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1. Introduction

The methods for tackling nonlinear differential equations are rapidly developed analytically and
numerically in recent years [1,2]. It is mainly motivated by the stricter requirements to implement
environmentally friendly technologies which are less energy consumption, less or zero emission, zero
waste, etc [3,4]. These goals seem can only be achieved faster by drastically changing our current
technologies. As for example, implementing new advanced materials, harnessing a new source of
energy that is like plasma whose nonlinearities cannot be neglected at high energy.

As one of the promising methods is the development of simplest equations to tackle such hard
problems analytically. The method utilizes some simple nonlinear differential equations such as
Bernoulli and Riccati into the original problems [5,6]. The algebraic polynomials with constant
coefficients are then produced for constant coefficients of single nonlinear differential equations.
The variable coefficients polynomial emerges for a system of equations, which both cases require
root solution and technical difficulties rises for variable coefficients in the polynomials of higher order
[71.

The methods of finding polynomial roots have long been developed with one important note
which full radical solution does not exist for order five and higher, at least until now. Thus, the
method for finding higher order roots is developed with polynomial decomposition into which the
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known radical solution existed. In short, the algorithm now exists for polynomial with arbitrary order
[8]. Despite the various existing computer programs, we are still exposed to great difficulties applying
the resulted complicated expressions from existing method to many nonlinear differential equations
which, simpler procedure is demanded.

The main contribution of this work is to propose the simpler unifying method for decomposing
polynomial of higher order. Here the n-order polynomial is firstly raised up into n+1-order and then
decomposed by dividing by quadratic equation with arbitrary coefficients. The resulted decomposed
coefficients are provided for exact and approximate cases which depend on the chosen quadratic
coefficients. The procedure of providing arbitrary coefficients may be promising for nonlinear
differential equations even recreational for learning junior students with sample of computer
programs. In this work, some examples with matlab online programming are provided for
decomposing 4™, 5" and 6™ order polynomials as well as its applicability for solving nonlinear ODE.

2. The Main Results

Lemma 1. The 4™ order polynomial equation can always be represented by the product of
guadratic equation as in the following,

(01/13 +CyA2 +CuA+Cy —1)[(bl ~a,)A+(b,—a5)]=0 or (01/13 +CoA2 +CuA 4G,y —1)[(bl —a,)A+(b,—a5) ]|~ 0
Proof. Consider the 4t order polynomial equation,

ait+a,% +a;A% +ayd+a; =0
Multiply the equation by, 4 and rearranged as,

aA’ +a,At +a,13 +a,4% +agA =0 or al’ +a,A* +a;A® =—a, 4% —a;d or
A +a,A* +agh’ +b A% +h,A+by —ag = (b —a,) A% +(b, —a5) A +(by —ag) (1)

The polynomial equation is rewritten as,

(q/13+02/12+03/1+c4)[(b1—a4 A2 +(b, —ag ) A+(by - )]:(bl—a4)ﬁz+(b2—a5)2+(b3—a6) or

G (b —a,) A%+ [y (b —ay )+ (b, —ag) | A% + [ ca (b —ay )+, (b, —as ) +¢; (b —a5) | 42

+[c4(bl—a4)+c3(b2 as)+Cy (s — ae)] [04(b2—a5)+03(b3—a6)]/1+c4(b3—a6)= (2)
(by—a,) A% +(by —as ) A+(b;—ag)

The coefficient relations are,
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o (b —as)=2 o (b -ay)=2

Cy (b —ay)+c (b ~as) =2 C2a1:_clz(b2_a5)+cla2
C3(b1_34)+cz(b2_as)+(‘1(b3_a6):a3 C3dy :—Clcz(bz_as)—of(%_ae)JrCias
c4(b1—a4)+c3(b2—a5)+C2(b3—a6)=b1 o C4a1=—01C3(b2—as)—qcz(bz—ae)"‘al"‘cl% o
C4 (b —85)+C5 (b —ag) = b, ¢4 (b —85)+c5 (b3 —ag) = (b, —a5) +25

C4 (b5 —ag ) = (by —ag) ¢4 (b3 —a5)=(bs - 3g)

¢ (b -as)=a

Co8 = 7 (b, a5 ) + 3,

C3a; =cf(b2—as)z—ofaz(bz—as)—cfal(b3—a6)+cla1a3

Cja = ¢ (bz—a5)3+°1332(b2 —35)2 +2¢ay (b, a5 ) (by -85 ) —¢/asag (b, —as) (3)

—c{aya, (bs —a6)+a13 +cafa,
cy(b, —as)+cs (b —ag)=(b, —as)+a5
¢4 (b3 —ag) = (b3 - 2g)

