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Complex network-based analysis of the real-world system has frequently assisted 
researchers in providing a crucial and extensive understanding of a variety of 
interconnected useful data especially on public transportation services. In this paper, 
we construct a public bus transportation network of eight zones in Klang Valley before 
evaluating their characteristics based on some network measurements such as average 
degree and clustering coefficient followed by calculation on five network indicators 
namely accessibility, centralization, robustness, directness, and service connectivity. 
These network indicators are helpful in providing extensive analysis of the network 
performance. Other than that, we also analyse the correlation between the network 
indicators. It is found that the different network indicator is beneficial in describing the 
network performance based on different network components and characteristics 
such as how betweenness centrality and closeness centrality are applied as part of the 
centralization and accessibility measurement respectively. 
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1. Introduction 
 

The world is abundant with complex systems in various areas, ranging from social and 
technological systems to information and biological systems [1]. Some examples of complex systems 
are the Internet [2], the World Wide Web [3], social communities [4], biochemical networks [5], 
business relationships [6], and public transport [7]. A complex system usually consists of many 
individual components that interact together collectively. These interactions of the components 
exhibit certain behaviour which can be detected at the system level. One well-known approach 
(network theory) is associating the complex system as networks where each element is represented 
as nodes while the interaction between them is represented as edges. These networks that represent 
real-world complex systems are called complex networks and they usually display non-trivial 
topological features [1]. With this simplification, it becomes possible to analyze its properties and 
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gain insights into how the system functions, how it responds to changes and disruptions, and how to 
design more robust and resilient systems in the future [8]. 

Public transportation such as bus and light rapid transit (LRT) or mass rapid transit (MRT) is a vital 
structure of a city. Public transport is often regarded as an indicator of how well urban planning is 
executed by assessing the residents' commuting experience. Much research work has been 
conducted under the complex network framework on public transport such as the sub-way [9], bus 
[10], and metro [11]. The studies are mainly focus on big cities where there is a more suitable land 
structure [12]. Starting from the work of Tsiotas and Polyzos  [13], which talks about the interregional 
road structure of Greece which highly influenced the placement of public transportation that 
contributed to the workflow analysis to the work of Wang et al., [14], which highlights the 
contribution of complex network modeling to identify stations with high capacity at peak time, it 
shows that complex network approach can be a tremendous factor in increasing the efficiency of 
public transport service in the near future. In other words, a complex network approach to public 
transportation networks can provide solutions to the policy maker or urban planner in tackling 
congestion issues as well as fully utilise the service and improving public transportation [15]. 

In this paper, we build a network consisting the information on public bus transportation service 
(PBTS) in eight zones in Klang Valley, Malaysia using a complex network approach based on l-space 
and p-space representation. The data for the PBTS can be obtained from their official MyRapid 
website (myrapid.com.my). Its characteristics are then measured using various network indicators 
including accessibility, centralization, robustness, service connectivity, and directness. Finally, 
Pearson’s correlation analysis is used to verify the relation between network indicators. 
 
2. Network Representation  
 

A key methodology in the examination of complex networks is to consider the network as a graph 
G (V, E), where nodes V are connected to each other by edges, E [1]. Nodes that are linked by an edge 
are referred to as neighbours or adjacent nodes. A graph is said to be complete if all of its nodes are 
linked to each other. Conversely, a graph is considered disconnected if there is no path that connects 
all pairs of nodes. When a graph has a path connecting any pair of nodes, it is known as a connected 
graph. 

An undirected network (also called an undirected graph) is a type of network in which the 
connections (edges) between nodes have no inherent direction. This indicates that if node A is 
connected to node B, then node B is also connected to node A. In other words, the edges are 
bidirectional [1]. An example of an undirected network is a social network where the connections 
between individuals represent friendships or other relationships [16], and the directionality of these 
connections is not significant. 

