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In high dimensional small sample (HDSS) classification problems, the issue of relevant 
and irrelevant data, the curse of singularity, and dimensionality persist. The presence 
of irrelevant variables has generated different problems in the classification domain 
such as computational time, misclassification rate, and performance evaluation 
criteria. The covariance-dependent classification methods such as the Fisher linear 
classification method (FLCM) are redundant as such, the independent classification 
rule (ICR) was coined to solve these problems. Yet, the training and validation of the 
ICR learned model depends on the relevant and irrelevant data in the variables. To 
overcome these problems, we applied the principal component analysis (PCA) for 
dimension reduction on the FLCM (PCA- FLCM), the ICR method (PCA-ICR), F-weighted 
PCA called W-PCA, and the proposed benchmark extraction method (BEM) to tackle 
the above mentioned HDSS classification problems. For this study, we investigated the 
number and percentage of relevant variables selected, computational time, and the 
probability of correct classification (PCC). To evaluate the performance of these 
methods, we applied the performance evaluation criteria (PEC) to analyse the 
probability of correct classification for HDSS classification problems based on the 
axioms of the probability concept. The results revealed that the W-PCA procedure is 
very sensitive to select the most vital few variables (Minimum number of vital 
variables) followed by the BEM procedure. The W-PCA variants have the best 
computational time while the BEM has the overall best PCC for the data set 
investigated. The findings demonstrated that the BEM approach outperformed other 
methods in terms of probability of correct classification while the W-PCA has the best 
optimal variable search and selection capabilities than the other methods.  
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1. Introduction 
 

The advent of high dimensional small sample (HDSS) classification problems has rendered the 
traditional classification methods that depend on covariance matrix impossible due to the curse of 
singularity and dimensionality of the data matrix. Such massive HDSS data sets often emerged from 
different fields of study such as biomedical [1], computer vision [2], image and text classification [3], 
microarray gene expression data [4], and signal processing [5]. The high dimensional and sparsity of 
these data are severe challenges to data processing [6]. In practice, it is not always easy to extract 
useful information from the HDSS data set due to the presence of irrelevant data points in the 
features or variables [7,8]. The irrelevant data set in HDSS may hamper the classification performance 
of any good classifier and increase the computational time. As a result, different variable or feature 
selection techniques have been proposed to transform HDSS (𝑝 >  𝑛) to large sample low dimension 
(LSLD;  𝑛 >  𝑝) to improve the classification accuracy and computational speed of any classifier  
[9,10]. Some variable selection methods often discard the irrelevant data sets in the variables [11]. 

Variable selection methods (VSM) have been applied as preprocessing methods to obtain better 
and efficient dimension reduction in HDSS problems [8,11-13]. The VSM is often applied to HDSS data 
to transform it to LSLD data, then a classifier is applied to LSLD to perform the classification tasks. 
The principal component analysis (PCA) is a classical VSM often applied for dimension reduction [14-
16]. Besides the conventional PCA, improved versions of PCA exist for dimension reduction [17-21]. 
Apart from the above-mentioned dimension reduction techniques, variable selection is an indirect 
powerful dimension reduction technique because of the numerical strength of the data point of the 
variable selected. Variable selection is a step phase for the classifier to achieve robust classification 
results. Thus, dimension reduction or variable selection may lead to some vital information loss which 
may result in bias classification performance and analysis [22]. 

Different variable selection algorithms have been proposed for HDSS classification problems to 
infer relevant information from the data set [22]. The hybrid feature selection method based on data 
ranking has been proposed to extract useful information from the data [1]. The two-dimensional 
linear discriminant method (2DLDM) was discussed to solve HDSS classification problems [2,5,23]. 
This method was also applied to the LSLD, and it was observed to retain the data structure during 
variable extraction. It was also shown to exhibit lower computational time compared to their 
supervised learners such as the linear discriminant analysis [2]. 