From the above relations, we have,

s (s —a5)" = a5 (b — 2 )~ a (b, — ) (4)
Substituting into the original equations, the identical equations are produced as,

4

¢f (b, a5 )’ —cla, (b, —ag)* —2cfay (b, —as ) (b — 8 )+ ¢2ayag (b, —as )+ cZaa, (by —ag )~ c,a2a, =0
(5)

4

G (bz —35)3 _01332 (bz —a5)2 _201331(b2 —as)(b3 _ae)+012ala3 (bz —a5)+ofa1a2 (b3 _36)_0131234 =0

Thus, we choose performing Eqg. (3) as follows,

_014 (bz _35)4 +01332 (bz _35)3 +201331(b2 _a5)2 (ba _ae)_clzalas (bz —35)2

—cfaya, (b, —as ) (B 85 )+ Ciaray (b, —as) +ciay (b —as)z(bs —ag)—Cclasd, (b, —as ) (b —25) or
~cfaf (b~ )" + a0y (by - ag) = alag

f (b —a5)’ —clay (b —a5)’ 3¢, (b, a5 ) (bs —ag )+ caf (b3 — a5 )" +2caa, (b, —as ) (b~ )

(6)
+ofa1a3(b2—a5)2—ola12a3(b3—a6)—cla12a4(b2—a5)+a1335 =0

It is important to note that the purpose is to decompose quartic equation while from equation
(6) and (2), it will be fulfilled if we set (b;—a;)=0. Thus, (6) becomes,

¢/ (b, —a5)4 —ca, (b, —‘5‘5)3 +cfagag (b, —a5)2 —cia{a, (b, —a5)+ajas =0 (7)

with (b, —a5) is taken as arbitrary values. The quartic roots are written as follows,
¢ = J((b:-2)) ®)
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which will be determined, c,. This will give the exact decomposition coefficients but, essentially does

not reduce the polynomial order since it is cycling back into the 4™ order for determining
decomposed coefficients.
Fortunately, we can approximate (7) as quadratic equation below,

Clzalaa(bz_as)z_0131234(b2_as)+31335:0 (9)
in the sense that one root of (9) will be very close to (7) and even the error is undetected by the

computer programs if a; is sufficiently small. This will definitely reduce the polynomial order and it

can be proceeded into the higher order which there is no radical solution. Thus, the 4" order
polynomial is rewritten as,

(01/13+c2/12+c32+c4 —1)[(bl—a4)/1+(b2—a5)]=0 (10)
by applying (7) or approximated as,
(cl/13+02/12+03ﬂ,+c4 —1)[(bl—a4)/1+(b2—a5):|z0 (11)

by (9). This proves lemma 1.
Example 1: Consider the following quartic equation,

151* —64° —541%2 — 2681 +54 =0 (12)

Running through equation (7) with (b, —a;)=—6, the program produces,

7.9573 1.8851 22.1448 41.8391
- -3.7210 + 4.7563i (b -2,)~ 15305- 195641 | | -20224-16.0611i | | 46.9624 +2.9345i
-3.7210 - 4.7563i |’ 4) 7| -1.5305 + 1.9564i |’ 2 | -2.0224 +16.0611i |” ° | 46.9624 - 2.9345i
0.4846 30.9537 -0.0999 -1.7639
-8
-8
and ¢, = 8 (13)
-8

which the polynomial coefficients are exactly decomposed in all rows. The following relations show
that the results are reproducing the original polynomial,

- [(-3.7210 - 4.7563i) 2° + (-2.0224 +16.0611i) A° + (46.9624 - 2.9345i) -9 | *
Third row:
[ (-1.5305 + 1.9564i) 1 —6 | =151% —61° ~544% — 2684 +54 =0

Fourth row: (0.4846/13 ~0.09994° —1.76394 —9)(30.95371 ~6)=151"-61° 544> —2684+54 =0

Note that the function (b, —a5) is arbitrary, testing with, (b, —a;)=18.23, we obtain,
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-2.619 5.7274 -7.2885 -13.7704
oo 1.2247 + 1.5654i (b -a,)~ 4.6502-5.9441i | | 0.6656-5.2861i | | -15.4566 +0.9658;
1.2247 - 1.5654i |’ 4) 7| 46502 +5.9441i |” 2 | 0.6656 +5.2861i |’ ° | -15.4566 - 0.9658i
-0.1595 -94.0477 0.0329 0.5806
3.9622
3.9622
and ¢, = 3.0622 (14)
3.9622

Performing the first and second rows and they give,

First row: (-26194° 7.28854° ~13.77044 +2.9622)(-5.7274).+18.23) =15* ~61° 54> ~ 2681 +54 =0

[(1:2247 + 1.5654i) 2° + (0.6656 - 5.2861i) 4 +(-15.4566 + 0.9658i) 4 - 2.9622 | *
Second row:
[(4.6502 - 5.9441i) 1+18.23 | =154* ~64° 544 —2681+54 =0

and are also the exact results. The reader may test various numbers for (b, —a;) and will get the exact
results by applying (7).