On the other hand, a directed network (also called a directed graph) is a type of network in which 
the connections between nodes have a specific direction. This means that if node A is connected to 
node B, it does not necessarily mean that node B is also connected to node A. In other words, the 
edges are unidirectional. An example of a directed network is a transportation network where the 
connections between cities represent one-way roads or air routes, and the directionality of these 
connections is crucial to determining the fastest or most efficient routes between locations. 

In this work, the network is represented in two different network spaces namely l -space and p-
space. In l -space, the network represents the structure of the public transportation service where 
the nodes are the bus stops and the edges connecting the nodes are if there exists at least one route 
connecting the bus stops [17]. Meanwhile in p-space or also known as the transfer network, the 
nodes are the bus stops and there is an edge between each bus stop or nodes that are servicing the 
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same route [18]. The examples of these two network spaces are shown in Figure 1. By analysing the 
network in both l-space and p-space representations, researchers can identify the busiest station 
while also obtaining information on transfer stations and average number of transfers which is a 
critical aspect of travel scheduling [19]. 

 

 
                                                             (a)      (b)  

Fig. 1. Examples of a directed PTN in (a) l-space, (b) p -space 

 
3. Construction of Public Bus Transportation Network (PBTN)  

 
This work focuses on the public bus transportation service (PBTS) in the Klang Valley area of 

Malaysia, which is the hub of Malaysia’s public transportation system. With a population of over 9.0 
million [20], this densely populated region is home to numerous offices, including banks, 
government-linked companies (GLCs), and the headquarters of many international companies. A 
thorough understanding of the transportation network’s mechanism and operation is crucial for 
improving the efficiency and effectiveness of the system, as well as for preparing transportation 
providers for future expansions of the service. 

The PBTS, also known as RapidKL is provided by the government-funded company, Prasarana Sdn. 
Bhd. RapidKL bus services started their operation in 2002 and have been expanding since. The data 
collected for this work includes the bus routes and each stop in the routes. This information is publicly 
accessible on their official website. The service is available for eight zones in the Klang Valley (see 
Figure 2) area namely Ampang, Cheras, Damansara, Jalan Pahang, Jalan Ipoh, Jalan Klang Lama, 
Lebuhraya Persekutuan and Sungai Besi. Figure 3 shows the construction of the network of Klang 
Valley based on l-space and p-space network representation while the number of nodes, N, and 
number of edges, E of the networks are shown in Table 1. 
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Fig. 2. Map of Peninsular Malaysia and the Klang Valley boundary [21] 

 

 
                                                             (a)      (b)  

Fig. 3. The combined networks in two different spaces namely (a) l-space, (b) p -space 

 
Table 1 
Measurements of the bus transportation in Klang Valley 
Zones Route Number of 

nodes, N 
Number of edges 
in l-space, El 

Number of edges 
in p-space, Ep 

Klang Valley 150 3565 4423 126047 

 
PBTS has a total of 3565 bus stops and 150 routes. The construction of a public bus transportation 

network (PBTN) is performed by combining all 150 routes from all zones and as shown in Figure 3. 
Afterwards, it is observed that the network consists of 10 separate network components with one of 
them being significantly bigger than the other. It is also observed that 11 routes that are not included 
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in the biggest component. It is analysed that these 11 routes are from the Cheras, Jalan Ipoh, Jalan 
Klang Lama, Lebuhraya Persekutuan and Sungai Besi. These isolated routes are mainly to cater to the 
local area. As an example, in the Lebuhraya Persekutuan region, there is one route that is constructed 
for the area namely route T778 which consists of bus stops such as LRT USJ 21, FAIRVILLE, SMK USJ 
23, and ONE CITY. The route is shown on a map in Figure 4. 

 

 
Fig. 4. Map of the T778 route [22] 

 
The mainly connected network component which consists of 92% of all the routes provided by 

the PBTS is extracted and labelled as A1 for further analysis on the PBTN. The measurements of the 
A1 network. Table 2 shows measurements of the bus transportation in Klang Valley. 