For the HDSS classification problems, the coefficient of the classical classification methods that 
depends on the covariance matrix such as the Fisher linear classification method (FLCM) cannot be 
formulated [23] as such the independence classification rule (ICR), diagonal linear discriminant 
analysis (DLDA) and two-dimensional linear discriminant method (2DLDM) which depends on the 
diagonal of the covariance matrix and many more were coined. Apart from the diagonal 
transformation in the aforementioned methods, in the validation stage, all the variables are applied 
to validate the learned models. For the HDSS classification problems, many relevant and irrelevant 
data exist which may contribute to a high misclassification rate and high computational time. To solve 
these problems, we applied the PCA and F-Weighted-PCA (W-PCA) methods to FLCM and ICR 
methods (PCA-FLCM, PCA-ICR, W-PCA-FLCM, W-PCA-ICR). We also proposed the benchmark 
extraction method (BEM) to extract vital variables based on the data point numerical strength from 
the plethora of variables in the data set. Its main functions are to maximally separate samples of 
different groups, gather samples of the same group conveniently, search and extract or select the 
very vital few variables to perform the classification tasks. These methods are applied to determine 
the number, or the percentage of relevant variables selected to learn the models and perform further 
classification tasks. The main objectives of this study are to determine the number of vital few 
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variables extracted to build the models, computational time, the probability of correct classification 
(PCC), and the robustness of these methods based on the comparison between PCC and performance 
evaluation criteria (PEC). 

Variants of variable or feature selection techniques often expunge the irrelevant variables 
thereby leading to significant loss of information. These variable selection procedures often are not 
robust because the variable selection techniques were not designed to detect and remedy the 
influence of outliers. The loss of information during feature selection may hamper the performance 
of the classifiers. To address the above pitfall of the existing variable selection, first, the conventional 
principal component analysis (PCA) was modified by introducing weight to reduce the influence of 
outliers before the PCA was applied to reduce the dimension of the variables from 𝑝 > 𝑛 to 𝑛 > 𝑝 
before the covariance-dependent classifiers are applied but still significant loss of information is 
observed in the process. To minimize the loss of information, a new data point and variables 
extraction procedure was proposed, that is the benchmark extraction method (BEM). This method 
was designed to reduce the influence of outliers and identify the very vital data points that belong to 
the variables of interest. In other words, it reduces the dimension of the data set based on variable 
contributions. However, if the number of irrelevant data points contained in the variable is extremely 
minimal, the benchmark extraction method (BEM) retains the variable but if the number of irrelevant 
data points exceeds the benchmark, the variable is annihilated. The uniqueness of the new method 
lies in the fact that it preprocesses the data points based on variables individually and performs 
classification tasks simultaneously. 

This paper is structured as follows. The classical principal component analysis (PCA) based on 
FLCM and ICR, W-PCA-FLCM, W-PCA-ICR, BEM, and data collection are described in Section 2. Results 
and discussion are contained in Section 3 followed by conclusions in Section 4. 
 
2. Materials and Methods  
2.1 Principal Component Analysis based on Fisher Linear Classification Method (PCA-FLCM) 

 
The classical Fisher linear classification method (FLCM) cannot be applied to HDSS problems 

directly. To formulate the coefficient of the FLCM, the HDSS problems need to be transformed into 
LSLD (n > p) problems by using data dimension reduction techniques. In most cases, the principal 
component analysis (PCA) or variable selection methods are applied to perform this task before the 
FLCM coefficient can be formulated and further train the classifier [24-26]. The PCA has been applied 
to different areas for dimensionality reduction before suitable classifiers are applied to perform 
classification tasks [27-31]. 

In this consideration, to formulate the PCA-FLCM classifier, the HDSS (p > n) data need to be 
transformed to n > p problem by selecting the largest eigenvalue contribution which is considered 
the vital variable in the data [32,33]. The corresponding reduced data set are used to train the FLCM 
for classification purposes [34]. 