The step now is fully utilizing lemma 1 which will implement reduction of order by relation (9)
and (b, —a;)=5.67, as in the following,

_[136425) (1095 ) (7RB009) | (3418204) (20055 (15)
“=| 05130 )’ 477 -20.2395) ? 01057 ) 7 |1.8673 “~l105
which will produce the quartic as follows,

: (13.6425/13 —75.80991°+341.82941 2006.5)(1.0995/1 +5.67)=151" —64° —544° — 2681 -11377
First row:

#151% —64% 5442 - 2681 +54=0

Second row: (—0.513/13+o.1057,12+1.8673z + 9.5)(-29.23951 +5.67)=154"* —64° 541> — 2684 +54 =0

The second row almost shows an exact result for the reduction of (7) into the quadratic equation
(9) which its numerical error is undetected. Trying other values for (b,—a;) and different

decomposed coefficients but the same polynomial coefficients are obtained.
Lemma 2. The 5% order polynomial,
aA® +a,At +a,13 +a, 4% +agd+ag =0

where, a4 is sufficiently small, can be approximately factorized as,

(01/14 +C A3+ e A2 +eh 4y —1)[(b1—a5)/1+(b2 ~3)]=0or
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(cl/l“ +6 2% +0327 + ¢y d+ ¢y —1)[ (B —a5) A+ (b, 3 ) |~ 0
Proof. Consider the quintic polynomial as follows,
al’ +a,A +a,A° +a, A% +ad+ag =0
Multiply the above equation by 1,

aA® +a,1° +a At +a, 1% +ra 12 +ag A =0 or
aA® +a,A° +agdt +8,2° +0 A7 +byA+by = (b —ag ) A* +(b, —ag ) A +(y —a;) =0 (16)

with, a; is small. The polynomial equation is rewritten as,

(cl/14+0213+c3/12 +c4/1+05)[(bl—a5)/12 +(b2—a6)ﬂ+(b3—a7)]:(bl—a5)ﬂz+(b2—a6)1+(b3—a7) or
¢ (b —a5) A% +[ ¢y (by —as ) +.¢ (b, —ag ) | A% +[ cs (b — a5 ) +¢y (b, —ag )+ (b —a7 ) ] 4°

+[ca (b —a5) + 5 (b, —ag )+ ¢y (by a7 ) | 2% +[ 5 (by —as )+ ¢4 (b, — g ) +C3 (b5 —a, ) | 47 (17)
+[05(b2—a6)+c4(b3—a7)]/1+c5(b3—a7):(b1—a5)/12+(b2—a6)/1+(b3—a7)

The coefficient relations are

c (b -as)=2a c (b -as)=2a
CZ(bl_a5)+c1(b2_a6):a2 Czalz_cf(bz—aﬁ)Jrclaz
Cy (b —a5)+C, (b, —a5)+¢y (b —ay ) = ag Cydy = —C1C; (b —2g) - (bs a7 ) +Ciag
Cs (b —as)+c3 (b, —a5)+Co (D —a7 ) =2, or Cydy =—C,C3 (b, 85 )~ C,C (by —a7 ) + 12y or
Cs (b —ag ) +C4 (b g ) +C3 (b —a7 ) =y Cs@y = —C1C4 (b, —8g) 1G5 (b3 — 27 )+ +Cias
Cs (b, —ag)+c4 (s —a7 ) =Dy Cs (b, g ) +¢4 (D3 —a7 ) = (b, g ) +2g
Cs (b;—a7 ) = (b3 ~ay) Cs (b —a7 )= (b3 ~27)
a(b-a)=a
2

csa) =Cf(b2_a6)2_C12a2(b2_aG)_Clzal(bS_a7)+Clala3

C4ay :—014 (bz—a6)3+cf’a2 (bZ_a6)2+013al(b2_a6)(b3_a7)_012a1a3 (bz_ae)

+ofa1(b2—a6)(b3—a7)—clza1a2 (b3_37)+0131234 (18)
csay :C'f(bz_aﬁ)4_cf‘az (bz_as)3_3°fal(b2_ae)2 (bs_a7)+cfalas(b2_a6)2

+2c7ay3, (b, — 8 ) (bs — a7 ) —cfafa, (b, —ag ) + ¢y (b3—a7)2—cfafa3(b3—a7)+af+c1af’a5

