑥3 + 2𝑥)𝑡, 

𝑢2(𝑥, 𝑡) = 𝑥2 − 14𝑥𝑡 +
(6𝑥2 + 2)𝑡2

2
−

(−2𝑥3 − 2𝑥)(−6𝑥2 − 2)𝑡3

3
 

      −
(𝑥2(−6𝑥2−2)+2(−2𝑥3−2𝑥)𝑥)𝑡2

2
− 2𝑥3                     (11) 

⋮    
and so on. 

 
Figures 4-6 display the solution of the BBM equation using LADM [18] and BCM for 𝑡 = 0.001, 𝑡 =

0.01 and 𝑡 = 0.1, respectively. At 𝑡 = 0.001, both methods' results are almost perfectly aligned, 
reflecting their reliability for small time intervals when nonlinear effects and dispersion are still 
minimal. At 𝑡 = 0.01, both methods exhibit similar behaviour, with 𝑢2(𝑥, 𝑡) increasing monotonically 
as 𝑥 increase. The results closely aligned across most domains, indicating that both methods capture 
the solution's overall trend well. However, minor discrepancies emerge at larger 𝑥, where LADM 
slightly overestimates the solution compared to BCM. For 𝑡 = 0.1 initially, both methods produce the 
same result, with the solution 𝑢2(𝑥, 𝑡) starting at zero. However, when 𝑥 increases, significant 
differences occur. The LADM solution grows faster than the BCM solution, leading to an 
overestimation of 𝑢2(𝑥, 𝑡) for higher 𝑥 distances. BCM shows better accuracy and stability for 
modeling the BBM equation, especially when  𝑥  becomes larger. 
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Fig. 4. Solution of Example 1 for 0.001t =  Fig. 5. Solution of Example 2 for 0.01t =  

 

 
Fig. 6. Solution of Example 2 for 0.1t =  

 
3.3 Error Analysis 
 

To determine the efficiency of BCM, we compared the results with the results by Ikram et al., [18] 
using the Laplace Adomian decomposition method (LADM) for spatial domain 𝑥 ∈ [0,1] .  This short 
distance was chosen because the solutions from both methods are expressed as power series, which 
converge only within a limited range around the starting point. 

Table 1 compares the absolute differences between results obtained using the BCM and LADM 
for 𝑢2(𝑥, 𝑡), a solution to the BBM equation Example 1, across different spatial positions 𝑥 and time 
𝑡. The results show that as 𝑡 decreases (0.1 → 0.01 → 0.001), the differences become significantly 
smaller, indicating closer agreement between the methods for shorter time intervals. Conversely, for 
a fixed 𝑡, the differences increase with 𝑥, suggesting slight divergence between the methods as the 
spatial position moves further from the origin. 

Overall, the small magnitudes of the differences (on the order of 10−3 to 10−9 demonstrate that 
BCM and LADM are highly consistent and accurate for solving the BBM equation. The results highlight 
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both methods’ reliability, especially for smaller 𝑡, while the growth in discrepancies with 𝑥 points to 
potential numerical or methodological variances that may require further examination. 

 
Table 1 
The absolute difference between results by BCM, 𝑢2(𝑥, 𝑡) and LADM, 𝑢2(𝑥, 𝑡) [18]  

x  t = 0.1 t = 0.01 t = 0.001 

0 2.000E-03 2.000E-06 2.000E-09 
0.1 2.752E-03 2.752E-06 3.000E-09 
0.2 3.803E-03 3.803E-06 4.000E-09 
0.3 5.280E-03 5.280E-06 5.000E-09 
0.4 7.364E-03 7.364E-06 7.000E-09 
0.5 1.031E-02 1.031E-05 1.000E-08 
0.6 1.451E-02 1.450E-05 1.500E-08 
0.7 2.048E-02 2.048E-05 2.000E-08 
0.8 2.903E-02 2.903E-05 2.900E-08 
0.9 4.130E-02 4.129E-05 4.100E-08 
1 5.895E-02 5.895E-05 5.900E-08 