 
2.2 Weight Principal Component Analysis based on Fisher Linear Classification Method (W-PCA-FLCM) 

 
In this subsection, we apply the F-weight as shown in Eq. (1) 
 

𝑊𝑖 =
𝐶𝑖

𝜕
, 𝐶𝑖 = 𝑋𝑖𝑋𝑖

𝑇, 𝛿 = ∑ 𝐶𝑖 , 𝑖 = 1,2 (1) 
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to transform the data matrix before applying the PCA for data dimension reduction. The FLCM is 
trained and validated based on the selected variables from W-PCA. This method is referred to as  
W-PCA-FLCM. 

 
2.3 Independent Classification Rule (ICR) 

 
For the HDSS classification problem, the covariance matrix method would suffer the curse of 

singularity. To dodge the singularity problem, the independent classification rule (ICR) was proposed. 
The coefficient of this method is formed by taking the diagonal of the covariance matrix [35-37]. The 
ICR method has shown better performance for LSLD problems [36]. Pang and Tong [36] noted that 
the performance of ICR for HDSS problems is “not reliable” which may probably be due to the large 
p for training the classifier. On this note, we will apply PCA and W-PCA to the HDSS data to transform 
it into LSLD data before applying the ICR classifier to perform the classification task. The PCA-ICR and 
W-PCA-ICR are based on the data dimension reduction concept discussed above. 

 
2.4 Benchmark Extraction Method (BEM) 

 
The BEM applies the weighted mean approach to search and selects the very vital few variables 

with the highest contributions. In other words, it searches for vital variables in the data thereby 
extracting and reducing the column of the data matrix to fewer columns (very relevant variables) 
such that the covariance dependent classification techniques can be applied to train the classifier. 
Let 𝑋𝑖  =  1, 2 be 𝑝 >  𝑛 data matrix, where 𝑝 is the data matrix dimension and 𝑛 is the sample size. 
The BEM can be described as follows. The first step is to compute the group mean vectors, that is, 

  

�̅�𝑖 =
∑ 𝑋𝑖𝑗

𝑛𝑖
𝑗=1

𝑛𝑖
, �̿� =

∑ �̅�𝑖
𝑘
𝑖=1

𝑘
, 𝑘 = 2 

∁𝑖= { 1, 𝑖𝑓 �̅�𝑖 > �̿� 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(2) 

  
Therefore, the weighting steps proceed as follows 
 

𝜕𝑖 = ∁𝑖�̅�𝑖 (3) 
 
Based on Eq. (3), search and select the variable with the highest weight for the two groups which 

can be visualized as 
 
∪𝑖= 𝜕𝑖𝜕𝑖 (4) 

 
From Eq. (3) or Eq. (4) we can determine the number of relevant variables selected as follows 
 

∩𝑖= ∑ ∁𝑖𝑗
𝑛𝑖
𝑗=1  (5) 

 
Then transform the number of variables selected as follows 
  

∅𝑖 =
𝜕𝑖

∩𝑖
 (6) 
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𝛼𝑖 =
∪𝑖

∩𝑖
 (7) 

 

𝛼 =
∑ 𝛼𝑖

𝑘
𝑖=1

𝑘
 (8) 

 
Step two variable search and selection continue as follows 

 

∁2𝑖= {
1, 𝑖𝑓 𝛼𝑖 > 𝛼

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9) 

 

∩2𝑖= ∑ ∁2𝑖𝑗
𝑛𝑖
𝑗=1  (10) 

 
Eq. (10) represents the number of variables selected for step 2. Note that each step of variable 

screening generates its benchmark heuristically based on the available data set in the variable. If the 
number of variables selected from Eq. (2) and Eq. (9) is different, continue until you find variable 
selection stability. Variable search and selection stability simply means an attempt to obtain the 
variables with the highest contributory weight which are the same for all attempts. Consider the 
following expression 

  
𝜕2𝑖 = ∁2𝑖𝛼𝑖 (11) 
 

From Eq. (11) we have 
  

∅2𝑖 =
𝜕2𝑖

∩2𝑖
 (12) 

  
where ∩2i =    ni   ∁2ij. We repeat steps 7 and 8 as follows 

  