Cs (b —ag)+cy (b3 —ay ) = (b, —ag ) + 85

C5(b3—a7):(b3—a7)

In this case, we leave to the readers to verify that there is identical equation in (18), the following
expression is then producing,
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cf(bz—%)s—cfaz (b2_36)4_40143‘1(b2_aﬁ)s(b3_a7)+clsala3(b2_a6)3+2013a1a2 (bz—aa)z (bs—a7)

+3013312 (bz _aﬁ)(bS_a7)2 _01231232 (b3_37)2 _01231234 (bz _ae)z _Cfafas(bz —ae)(bs—a7)+cla13a5 (bz _ae) or
+cfa1a2(b2—aﬁ)z(bg—a7)—c12a12a3(b2—aﬁ)(b3—a7)+c1af’a4(b3—a7):a14a6

¢t (b, —36)5 —ca, (b, _36)4 —4ciay (b, —2g )3 (b; —a7 )+ cfayag (b —2g )3 +3claya, (b, - a )2 (bs —a)

+3cfa12 (bz _ae)(b3 — & )2 —cfafaz (ba —8 )2 —Clzalzazt (bz — 3 )2 —20125‘1233 (bz _ae)(bz —37) (19)
+Cla13a4(b3_a7)+olal3a5(b2_aﬁ)_afae =0

Take one quintic root with (b;—a,)=0 as follows,

6= i((b: ) 20

which then produces the exact decomposition coefficients with arbitrary (b, —a).
The order reduction is in the following relation,

cfa1a3(b2 _36)3 _01231234 (bz _ae)z +3131335 (bz _aﬁ)_afaﬁ =0 (21)

and c¢; will be well-approximated in the sense that the decomposed coefficients are very closely
reproduce the original polynomial. Thus, the 5™ order polynomial is decomposed as,

(cl/l“ +6, A3 + A% 404 A+ G —1)[(bl ~a5) A+ (b, —25)]=0 or
(01/1“ +Cy A2 +CaA2 +C A+ Gy —1)[(bl ~a5) A+ (b, —35) ]~ 0 (22)

This proves lemma 2.
Example 2: Consider the quintic equation as follows,

22° =324 —232% +4522-724-6=0 (23)

Running through with (b, —a;)=-2, the program produces,

-3.5616 -0.5616 18.0270 -23.2462 2.6577 4
3 0.6667 45 -21 4.5 4
c,=|1.7808 |, (b —a5)=|1.1231 |, c,=|05 , C3=|-19.5885 |, c, =| 5.1847 | and¢cs =| 4 (24)
0.5616 3.5616 -0.5270 -6.7538 8.8423 4
-0.2808 -7.1231 0.5 3.0885 -7.1847 4

which also exactly matches (23) in all rows and their roots can be performed by known radical
solution. The sample of calculations are,

Second row: (34*+452°~211> + 451 +3)(0.66674—2) = 24° ~31* ~ 234> + 452>~ 71 -6 =0

Third row: (1.7808,14 +0.54° ~19.58854% +5.18474 +3)(1.1231,1 ~2)=22°-34*-232+450*-71-6=0
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Fourth row: (0.56161* ~0.5272° ~6.75381” +8.8423/+3) (356164~ 2) = 24° ~32* ~232° + 451> ~ 72 -6 =0

The reader can try any number for (b, —a;) and will exactly reproduce the original polynomial

from the obtained decomposed coefficients.
Applying order reduction from relation (21) and with (b, —as) =—42.93 will generate the following

decomposed coefficients,

0.0784 25.4967 0.0144 -0.8778 0.2869 1.2086
¢, =|0.0258 |, (b —a5)=|77.6364 |, c,=|-0.0244 |, c;=|-0.3097 |, c, =| 0.4083 | andcs =|11356|  (25)
-0.0131 -153.2181 0.0232 0.1436 -0.3339 1.1393

The resulted polynomials will be,

st (0.07842° +0.01442° ~0.87782 +0.2869/ + 0.2086 ) (25.49671 —42.93)
IrSt row:

=22°-32%-232%+452% -71-8.9537 ~24° -31* —231% +4512-71-6=0

(0.02582* ~0.02442° ~0.30974 +0.40834 + 0.1356 ) (77.63644 ~ 42.93)
Second row:

=22%-324-232%+452% - 71-5.8229 ~24° -31* - 2313+ 4512 -71-6=0

Third (—0.0131/14 +0.02322° +0.14361% - 0.3339 + 0.1393)(—153.2181/1 -42.93)
Ird row:

=22° 32" -232% +450% 71 -5.9781~ 22° —31* ~231% +451° ~71-6=0
Lemma 3. The 6% order polynomial,
A’ +a,2° +a, 1t +a, % +ag A’ +agA+a;, =0
can be decomposed as follows,