 
Table 2 
Measurements of the bus transportation in Klang Valley 
Zones Label Route Number of 

nodes, N 
Number of edges 
in l-space, El 

Number of edges 
in p-space, Ep 

Klang Valley A1 150 3565 4423 126047 

 
4. Network Analysis of the PBTN  
 

There are a handful of parameters that can be measured from the complex network. some of the 
common measurements are average path length, vertex degree, clustering coefficient, diameter, and 
density. These network properties are important as they can give some general observations on the 
PBTN. To have more details on the PBTN, more specific network indicators such as accessibility, 
centralization, robustness, directness, and service connectivity are calculated in this work. 

PBTN is a directed network because the bus operates on a fixed cycle. For example, one of the 
routes will start at AJ468 HUB PANDAH INDAH and stop at each 84 bus stops along the route before 
eventually ending up at the starting bus stop to complete a cycle 
 
4.1 Average Path Length, L and Network Diameter, D 
 

Average path length is the mean of the shortest path between two nodes also known as mean 
distance. If two nodes are disconnected, meaning there is no path between them, then the path 
length between them is infinite. If the two disconnected nodes exist in a network, that will also result 
in the average path length in the network becoming infinite. One way to avoid this problem is to 
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calculate only from nodes in the largest connected component. Mathematically, the average path 
length, L is shown as: 
 

𝐿 =  
1

𝑁(𝑁−1)
∑ 𝑑𝑖𝑗𝑖≠𝑗               (1) 

 
where where N is the number of nodes and dij is the distance between two nodes, i and j. From Table 
3, it shows that the PBTN has a Ll of 54.09. This value can also be regarded as the number of bus stops 
one pass by on average when travelling using the PBTS. However, this number is not taking into 
account the possibility of the need to make a transfer instead only highlighting the shortest path to 
get from one bus stop to another on average. Meanwhile, for p-space network, the path length of an 
individual node to the other nodes plays a huge role in identifying the number of transfers between 
nodes. The number of transfers shows the times needed by passengers to change their course of 
route to reach a certain destination [17]. The formula [10] is as follows: 
 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑓𝑒𝑟 = 𝑃𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ − 1           (2) 

 
Table 3 
Measurements of the parameters for A1  
Network Average 

degree, <k>l 
Average path 
length, Ll 

Clustering 
coefficient, Cl 

Density, dl Diameter in l-
space, Dl 

A1 1.253 54.09 0.008 0.0003 206 

 
This number of transfers can also be described as the number of times the passengers need to 

get off at a bus stop to change their route on a different bus. This is crucial in time planning of any 
trip. Table 4 shows the measurements of average path with the number of transfers. 

 
Table 4 
Measurements of average path length in p-space, Lp of PBTN and the 
average number of transfers 
Network Lp Average number of transfers 

A1 4.29 3.29 

 
It is important to note that Lp of PBTN is useful to explain the average number of transfers which 

for PBTN is 3.29. This signifies that the user needs to transfer to another route to reach their 
destination on average for 3.29 times. 

Beside average path length, network diameter is also relevant in demonstrating the size of the 
network [1]. Network diameter is the longest distance among all the shortest path lengths calculated. 
In PTN, network diameter can be regarded as the indicator on the coverage area of the public 
transportation services where when there are more new bus stops are added especially in a newly 
developed area. 

From Table 3, the network diameter of the PBTN is 206 which shows that there are 206 paths 
between a pair of bus stops that are the most distant from each other. On the other hand, a large 
network diameter may be interpreted as a longer travel time, which can contribute to the possibility 
of delays since there are more bus stops between pair of bus stops which may explain the 
connectivity of the network. 