𝛼2𝑖 =
∪2𝑖

∩2𝑖
=

𝜕2𝑖𝜕2𝑖

∑ ∁2𝑖𝑗
𝑛𝑖
𝑗=1

 (13) 

 

𝛼2 =
∑ 𝛼2𝑖

𝑘
𝑖=1

𝑘
 (14) 

 
Repeat step (9) for new variable selection 
 

∁3𝑖= {
1, 𝑖𝑓 𝛼2𝑖 > 𝛼2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (15) 

 
If the number of variables searched and selected by Eq. (15) is equal to the number of variables 

selected by Eq. (2) and Eq. (9), then we conclude that the variables selected are stable [38], then stop 
and train the model coefficient as follows 

 
∆𝑖= ∁3𝑖𝑋𝑖 (16) 
 

Eq. (16) implies stable numbers of variables have been extracted and indicates that the number 
of variables selected can be used to train the classifier to improve computational time and 
classification accuracy. The mean vectors of the extracted vital variables are 
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�̅�1 =
∑ ∆1

𝑛1
𝑗=1

𝑛1
, �̅�2 =

∑ ∆2
𝑛2
𝑗=1

𝑛2
 (17) 

 
are the weighted screened variable mean vectors for the two groups, 𝑛1, 𝑛2 are the sample sizes for 
each group, at this point, we have transformed 𝑝 > 𝑛 to 𝑛 > 𝑝. Henceforth, we can apply any 
classical classification methods to perform classification tasks on the data set. Let determine the 
screen mean deviation, that is 

 
𝐷 = (�̅�1 − �̅�2) (18) 
 

Then the group variance and pooled sample variance are defined as 
  

𝑆𝑖 =
∑ (∆𝑖−𝑉𝑖)2𝑛𝑖

𝑗=1

𝑛𝑖−1
 and (19) 

 

𝑆𝑝 =
∑ (𝑛𝑖−1)𝑆𝑖

𝑘
𝑖=1

∑ 𝑛𝑖−𝑘𝑘
𝑖=1

 . (20) 

 
From these definitions, we formulate the model coefficient 
 

∇=
(𝑉1−𝑉2)

∑ (𝑛𝑖−1)𝑆𝑖
𝑘
𝑖=1

∑ 𝑛𝑖−𝑘𝑘
𝑖=1

= 𝐷𝑆𝑃
−1 . (21) 

 
The classification scores are defined as 
  

𝑊𝑖 = ∇∆𝑖
𝑇 (22) 

  
The classification benchmark is defined as follows 
 

�̅� =
(𝑉1+𝑉2)

𝑘
,  �̅� = �̅�𝑆𝑃

−1 . (23) 

  
From Eq. (22) and Eq. (23) we can assign a new object, that is classified ∆𝟏 to group one if 𝑾𝟏 ≥

�̅̅̅�, otherwise, assign it to group two. The BEM selects the variables based on internally computed 
parameters by continuous search and screening. Once all the screening steps have repeatedly 
screened similar variables, the process automatically translates to the LSLD system with the original 
sample size preserved. This process may indicate higher variable selection in one group than in the 
other. This method can be categorized as the filter method because after the relevant features have 
been determined, a classifier is trained from the new data set. 
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2.5 Performance Evaluation Criteria (PEC) 
 
Conventionally, the axiomatic concept of probability that is 0 ≤ 𝑃 ≤ 1, 𝑃𝜖[0,1] is often used to 

determine the performance of 𝑝 > 𝑛 problems. Due to the irrelevant data points and variables 
associated with this type of data set, the irrelevant data points affect the performance of any 
classifier that belongs to this group because the evaluation measure is unsusceptible against 
irrelevant data points. To solve this problem, it was pertinent to propose evaluation criteria that 
require the application of the data point used in training and validating the classifier.  
However, the axiomatic approach focused only on the probability obtained from the classifiers with 

𝑃 = ∑ 𝑝𝑖
𝑘
𝑖=1 = 1 which in many instances gives a high rate of misclassification. To solve this problem, 

a new procedure was proposed to remedy the aforementioned. It is observed that the error of 
misclassification obtained based on this method is minimal compared to the error of misclassification 
obtained from the axiomatic concept. The proposed method is presented as follows. 