(01/15 + A% 40 A% + ¢ A% + s A+ —1)[(b1—a6)/1+(b2 -a, )] =0 or
(01/15 + At A% A% oo A+ G —1)[(b1—a6)/1+(b2 ~a;)]~0

Proof. Multiplying by 4, the polynomial is rewritten as,

ad’ +a,A% +a;4° +a, 1t +a A’ =—ag 1 —a, 4 or
ad +a,A° +854° +ay A" +as A% + DA%+, A+ —ag = (b —ag ) A% + (b, —a; ) A +(by —ay) (26)

The equation also rewritten as,

(cl/15+c2/14 +cgA% +c A2 +c5/1+c6)[(bl—a6)/12 +(b, —a7)/1+(b3—a8)]=(bl—a6)/12+(b2 —a,)A+(b;—ag) or
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Cl(bl_ae)/17+Cz(b1—as)/16+03(b1_ae)/15+C4(b1_aﬁ)ﬁ4+c5(b1_ae)/13+Ce (bl—ae)ﬂz
+¢; (I, —ay ) A% +¢, (b, —a; ) A° +¢5(b, —a, ) A% +¢4 (b, —a, ) 2% + 5 (b, —ay ) A2 + 54 (b, —3y)

ey (0 =29 ) 25 0y (b3 =30 )2* -+ by —35) 22+, (B~ ) 22 45 by g ) A+ by =)
= (br=a6) 4% + (b, ~a7 ) A+ (bs —25)
¢, (b~ aﬁ)}j [CZ(bl ae)+C1(b2_a7)Jle+[C3(b1_aﬁ)+cz(b2_a7)+C1(b3_a8)]/15
+|:C4(bl ag)+¢5(b, - a7)+cz(b3—ag)]/14+[c5(b1—a6)+c4(b2—a7)+c3(b3—a8)}13
[0 (b0 ) 65 (5 a7 ) 4 b~ 30 42+ (b2 )+ (b a5 | -+ (b - 27
|:(bl aﬁ)lz+b2_a7)/1+(b3—ae)
The coefficient relations are
c(b-a)=a c(b-2)=a
Cz(b1_36)+01(b2_a7):az Czalz—cf(bz—a7)+cla2
cs(b,—ag)+¢, (b, —a;)+c (b —ag)=a, Coay =—C,C, (b, — a7 ) —¢f (b3 —ag) + ¢y
Ca (b —25)+C5 (b, —ar )+, (bs —ag) =2, Cyay = —C;C3 (b 27 ) .05 (03 - 35 ) + 13,
Cs by —ag ) +¢4 (b, —a7 ) +C5 (by —ag) = a5 o Csay = —CCq (D —87 ) —Cic5(by —ag) +Cas o
CG(bl_aﬁ)"'CS(bZ_a7)+c4(b3_a8)=bl C6a1:_0105(b2_a7) 0104(b3 a8)+ q +C8g
C6<bZ_"’17)*'(:5(b3_""fi):bz Ce(bz_a7)+05(b3_as) (bz a7)+a7
s (bs —ag) = (b5 - a) s (b3 —ag) = (b; — )
G (b —a5)=a
Czalz_of(bz_a7)+claz

csa? = c? (b, —a; )’ —cla, (b, —a; ) —cZay (by —ag )+ Crasag

cidd = ¢ (b, —a, )’ +cfa, (b, —a; ) +2c7ay (b, —a; ) (by — 8 ) - CPavag (b, —a; ) —c2ara, (by —ag ) +Cala,

Csay =C15(b2—a7)4—(314a2 (bz—a7)3—3cl4a1(b2‘a7)2 (bs—as)"'clgalas(bz—a7)2+2C133132 (b, —a7)(bs —ag)

+era; (bs —38)2 ~cfala, (b, ‘37)—01231233 (bs —a8)+0131335 (28)
C6‘5‘15 = _016 (bz — & )5 + ofaz (bz — & )4 +4C15‘5‘1 (bz — 8 )3 (ba —ag)—Scfalaz (bz —8 )2 (bs —ag)—cfa1a3 (bz —& )3
—30fa12(b2—a7)(b3—a8)2+cfa12a4(b2—a7)2+ofa12a2(b3—a8)2+20fa12a3(b2—a7)(b3—a8)
—cfafa5(b2—a7)—cfa13a4(b3—a8)+a15+ola14a6

C (b —a7)+cs(by—ag)=(b, —a; )+

CB(b3_a8):(b3_a8)

Next, Eq. (28) is rearranged as,
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_016 (bz — 8 )6 + 01532 (bz — & )5 + 401531 (bz —8y )4 (bs —ag )_3C143132 (bz —8 )3 (bs —ag)—cfala3 (bz _37)