Apart from that, the connectivity of the entire network can also be evaluated from the number 
of edges. This usage of the information on the edge count can be utilised in the calculation of network 
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density [1] which reflects the overall tightness of the entire network. In directed PBTN, the network 
density can be calculated as follows: 
 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑒𝑑𝑔𝑒𝑠

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑑𝑔𝑒𝑠
            (3) 

 
where the possible edges of a directed network is given as N(N-1). Network density can also be 
evaluated as having lower direct connections among the bus stops such that users might need to take 
detours or longer routes to reach their desired destinations. From Table 3, we can conclude that the 
PBTN has a very low density which signifies the low inter-connectedness. This could be seen as the 
amount of bus stops are high to cover more area, but there is a minimal bus stop that connects these 
bus stops from different routes together 
 

4.2 Average Degree, <k> and Clustering Coefficient, 𝑪𝒊
𝒄𝒚𝒄𝒍𝒊𝒄

 

 
For each bus stop, there is at least one in-edge and one out-edge. The value stated in Table 3 is 

the value for both in-degree and out-degree. This small value of the average degree can explain the 
structure of the network that is sparse. It is also important to pay attention to the individual bus stops 
that have a high degree.  These l -space networks consist of directed edges, so we must look at the 
in-degree, out-degree, and the combination of in-degree and out degree. Other than that, a sparse 
or dense network can also be observed by evaluating the clustering coefficient. The bus stops with 
the highest degree are listed in Table 5 with their respective in-degree, out-degree, and clustering 
coefficients. 

 
Table 5 
The first six nodes with the highest degree, k 
Bus stop k In-degree Out-degree 𝐶𝑖

𝑐𝑦𝑐𝑙𝑖𝑐
 

Hentian Bandar Seksyen 14 11 5 6 ~0.001 

Tmn Greenwood Jln Batu Caves 10 5 5 ~0.001 

SJ237 Terminal Puchong Utama 10 5 5 ~0.001 

Hentian Seksyen 13 10 5 5 0.042 
Spg Tmn Melati MRR2 9 5 4 0.059 

PJ84 PJ Walk 9 6 3 0.059 

 
A throughout check on the network found that the bus stops that have highest in-degree is not 

necessarily have the highest out-degree as can be seen in Table 5 for bus stop “PJ84 PJ WALK”. This 
is because some of th bus stops servicing for more than one particular route. During the construction 
of the network, any redundant or similar edges are deleted. These edges are when two bus stops 
servicing at least two similar routes which resulting two out-degrees or two in-degrees between the 
same pair of bus stops. Bus stops with a huge difference in their number of in-degree and out-degree 
will influence the number of passengers at the bus stop at one time. For example, bus stop “PJ84 PJ 
WALK” has 6 in-degrees, but 3 out-degrees, there will be many passengers dropped at bus stop “PJ84 
PJ WALK” but fewer buses to pick up the passengers hence causing the bus stop to be busy. The local 
authorities and the service provider can work together to figure out the suitable maintenance needed 
at the bus stops to ensure a smooth traveling experience for the users by providing a larger waiting 
area. 
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Meanwhile, another measurement that can be crucial in the analysis of the PBTN structure is the 
clustering coefficient which emphasizes the measure of the degree to which bus stops in a PTN tend 
to cluster together and is given as:  
 

𝐶 =
1

𝑁
∑ 𝐶𝑖

𝑁
𝑖=1                (4) 

 
where the clustering coefficient for node i, Ci is expressed as: 
 

𝐶𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑖

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑠 𝑎𝑟𝑜𝑢𝑛𝑑 𝑛𝑜𝑑𝑒 𝑖
           (5) 

 
It is important to point out that the clustering coefficient for the directed network is different 

from the undirected network. In a directed network, there is an in-degree clustering coefficient and 
an out-degree clustering coefficient. Fagiolo [23] did some classification on the triangles such as the 
node is involved in a cyclic, acted as a middleman, or there are also cases where there are two in-
edges or two out-edges toward the bus stop in the triangle among the other two bus stop and is 
expressed as: 
 

𝐶𝑖
𝑐𝑦𝑐𝑙𝑖𝑐

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑐𝑦𝑐𝑙𝑖𝑐 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑤𝑖𝑡ℎ 𝑖