Based on the concept of axioms of probability, the optimal probability of correct classification is 
 

Ω = 𝜋 + 𝜏 = 1, (24) 
 
where 𝜋 is the probability of misclassification defined as 

 

𝜋 = [
(1−𝑝𝑐𝑐)

2×𝑝𝑐𝑐
] × 𝑝𝑐𝑐. (25) 

 
where 𝑝𝑐𝑐 denotes the probability of correct classification from the training and validation data [39]. 
Therefore, the probability of correct classification (𝜏) is defined as 

 
τ = ∇= Ω − 𝜋. (26) 
 

The error of misclassification due to Eq. (26) is minimal compared to the error of misclassification 
associated with the axiomatic concept. 

 
2.6 Data Collection 

 
In this study, we apply four real data sets from https://www.openml.org to investigate the 

performance of the methods discussed.  Since the study focused on dimension reduction and the 
utilization of the most vital few relevant variables, we are elected to focus on the number of variables 
and the percentages of variables selected, or the corresponding percentage of eigenvalues based on 
the number of relevant variables selected, the computational time of the methods and the 
probability of correct classification. The first data set is based on mines and sonar rock signal [40], 
the second data set consists of scene image recognition [41], the third was obtained from 
https://www.openml.org/d/922, and the fourth Tecator meat data from 
https://www.openml.org/d/851. 

 
i) Mines and sonar rock signal 

This data originally consists of 104 sample size (𝑛 = 104) with 60 variables (𝑝 = 60). For 
this study, that is 𝑝 > 𝑛𝑘, we select 𝑛𝑘 = 50 for each group and 𝑝 = 60, that is (60 > 50). 
The results are reported in Table 1 and Figure 1 based on the study variables. 

 
ii) Scene image recognition data set 
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For this study, the analysis focused on urban and non-urban real images based on the scene. 
The original data consists of 2407 samples and 294 variables [41], which is 𝑛 = 2407, 𝑝 =
294, where 𝑛1 = 1976, 𝑛2 = 431, 𝑛 = 𝑛1 + 𝑛2 = 2407. For this study, that is 𝑝 > 𝑛𝑘, 
𝑛𝑘 = 200, 𝑛1𝑘 = 100, 𝑛2𝑘 = 100, 294 > 𝑛𝑘. Table 2 and Figure 2 contain the classification 
performance of the different methods based on the study variables. 

 
iii) https://www.openml.org/d/922  

The author and usage of this data are unknown. This data was obtained from 
https://www.openml.org/d/922. It consists of two classes defined as positive and negative 
with  

𝑛1 = 42 and 𝑛2 = 58, 𝑛 = ∑ 𝑛𝑖 = 1002
𝑖=1 . To satisfy the condition of this study (𝑝 > 𝑛), 

we assumed an equal sample size for the two groups, hence 𝑛1 = 𝑛2 = 42, therefore 𝑝 >
𝑛1, 𝑛2. Table 3 and Figure 3 contain the performance analysis of these methods. 

 
iv) Tecator meat data (https://www.openml.org/d/851) 

This data set was recorded using Tecator Infratech food and feed analyzer for 850nm-
1,050nm wavelength by near-infrared transmission procedure. This data was used to 
predict the fat content of meat-based on its near-infrared absorbance spectrum 
(https://www.openml.org/d/851). The data set contains 𝑛1 = 102 and 𝑛2 = 138, 𝑛 =
∑ 𝑛𝑖 = 240, 𝑝 = 1242

𝑖=1 . We assumed an equal sample size based on 𝑛1 as such, 𝑝 > 𝑛𝑘 =
102. The classification result is reported in Table 4 and Figure 4 respectively. 