 
Table 2 presents the absolute differences between the results of the BCM and LADM for 𝑢2(𝑥, 𝑡), 

a solution to the BBM equation Example 2, evaluated over different spatial positions 𝑥 and times 𝑡. 
At 𝑡 = 0.1, the differences grow with 𝑥, starting from zero at 𝑥 = 0 and increasing up to 0.01067 at 
𝑥 = 1. For smaller 𝑡, the differences decrease significantly, showing values on the order of 10−7 for 
𝑡 = 0.01 and 10−10 for 𝑡 = 0.001, indicating closer agreement between the two methods as time 
decreases. 

The results highlight that BCM and LADM are highly consistent, particularly for smaller 𝑡, where 
the differences are negligible. The discrepancies increase with 𝑥 for all times, suggesting minor 
variations in how the methods handle spatial dynamics. This reinforces the reliability of both methods 
while indicating that the differences may become more pronounced at larger spatial positions, 
especially for longer time intervals 

 
Table 2 
Absolute difference between results by BCM, 𝑢2(𝑥, 𝑡) and LADM, 𝑢2(𝑥, 𝑡) [18]   

x  t = 0.1 t = 0.01 t = 0.001 

0 0.000E+00 0.000E+00 0.000E+00 
0.1 1.387E-04 1.387E-07 1.390E-10 
0.2 3.106E-04 3.106E-07 3.100E-10 
0.3 5.537E-04 5.537E-07 5.500E-10 
0.4 9.156E-04 9.156E-07 9.000E-10 
0.5 1.458E-03 1.458E-06 1.500E-09 
0.6 2.263E-03 2.263E-06 2.300E-09 
0.7 3.435E-03 3.435E-06 3.400E-09 
0.8 5.108E-03 5.108E-06 5.100E-09 
0.9 7.450E-03 7.450E-06 7.400E-09 
1 1.067E-02 1.067E-05 1.070E-08 

              

4. Conclusion and Recommendation   
 

The comparative analysis of Figures 1-6 demonstrates the performance of the Laplace Adomian 
Decomposition Method (LADM) and the Banach Contraction Method (BCM) in solving the BBM 
equation across different time and spatial domains. For smaller time (𝑡 = 0.01, 𝑡 = 0.001), both 
methods exhibit close agreement, affirming their accuracy and convergence in modeling the BBM 
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equation dynamics. However, as the spatial domain or time increases, discrepancies become more 
pronounced, with LADM consistently overestimating the solution compared to BCM. This pattern 
suggests that LADM is well-suited for localized or short-range computations but may accumulate 
errors over larger domains. In contrast, BCM provides smoother and more stable solutions, 
showcasing its superior numerical stability and reliability, particularly for extended spatial 
computations. 

The results from Tables 1 and 2 further highlight BCM's advantage in ensuring accuracy, especially 
as the time step decreases, with smaller absolute differences observed for shorter time intervals. 
While both methods perform well for small spatial variables, the growing discrepancies with 
increasing spatial domains underscore the importance of spatial dynamics in the solution's accuracy. 
BCM's strong theoretical foundation, supported by the Banach contraction principle, ensures 
robustness, convergence, and uniqueness, making it the preferred choice for problems requiring high 
reliability. However, LADM remains competitive due to its flexibility in handling nonlinear terms and 
its efficiency in requiring fewer iterations for convergence in certain cases. 

 Based on these findings, BCM is recommended for solving BBM equations in larger spatial 
domains or for scenarios demanding high numerical stability and precision. LADM is better suited for 
quick approximations and localized solutions. Future research should focus on the computational 
efficiency of both methods, their scalability to higher-order solutions, and their performance under 
varying parameter settings. Extending the comparative analysis to other nonlinear wave equations 
could provide broader insights into the applicability and limitations of these methods. 
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