𝑑𝑖
𝑖𝑛𝑑𝑖

𝑜𝑢𝑡−𝑑𝑖
↔            (6) 

 

where 𝑑𝑖
𝑖𝑛 is the number of in-degree of node i, 𝑑𝑖

𝑜𝑢𝑡 is the number of out-degree of node i,  and  
𝑑𝑖

↔is  the  number  of  a  pair  of  edges  a  same  pair  that includes node i. In the PBTN of Klang Valley, 
the clustering coefficient is very low at 0.008. This value shows that the bus stops in the network are 
sparsely clustered to each other. We identify a few bus stops with the highest clustering coefficient 
which are shown in Table 6. From Table 6, the bus stops, with the highest clustering coefficient do 
not necessarily have the highest degree, and in Table 5, the bus stops with the highest degree do not 
necessarily have the highest clustering coefficient. This happens when certain major bus stops act as 
hubs with high degrees but lower clustering coefficients in which long-distance connections are 
highlighted as the main target for the users and efficient travel between major hubs, resulting in 
lower local clustering [24]. 
 

Table 6 

Measurements of 𝐶𝑖
𝑐𝑦𝑐𝑙𝑖𝑐

 clustering coefficient and degree, k of the PBTN  
Bus stop Ci

cyclic
 k 

Z&R Rest Jln Wangsa Melawati 3 1 2 
Spg Sunway Kayangan 1 2 

SL3111 LRT Gombak 1 2 
Sblum Spg Kg Subang 1 2 

SA247 Pusat Komersial Seksyen 13 1 2 
Rumah 148 Jln Ayer Panas 1 2 

Rest Jamrut 1 2 
Pusat Methodist MRR2 1 2 

Petronas Jln Makmur 1 2 
Pasngsapuri Sri Puteri Blk A 1 2 

KL2080 PPR Sungai Bonos 1 2 
Kedai Bunga Jln Kg Bdr Dalam 1 2 

Flat Ukay Perdana 1 2 
Flat Sg Bonos 1 2 
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4.3 Specific Network Indicators for PBTN 
 

Relevant characteristic for PBTN is measured using five specific network indicators namely 
accessibility, centralization, robustness, directness, and service connectivity. The first three 
indicators are measured in l-space while the last two indicators and calculated using p-space. The 
results of all network indicators for the networks are shown in Table 7. 

 
Table 7 
Measurement of network indicators in all networks 

Bus stop Network Accessibility, 
A 

Centralization, 
C 

Robustness, 
R 

Directness, 
D 

Service 
Connectivity, SC 

Ampang R1 0.037 0.709 0.131 0.509 0.883 

Cheras R2 0.022 0.907 0.056 0.538 0.935 
Damansara  R3 0.050 0.689 0.065 0.600 0.927 

Jalan Pahang R4 0.025 0.942 0.117 0.501 0.868 

Jalan Ipoh R5 0.028 0.808 0.118 0.622 0.902 

Jalan Klang 
Lama 

R6 0.031 0.896 0.103 0.499 0.905 

Lebuhraya 
Persekutuan 

R7 0.029 0.567 0.128 0.410 0.865 

Sungai Besi R8 0.032 0.877 0.049 0.568 0.954 

Klang Valley A1 0.019 0.643 0.127 0.282 0.872 

 
4.3.1 Accessibility 
 

The quality of mobility and connectivity in Klang Valley and its respective zone can be measured 
using accessibility which can be referred to as the ease of travelling from one station to another 
station in PBTN. This accessibility value ranges from 0 to 1 with 1 being the network with the highest 
accessibility. Accessibility measures consider the closeness centrality of the network and the number 
of nodes/stations and the formula adapted from [25] is as follows: 
 

𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦

𝑁
            (7) 

 
where closeness centrality considers the distance between a pair of nodes [26] expressed as: 
 

𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 =
𝑁−1

∑ 𝑑𝑖𝑗𝑗
            (8) 

  
This centrality value considers the distance between each pair of bus stops, with pair of bus stops 

with a smaller distance having higher closeness centrality which later indicates higher accessibility.  
In a way, we evaluate accessibility by looking at the mean closeness centrality overall bus stops. From 
Table 7, R3 has the highest accessibility with the value a of 0.05 compared to other networks. This 
value can somewhat be related to the low average shortest path length. Meanwhile, the accessibility 
value for the A1 network is much lower which suggests that the bus stops in the network are not fully 
connected. This indicated that more time or path is needed to reach any node. In the transportation 
system. Accessibility is often measured using metrics such as travel time, distance, or cost which 
reflects the time and effort required to travel between locations. 
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4.3.2 Centralization 
 

Centralization mainly covers the centrality of the nodes emphasizing the involvement of each 
node in the path between two other nodes. In this con- text, we utilize the betweenness centrality. 
Betweenness centrality is one of the centrality measures that focuses on the node components of 
the network especially those nodes that are included between the pair of any pair of nodes. 
Betweenness centrality is particularly used for centralization measures because it captures the 
node’s role as a mediator or a connector between a pair of nodes alongside their path. Nodes that 
have high betweenness centrality are the nodes that are crucial to make sure the shortest path of 
any two nodes is at the optimal level. Betweenness centrality is calculated as follows: 
 

𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑒𝑠𝑠 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 =
∑ 𝑛𝑖𝑗

𝑣

𝑛𝑖𝑗
            (9) 

 
where 𝑛𝑖𝑗 is the number of shortest paths from i to j passing through v and 𝑛𝑖𝑗 is the number of 

paths from i to j. Meanwhile, the equation on centralization which utilizes the idea of the 
betweenness centrality [27] is expressed as: 
 

𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  
∑(𝑚𝑎𝑥𝐶𝐵(𝑣)−𝐶𝐵(𝑣))

𝑁3−4𝑁2+5𝑁−2
                     (10) 

  
Centralization in PTN can help describe the node components that are busier than others. For this 

work, the centralization of the whole network is considered. The range of this centralization 
measurement is between 0 to 1 with 1 being the network with very strong node centralization. 

All of the networks have more than 0.5 value for centralization. This suggests the existence of a 
hub or center area in the network. In PTN, having high centralization is key to recognizing and later 
improving any particular stop area such as for facility maintenance and security surveillance. High 
centralization is also beneficial for the users of public transport as it suggests that some stations or 
stops are connected to many other stations. Among all eight networks, R4 has the highest value of 
centralization indicator. Since centralization is highly related to the betweenness centrality, we took 
a quick look into the individual betweenness centrality of each node in the R4 network. The highest 
betweenness centrality is the node “KL68 MONORAIL CHOWKIT”. This node is located in between 
Kampung Baru and Chow Kit which is a prominent area of the Kuala Lumpur city among the locals. 

Meanwhile, from the A1 network, the node with the highest betweenness centrality value is 
located in the R3 and R5 namely node “KL108 KOTA RAYA”. This bus stop is located in the heart of 
Kuala Lumpur city with many popular spots in the area such as Petaling Street Market and Central 
Market. 
 
4.3.3 Robustness 
 

PTN’s robustness depends on its structure and preparedness for bus stops or route failures, which 
can be managed through redundant routes. The robustness is defined as follows: 

 

𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =
𝐸−𝑁+1

(2𝑁)−5
                       (11) 

 
The robustness measurements are based on the redundant path that exists between two pairs of 

bus stops. The A1 network also has a small robustness value of 0.127. This emphasizes that if there 



Semarak International Journal of Fundamental and Applied Mathematics  

Volume 4, Issue 1 (2024) 17-31 

27 
 

are failures in the network or road disturbances, it will be difficult for the bus service to provide better 
recommendations on alternative routes that might have been available to the users. This will 
eventually cause inconveniences and a bad user experience such as a prolonged delay time. 