4

_3014312 (bz -8 )2 (bs _as)z +013a12a4 (bz —8 )3 +°1331232 (bz _a7)(b3 _38)2 +2C1331233 (bz —8 )2 (bs _aﬁ)
_Clzafas (bz _37)2 _C1231334 (bz _37)(b3 _as)+clafas (bz —a7)

+C15a1(b2 —a7)4 (bS_aS)_CfalaZ (bz ‘517)3(bs—5‘8)—30146‘12 (bz —37)2 (b3—38)2 "‘01331233 (bz —3‘7)Z (bs —as)
+20f’a12a2 (bz ‘37)(b3 ‘38)2 +Cfaf (ba —ae)s‘clzafa4 (bz —37)(b3 —ae)‘clzafas (ba —aa)z
ot (b, -a) = a2,

016 (bz -8 )6 _Cfaz (bz -8 )5 _50531 (bz -8 )4 (ba _as)+4cfalaz (bz -8 )3 (bs _as)+cfalas (bz -8 )4
“‘60146‘12 (bz -3 )2 (b3 —38)2 —C13a1234 (bz - )3 ‘3C13a1232 (bz ‘37)(b3 —38)2 ‘3013312"13 (bz - )2 (ba —38)
~cia (by 2y )" +cPadas (b, —a; )° +2c7a%a, (b, —a, ) (b — ag ) + cPaiaq (b — ag)” — caras (by —ay)
—c,a7ag (b, —a; ) +a7a; =0

¢ =i((b-27))

Take one root with (b;—a;)=0 as follows,

Cfalas (bz _37)4 —cf’alza4 (bz _a7)3 +Clzafas (bz —& )2 _Clafaﬁ (bz _a7)+a15a7 =0

The 6™ order polynomial is separated as,

(01/15 +C A% +CyA° +¢4 A% +C5 A+ G —1)[(b1_aﬁ)/1+(b2 —& )] =0 or
(01/15 + 02t +0y A 4042 + s A 4G —1)[(b1—a6),1+(b2 ~2)]~0

This proves lemma 3.
Example 3: Consider the 6" order polynomial equation as follows,

1225 +182° +504% +224% - 742 +481-13=0

which, the exact results with equation (29) and (b, —a,)=4 are,

1.8012 + 5.8639i
1.8012 - 5.8639i
3.9182

-1.1103 + 2.3373i
-1.1103 - 2.3373i
-0.8

0.5744 - 1.87i
0.5744 + 1.87i
3.0626

| -1.9899 - 4.1888i |’

-1.9899 + 4.1888i
-15.0009

13.0821 + 1.7544i
13.0821 - 1.7544i
0.7599

-0.2554 + 5.2361.i
-0.2554 - 5.2361i

-1.4132

3.0798 - 2.1912i
3.0798 + 2.1912i
15.3334

| -0.6415 +11.8758i

-0.6415 -11.8758i
-3.71

or

(29)

(30)

Reducing the order, we can always approximate the values of ¢;, by the following expression,

(31)

(32)

(33)

~
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-2.8299 + 6.0463i

_ 12.4667 - 1.5194i 2.25

-2:8299 -6.04631 12.4667 + 1.5194i 2.25

C, = 128431 _ 14.4884 -2.25
6.9794+9.18021 |, C5=) ) 203y 340341 | 2" 7| 205 (34)

6;;::9 9.18021 10.3832 + 3.4034i 2.25

:0.1882 2.25

which all rows give the exact values. The first and fifth rows give,

(1.8012 +5.8639i) A° +(13.0821 + 1.7544i) 1* +(3.0798 - 2.1912i) 2°
First row: | +(-2.8299 + 6.0463i) 1” +(12.4667 - 1.5194i) 1 —3.25
=124° +184° +504" +224° ~74* +481-13=0

}*[(0.5744 - 1.87i) A +4]

(-1.1103 - 2.3373i) 4° +(-0.2554 - 5.2361i) 2" +(-0.6415 -11.8758i ) A°
Fifth row: | +(6.9794 - 9.1802i) A% +(10.3832 + 3.4034i) 1 - 3.25
=122° +184° +504* +224° ~74* +484-13=0

]*[(-1.9899 +4.1888i) A +4]

Applying lemma 3 with (b, —a;) =-42.17 into (31) as follows,
122°% +184° +504% + 2243 -71%2 +481-13=0 (35)

with the obtained decomposed coefficients as,

-0.3617 -33.18 -0.0828 -1.4018
| 0.0802 +0.2357i (b -a,)- 15.53 - 45.63i . -0.0523 + 0.4865i . -0.0834 + 1.0759i