       
3. Results and Discussion 
 

The results in Table 1, showed that the classical PCA-FLCM, PCA-ICR utilized 46.67% of the 
relevant variables with corresponding 98% of the eigenvalues while the W-PCA-FLCM and W-PCA-ICR 
utilized 8.33% of the variables with corresponding 98.75% eigenvalues. The proposed method utilized 
only 38.33% of the variables. The implication of this is that the values in brackets are the percentage 
of relevant variables recognized by the respective methods. We observed that the average 
computational time for all methods is approximately 0.10 CPU time (seconds). The findings 
demonstrated that the proposed method (BEM) outperformed the PCA variants while the W-PCA-
FLCM, and W-PCA-ICR outperformed the classical PCA-FLCM and PCA-ICR. From Table 1, the W-PCA 
methods identified only ten relevant variables which accounted for 98.75% of the eigenvalue 
contribution compared to the classical PCA with 98% from 56 variables for both groups. This implies 
that the W-PCA method is more susceptible to identify the relevant variables than the classical PCA. 

 
Table 1 
Analysis of the mines and sonar rock signal based on PCA variants and the BEM 

Parameters PCA-FLCM PCA-ICR W-PCA-FLCM W-PCA-ICR BEM 

NV 56(46.67%) 56(46.67%) 10(8.33%) 10(8.33%) 46(38.33%) 
EV(%) 98.00 98.00 98.75 98.75 NA 
Time (CPU) 0.11 0.09 0.07 0.11 0.11 
𝜏 = ∇ 0.77 0.77 0.79 0.79 0.87 

NV: number of variables; EV: eigenvalues; τ=∇: the probability of correct classification 

 

https://www.openml.org/d/922
https://www.openml.org/d/851
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Fig. 1. Comparative analysis of the methods for mines and sonar rock signal based on PCC and CPU time 

 
The results in Table 2 demonstrate the classification performance of these methods based on the 

number and percentages of variables selected. The classical PCA methods selected 198 variables 
representing 33.67% of the variables. The 198 variables accounted for 100% eigenvalue contributions 
with a 77% classification rate. The W-PCA methods selected 12 variables from the two groups which 
represent 2.04% of the variables, this 2.04% accounted for 97.5% eigenvalue contributions with a 
78% classification rate. The proposed method (BEM) selected 210 variables which represent 35.71% 
of the original variables with a 98% correct classification rate. The average computational time for all 
the methods is 0.99 CPU time. Based on this data set, the proposed method selected the highest 
number of variables and it outperformed other methods. 

 
Table 2 
Analysis of scene image recognition based on PCA variants and the BEM 

Parameters PCA-FLCM PCA-ICR W-PCA-FLCM W-PCA-ICR BEM 

NV 198(33.67%) 198(33.67%) 12(2.04%) 12(2.04%) 210(35.71%) 
EV(%) 100 100 97.5 97.5 NA 
Time (CPU) 1.06 1.07 0.95 0.92 0.95 
𝜏 = ∇ 0.77 0.77 0.78 0.78 0.98 

NV: number of variables; EV: eigenvalues; τ=∇: the probability of correct classification 

 

 
Fig. 2. Comparative analysis of the methods for scene image recognition based on PCC and CPU time 
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The performance analysis for the binarized data https://www.openml.org/d/922 indicates that 
the PCA-FLCM, PCA-ICR, and BEM performed comparably as shown in Table 3. The BEM method 
extracted 20% of the relevant variables while the PCA variants extracted 56% of the relevant variables 
which accounted for 96% of eigenvalues, also the W-PCA variants extracted 44% of the relevant 
variables with 97.87% eigenvalues. In terms of computational time and classification accuracy,  
Figure 3 shows that the conventional PCA and the BEM outperformed the other method meanwhile 
the W-PCA-ICR has the lowest computational time. 