Overall, the robustness of all the networks in Klang Valley is relatively low. From Table 7, network 
R1 recorded 0.131 which is the largest robustness among all the other networks 
 
4.3.4 Directness 
 

Public transport services thrive to become an efficient service by minimizing the cost and time 
taken to reach a destination from any starting point. From the network viewpoint, directness is 
related to the distance between a pair of bus stops and can be expressed as: 

 

𝐷𝑖𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =
1

𝑁(𝑁−1)
𝑑𝑖𝑗

𝑝                        (12) 

 

where 𝑑𝑖𝑗
𝑝  is the distance in p-space between node i and j. In p-space, there is an edge between each 

of the nodes in the same route. From the network viewpoint, efficiency is related to the distance 
between a pair of nodes. Public transport services thrive to become an efficient service by minimizing 
the cost and time taken to reach a destination from any starting point. In this work, the network with 
the lowest directness is R7 with a 0.41 mean while other networks have more than 0.5 directness 
value. 

The directness of a PBTN demonstrates how direct is the stops with each other. In public transport 
service, it is preferable if the network can be reached easily with less path, or less transfer needed. 
One might speculate that the directness is contradictory to the concept of robustness that utilises 
the number of redundant routes as a benchmark of better PBTN performance but the directness in 
this context is applied to the p-space of the network. This is to observe the transfer needed between 
the nodes. For nodes that are servicing the same route, the node is direct as there is an edge between 
them in p-space. In the case of a pair of nodes that are not in the same route, the distance between 
them may vary according to the possibility of a transfer node in between the pair of nodes. The 
number of nodes, edges, and average shortest path length in p-space for all networks are shown in 
Table 8. 

 
Table 8 
Measurement of N, Ep and Lp in all networks 
Bus stop Network Number of 

nodes, N 
Number of edges 
on p-space Ep 

Average path length 
in p-space, Lp 

Ampang R1 339 9331 2.32 

Cheras R2 344 23871 2.28 
Damansara  R3 102 1449 1.96 

Jalan Pahang R4 604 26897 2.32 

Jalan Ipoh R5 349 18406 1.88 

Jalan Klang Lama R6 382 10742 2.33 

Lebuhraya Persekutuan R7 1049 37962 2.83 

Sungai Besi R8 250 8174 2.16 

Klang Valley A1 3262 126074 4.29 

 
 
 
 



Semarak International Journal of Fundamental and Applied Mathematics  

Volume 4, Issue 1 (2024) 17-31 

28 
 

i 

4.3.5 Service Connectivity 
  

Service connectivity is one of the network indicators that are useful in interpreting the public 
transportation service performance highlighting the linkage between any two routes. The service 
connectivity is expressed as: 
 

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
1

𝑁
∑ 𝐶𝑖

𝑝𝑁
𝑖=1                       (13) 

 

where 𝐶𝑖
𝑝 is the clustering coefficient in the p-space network for node i. 

Observing the service connectivity value of the A1 network, it is clear that the routes in this PBTN 
are well connected and the service connectivity of all the public bus transportation in eight networks 
in Klang Valley is very high as stated in Table 7. This suggests that the bus routes in these services are 
well connected and as long as the transfer points are identified, users can travel across the network 
with little to no issue. Having high service connectivity is very important because the connections of 
the service lines across several areas are key to a well-constructed public bus transportation service. 

 
4.4 Trends of Network Indicator 
 

Descriptive statistics of the network have been calculated in order to study the trend of the 
network indicators for PBTN. From Table 9 it is observed that centralization and service connectivity 
have the highest mean value. This shows that the PBTN in Klang Valley has a recognizable hub 
location and the routes are greatly connected. It is also clear that centralization and robustness have 
a range of more than 0.5. This could suggest that there is high variability of centralization and 
robustness indicators among the PBTN in Klang Valley. Meanwhile, a low standard deviation value in 
PBTN in Klang Valley indicates more consistent and stable performance, with less variability among 
the data points. It implies a reliable and standardized transportation service across the entire 
network. 
 