%=1 0.0802 - 0.2357i | 8/ 711553 +4563i | 2 |-0.0523-0.4865i |* ° |-0.0834-1.0759i |’
0.076 157.83 0.1344 0.3527
1.1186 -1.2107 1.0921
-0.7677 + 0.6663i -0.8152 - 0.5855i 1.5761 + 0.1026i

Cy = ., Cs = .| and Ce = . (36)
-0.7677 - 0.6663i -0.8152 + 0.5855i 1.5761 - 0.1026i

0.2336 0.0181 1.309
The reader may verify that the closest result is depicted in fourth row as follows,

(0.0762° +0.13442° +0.35272° +0.23364 +0.01811 + 0.309 ) (157 831 — 42.17)
=125 +182° +504% +224% ~ 712 + 481 -13.0289 ~ 1215 +181° +501% + 224% ~ 712 + 481 —-13=0

It is important to note that the smaller a,,; will produce more accurate approximations for all
cases.
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3. The Physical Example: Channel Flow with Porous Walls

Important example is also demonstrated in the generating solution of channel flow with porous
walls that is governed by the following relation [9],

2
fmm + an - Rffm -P=0 (37)

with f, is velocity in similarity variables and all coefficients are constants, which known solution

requires P dictates boundary conditions. On the other hand, the standard treatment for the
application of simplest equation is balancing the highest order by expansion as [10,11],

f =by+bg
which expands (37) as follows,
b9, — Rbgbrg,, - Rbfggm7 +Ra’g* +2Raja,g% + R(2a1a3 +a22)92 +2Raya;g +RaZ —-P =0 (38)

Applying the simplest equation in the form of constant coefficient Riccati equation [12],

2
9, =30 +ag+a3
523 2 2
9,, =28, 9" +3aa,9 +(2a1a3 +a; )g + 8,33
9,,m-6279" +12ala,g° +(8a12a3 + 76\15122)92 +(8a1a2a3 + ag)g +2ayas +asa; +a,a,

97 =a’g* +2aa,9° +(2a1a3 +a§)g2 +2a,a,9 +a2

whose solution appears to be [13,14],

2
gn=al(g +;g+a J org,= [alg+a72+% /a§—4a1a3j g+a——l (a_zj ~ %% | or
1

Y 28 2\ =Y
1 dg=dp or
a +a—+1 a; 4aa - I 4a3
49 5 ToN®& 13 9 28, 2
21 1
2 2 2 _ 2
(a2 4a1a3) dg— (a2 4a1a3) dg—dy OF
2 2
g+ 2 L2 43 g+ 22 L [32] 43
2. 2\ & a 2, 2\\ & a
2

a 1 |a 4a, a, 1 a) 4a :
Infg+—2-=|| 2| ——= |-In|g+2+= ]| =2 | - = =(a§—4a1a3)277+y or
2. 2\ ay 2 2\ a

g1 |2 G PR Y (39)
1— }/e\’ag —4a,a37
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Here, the reader should not be confused with the repeating symbols in decomposition and Riccati
coefficients as they are in different role and context. Substituting the Riccati equation into (38) as,

b9, - Rbgb g, — Rb7gg,, +Ra’g* + 2Ra,a,0° + R(2a1a3 +a22)g2 +2Raya,g +RaZ —P =0
6a’bg* +12a’a,h g° +(8a12a3 +7a1a22)blg2 +(8a1r:12a3 + aﬁ)blg +2a,a2b, +a2asb, +a,ash;
—2a’Rbyb,g° —3a,a,Rbyb,g? —(2a1a3 +a22)Rb0blg —aya;Rbgb; or
—2a’Rb’g* - 3a,a,Rb?g> —(2a1a3 + ag')Rbfg2 —a,a;Rb’g

+Ra’g* + 2Raya,0° + R(2a1a3 +a§)g2 +2Ra,a;9 +RaZ —P =0

(6a13bl —2aZRb? + Ra? ) gt + (12a12z;12b1 +2Raja, — 2a’Rbyb, —3a,a,Rb? ) g°

+ (8a12a3bl +7a,a3h, —3a,a,Rbyb, — 2a,a;Rb? —a2Rb’ + 2Ra,a, + Raj ) g°

(40)

+ (8a1a2a3bl +2Ra,a, +ash; — 2a,a;Rbyb;, —a3Rbyb; —a,a,Rb’ ) g
+2a,a2by +alash; +a,azh —a,a;Rbyb + RaZ —P =0