 
Table 3 
Analysis of binarized data based on PCA variants and the BEM 

Parameters PCA-FLCM PCA-ICR W-PCA-FLCM W-PCA-ICR BEM 

NV 56(56%) 56(56%) 44(44%) 44(44%) 20(20%) 
EV(%) 96.01 96.01 97.87 97.87 NA 
Time (CPU) 0.25 0.21 0.25 0.20 0.23 
𝜏 = ∇ 0.80 0.80 0.78 0.78 0.80 

NV: number of variables; EV: eigenvalues; τ=∇: the probability of correct classification 

 

 
Fig. 3. Comparative analysis of the methods for binarized data based on PCC and CPU time 

 
Based on the results from analyzing tecator meat data as presented in Table 4, it shows that PCA-

FLCM and PCA-ICR revealed that 4.03% of the variables were selected with 95.01% eigenvalues 
meanwhile, the W-PCA-FLCM and W-PCA-ICR selected 1.62% relevant variables with corresponding 
99.82% eigenvalues. The BEM selected 1.62% of relevant variables. Figure 4 revealed that the PCA-
ICR and BEM have minimum computational time while the PCA-FLCM has the highest computational 
time. The BEM has the best classification performance followed by the W-PCA variants. 

 
Table 4 
Analysis of tecator meat data based on PCA variants and the BEM 

Parameters PCA-FLCM PCA-ICR W-PCA-FLCM W-PCA-ICR BEM 

NV 10(4.03%) 10(4.03%) 4(1.62%) 4(1.62%) 4(1.62%) 
EV(%) 95.01 95.01 99.82 99.82 NA 
Time (CPU) 0.81 0.73 0.76 0.75 0.73 
𝜏 = ∇ 0.77 0.77 0.78 0.78 0.82 

NV: number of variables; EV: eigenvalues; τ=∇: the probability of correct classification 
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Fig. 4. Comparative analysis of the methods for tecator meat data based on PCC and CPU time 

 
The results have demonstrated that a large chunk of the variables in HDSS problems do not 

contribute to classification accuracy rather they increase the misclassification rate [42-44]. However, 
the performance of dimension reduction and variable selection methods may depend strictly on data 
dependency theory. This theory simply states that the performance of any classification method 
strictly depends on the data structure and sign direction. The quality of the variables selected, 
numerical composition, and directions significantly affect the classification performance of any good 
classification method. The number of variables selected based on the percentage of eigenvalues does 
not guarantee better classification performance rather the composition and the structure of the data 
selected play a vital role in doing the classification tasks. For the data set considered in this study, the 
proposed method has demonstrated better classification performance than the other methods while 
the F-weighted PCA method has revealed its strength in variable selection and computational time. 
This study has demonstrated that eigenvalue contribution or the number of variables selected 
depends on the data composition, structure, and sign directions. The comparative performance 
analysis showed that PEC is unique in evaluating the performance of HDSS classification problems 
and very capable of diminishing the likelihood of overfitting occurring in any classification study 
results. 
 
4. Conclusions 
 

This study has shown the importance of selecting relevant variables in HDSS problems to perform 
classification tasks. The analysis demonstrated the importance of applying variable selection 
techniques to extract vital variables to perform classification tasks and to enhance the classification 
accuracy of the models for HDSS problems. The study further demonstrated that the proposed  
F-weighted PCA(W-PCA) is very sensitive in extracting the most vital few variables with excellent 
computational time compared to other methods discussed. The real data application revealed that 
the BEM procedure showed better classification accuracy based on the performance evaluation 
criteria (PEC). The study indicates that the performance of any classification model follows the data 
dependency theory which illustrated that the nature and structure of the data enhance the PEC 
values of any classification model. Therefore, this study concludes that the BEM is robust over the 
other methods, the computational time, the search, and selection of very vital few variables by the 
W-PCA procedure are more superior to the other methods investigated.  
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It is observed that even though the benchmark extraction method minimizes the loss of 
information, it can be improved upon by direct transformation of irrelevant data points to relevant 
data points. This will enhance the classifiers to carry out classification tasks without expunging data 
points or variables. This process will reduce computational time and increase the number of variables 
to be included in the data processing stage. 
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