Table 9 
Basic statistics of the five indicators; A, C, R, D and SC of all eight regions 
Measurements A C R D SC 

Mean 0.032 0.724 0.169 0.531 0.905 

Median 0.030 0.759 0.118 0.524 0.904 
Standard Deviation 0.009 0.214 0.197 0.067 0.032 

Min 0.022 0.296 0.049 0.410 0.865 

Max 0.050 0.942 0.650 0.622 0.954 

Range 0.028 0.646 0.602 0.212 0.089 

 
4.4.1 Pearson’s Correlation 
 

Correlation analysis is one of the analyses for studying the relation between two measurements 
or two sets of data [28]. The analysis is helpful to provide an extensive observation on the 
characteristics of the network. Pearson’s correlation is one of the correlation analyses that is 
quantified by introducing the correlation coefficient, 𝑟𝑎𝑏 and the calculation is as follows: 

 

𝑟𝑎𝑏 =
∑ (𝑎𝑚−𝑎)(𝑏𝑚−𝑏)𝑀

𝑚=1

√∑ (𝑎𝑚−�̅�)2 ∑ (𝑏𝑚−�̅�)2𝑁
𝑚=1

𝑀
𝑚=1

                      (14) 
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where 𝑎𝑚 and 𝑏𝑚 is the two sets of data for each element m with M being the total number of m. 
This coefficient will have values between -1 to 1. The correlation is considered to be very strong if 
the Pearson’s correlation is more than 0.81 while not correlate if the value is less than 0.20. 

The correlation between the network indicators is essential in this work to provide a substantial 
observation because some of the indicators are influenced by the network components which are 
nodes and edges. Pearson’s correlation values for the network indicators and the network size are 
shown in Table 10. 
  

Table 10 
Basic statistics of the five indicators; A, C, R, D, and SC of all eight regions 
Indicators A C R D SC N E 

A        

C -0.27       
R 0.87 -0.12      

D 0.32 0.38 0.35     

SC 0.19 0.22 0.13 0.64    

N -0.18 -0.47 -0.38 -0.74 -0.84   
E -0.19 -0.44 -0.36 -0.76 -0.84 0.99  

 
From Table 10, it is apparent that the number of bus stops and connecting routes negatively 

impact the service connectivity of the PBTN as the network size increases. Accessibility and 
robustness, which represent backup route plans and redundant routes, show a strong positive 
correlation. However, the correlation does not imply causation between the parameters, only their 
relationship. 
 
5. Conclusions 
 

In this work, the basic characteristics of the public bus transportation in Klang Valley in eight 
zones are calculated alongside five network indicators namely accessibility, centralization, 
robustness, directness, and service connectivity. The network indicators are evaluated mainly to 
emphasize the performance of the network. Some of the network indicators are utilised on l-space 
which are accessibility, centralization, and robustness. Meanwhile, directness and service 
connectivity are calculated on p-space. This is because different network indicators are useful in 
elaborating different aspects of network characteristics and performance. The evaluation of the 
network accessibility of all eight zones shows that the PBTNs are poorly accessible from any node in 
the network. However, the centralization of these networks shows an impressive value where all 
eight networks have a high centralization with a mean of 0.724. The robustness of the networks 
recorded an average value of 0.169 169 indicating the difficulty of users to navigate around Klang 
Valley in the case of service disruptions. Apart from that, the directness shows a moderate mean 
value of 0.531 meanwhile the service connectivity has the highest mean value of 0.905. These two 
indicators are useful in emphasizing the transfer property and the route connections in the PBTN. 
Meanwhile, accessibility and robustness showed the strongest correlation which is highlighted by the 
interconnection of the public bus transportation service alongside the redundancy and alternative 
paths provided by the service. 
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