The coefficient relations give,
6a’h, —2a’Rb + Ra? =0
12ala,b, +2Raya, — 2a’Rbyb, —3a,a,Rb? =0
8ajashy +7a,a’b, —3a,a,Rbyb, — 2a,a,Rb? —aZRb? + 2Ra,a, + Ra2 =0 or
2a,a2by +ajagh, +a,a30 —a,a;Rbyb, + RaZ —P =0
Bab, = 2Rb? —R
a,hf = 4Rbob{’ ~ 2Rby = 2y (2RbY ~R)
aghy +aghy = 59RSb, ~86RbZb’ ~8Rb] = Rbg (5907 860y -8)
(907 +4) (5967 —86by' ~8)+ (720" ~84b7 +24) (b +1) =0 (1)

by (2Rb? +2R)[59Rb12 mlicy _SRJZ #1265 (2R02 R’ (SgRblz i _SR]

by +bf by +bf
+60Z07 (2Rb7 - R)[59Rbf ;58f:3bf ‘SRJ—GRbgbf (2rb? - R)(59Rb12 ;fgf;bf _BR]—spbf -0

which solve all unknown coefficients, a and b; . Unlike the condition in previous solution [9], P in

(37) may be determined a priori. Therefore, the solution of porous channel flow will be,

&y

fop+ [ 2 T dag| Lyl R ba, (42)
0 & \/a§—4ala3n 28
1-ye

Meanwhile, direct substitution of Riccati equation into (37) without balancing order is,
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f,, +REZ—Rff, —P=0

6a’f*+12a’a, f3 +(8a12a3 +7a1a22) f2 +(8ala2a3 + ag) f +2a,a% +a’a, +aya,
+Ra’ f* +2Raja, f3 + R(2a1a3 +a22) f2+2Ra,a,f +Ra’ or
~2Raf 14 +3Raya, F* + R (24, +3 ) £* +Rayay f ~P =0
(6a{3 - Raf) f4 +(12a12a2 +5Ra1a2) f3 +(4Ra1a3 +2Ra3 +8a’a, +7a1a§) f2 +(8a1a2a3 +a3 +3Ra2a3) f or
+2aja% +a’a, +a,a;+Ra; —P =0

AT AT ATZ+AT+A =0 (43)

which have more polynomial coefficients, A, than unknown Riccati coefficients, a,. Application of
Lemma 1 dictates the decomposition expressions are,

(clf3+czf2 +Cyf +¢4 —1)[(b1—A4) f+(b,—A5) =0
for exact decomposition or,
(af®+cof? eyt —1) (b= Ay) f+(b,— A)]~0

for approximation using order reduction. Since the initial coefficients (b,—Aj) can be chosen
arbitrarily, the zero or near-zero conditions can be satisfied by,

3 a2
98 “Ra _ 0 or 6a,-R=0

(b—A)=

(b, — Ay) = 2&a5 +ajag +a,a, + RS —P =0 (44)

Eqg. (44) thus determine &,a, and a3, the solution for the porous channel flow is,

(L [(a) _da[1epetie) 5 (45)
2\ & 1—7/8*"3%_4&18[3” 28
Note that one may generalize the solution by setting (45) as a particular solution, f, and the
general solution would be [15],
f = fO +elfl+e2f2+ .........
This generalization by superposition or by product superposition will extend the problem into the

solution of (43) with variable coefficients Riccati equation and would be the subject of future work
by implementing the proposed polynomial decomposition.
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4. Conclusions
By induction, lemma 1, lemma 2 and lemma 3 lead to the more general statement as in the

following theorem,
Theorem. Let, h and B are any non-zero arbitrary functions that decompose the higher order

polynomial,

ad"+a, A"t a2+ A P A +a, A +a,A+a,,, =0

The polynomial can then be factorized as,

(cl/ln’l +CA 2 1A B e A" e AP +C, —1)[(bl —a,)A+(b, ~a,,,)|=0 or
(cl/ln’l + A" 2 e A" B e A" e A S +C, —1)[(bl —a,)A+(by -a,,,) ]~ 0
with,

¢ (b -a,)=a

Ca = _012 (bz - an+1)+0132
L 1) (bz - an+l)_C12 (bs - an+z)+ Cia3
€3y = —CC3 (bz - an+l) -GG, (bs ) ) +Gay

Chdy =—CCyp (bz - an+l) —CCh3 (bs —an ) +oby
Cn (bz _an+1)+cn—1 (b:s —an ) =b,
Cq (bS _an+2) = (b3 - a'n+2)

Considering the theorem, experience reader may point out that the exact results are also
algebraically fulfilled with, c; =1 or ¢, =1 in the theorem. However, the numerical trials depict that
we only have one exact result after tuning the ratio of % into a specific value for quintic

, —
equation. Thus, using ¢; =1 is not practical and hardly be useful for implementation in the application
of simplest equations to non-linear differential equations.
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