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Article history: Numerical integration is a key technique for approximating definite integrals,
Received 10 July 2025 especially when analytical solutions are difficult or impossible to obtain. Although
Received in revised form 23 August 2025 various numerical methods exist, most tools lack an intuitive interface for comparing
Accepted 28 August 2025 their efficiency and accuracy. This study develops a MATLAB-based Graphical User

Available online 10 September 2025 Interface that implements five selected integration methods which are Gaussian

Quadrature, Simpson’s 1/3 Rule, Simpson’s 3/8 Rule, the Trapezoidal Rule, and the
Midpoint Rule. The Graphical User Interface, designed using MATLAB Application
Designer, enables users to input functions, define integration limits, step sizes, and
subintervals, and provides tables, graphs, and error analyses for result visualization.
Comparative evaluations, including case studies and applications in fluid dynamics,
option pricing, and medical dosage, demonstrate that Gaussian Quadrature
consistently delivers the highest accuracy, followed by Simpson’s 1/3 Rule and

Keywords: Simpson’s 3/8 Rule, while the Midpoint and Trapezoidal Rules yield larger errors. The
Numerical integration; graphical user proposed tool facilitates clear performance comparison and supports informed
interface; numerical integration method selection, making it well-suited as an educational platform that enhances
calculator accessibility and understanding of numerical integration methods.

1. Introduction

In domains such as engineering, physics, and finance, numerical integration is crucial for resolving
definite integrals when analytical solutions are impractical. Approximation techniques are necessary
because many real-world situations contain complex or empirical functions that are challenging to
integrate analytically. Effective solutions are obtained by using numerical approaches such the
Trapezoidal Rule, Simpson's Rules, Midpoint Rule, and Gauss Quadrature, which divide the issue into
manageable calculations. However current tools frequently lack an easy-to-use interface that makes
comparing and using these techniques simple.

This study fills that gap by creating a Graphical User Interface (GUI) based on MATLAB that
combines five common techniques including Gauss Quadrature Rule, Midpoint Rule, Simpson's 1/3
Rule, Simpson’s 3/8 Rule, and Trapezoidal Rule. Users may specify step sizes or subintervals, define
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integration restrictions, and input functions using the Graphical User Interface. They can evaluate the
results, related errors, and visual comparisons between all techniques. This application makes
numerical integration more accurate and accessible, which benefits professionals, educators, and
students alike.

The Graphical User Interface facilitates real-world problem solving, fosters greater
comprehension, and makes difficult mathematical calculations easier by providing an intuitive
platform and automated analysis. Additionally, it serves as a teaching tool, assisting users in gaining
an understanding of the advantages and disadvantages of various numerical techniques in a practical
setting.

1.1 Numerical Integration
1.1.1 Trapezoidal rule

Trapezoidal Rule sums up the areas of trapezoids beneath a curve to approximate the integral.
Press et al., [1] state that the Trapezoidal Rule minimises error and works effectively when the
integrand is smooth and the interval is precisely divided. However, the Trapezoidal Rule has
significant drawbacks, particularly with regard to accuracy, even if it is computationally
straightforward. Additionally, in computer engineering, Ali and Abbas [2] state that trapezoidal
method was used to solve fractional differential equations with different numerical techniques by
checking the accuracy and stability in a high-resolution digital system.

Trapezoidal Rule is defined as Eq. (1):

b
[ fea ~ 5@ +r@),  h=b-a ()

where:

h = step size of each interval.
a = upper limit of integration.
b = lower limit of integration.

1.1.2 Simpson’s 1/3 rule

Simpson's 1/3 Rule's fundamental concept is to approximate the function using quadratic
polynomials rather than linear polynomials, which enhances the Trapezoidal Rule. This improves its
accuracy for continuous and smooth functions. Simpson's 1/3 Rule formula is very useful for many
real-world applications in the physical sciences and engineering as it is made to yield precise answers
for polynomial functions of degree three or less. According to Burden and Faires [3], this improved
accuracy results from the method's ability to address the curvature of the integrated function.

Simpson’s 1/3 Rule is defined as Eq. (2):

b h
fa f)dx = 3 [f(a) +4f(a+h)+f(D)], h = Ta o)

where:
h = step size of each interval.
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a = upper limit of integration.
b = lower limit of integration.

1.1.3 Simpson’s 3/8 rule

Simpson’s 3/8 Rule is a numerical integration method that enhances the accuracy of definite
integral approximations by employing cubic polynomials. The core idea behind the 3/8 Rule is to
approximate the area under a curve by dividing the interval of integration into segments consisting
of three equal parts. In practical applications, Simpson’s 3/8 Rule is widely used in fields such as
engineering, physics, and finance, where the need to compute integrals from real-world data is
common.

Simpson’s 3/8 Rule is defined as Eq. (3):

b—a

3

b
f f(x)dx = %h[f(a) +3f(a+h)+3f(a+2h)+ f(b)],h= (3)

where:

h = step size of each interval.
a = upper limit of integration.
b = lower limit of integration.

1.1.4 Midpoint rule

Midpoint Rule approximates the integral of a function by calculating the value of the function at
the midpoint of each subinterval, and then summing these values to estimate the total area under
the curve. Early developments in numerical integration focused on partitioning the area under a
curve into simple shapes, such as rectangles, for easier computation. According to Subramaniam and
Gilat [4], Midpoint Rule is an improvement over the naive rectangle method . Midpoint Rule does
have limitations. For functions with sharp corners or rapid changes, the Midpoint Rule’s
approximation can still be inaccurate, especially with fewer subintervals that state by Kharab et al,,
[5]. For example, Stroud [6] state that Midpoint Rule has been employed in computing work and
energy in mechanical systems.

Midpoint Rule is defined as Eq. (4):

fa  fdx ~ hif(xi) @

where:

h = step size of each interval.
a = upper limit of integration.
b = lower limit of integration.
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1.1.5 Gauss quadrature rule

Gauss Quadrature Rule approximates the integral of a function by evaluating the function at
specific points called nodes within each subinterval and weighting these values appropriately.
Gaussian Quadrature is particularly useful when high accuracy is required, especially for functions
that can be well-approximated by polynomials. Gaussian Quadrature is widely used in various
scientific, engineering, and computational fields. In physics, Gautschi and Walter state that it is
employed in solving problems in quantum mechanics, electromagnetism, and fluid dynamics, where
integrals often appear in differential equations or energy calculations [7]. In computational finance,
state by Wilmott et al.,, Gaussian Quadrature is applied to calculate areas under probability density
functions, cumulative distribution functions, and pricing options [8].

Gauss Quadrature Rule is defined as Eq. (5):

fbf(x)dx = hif(xi) (5)

where:

h = step size of each interval.
a = upper limit of integration.
b = lower limit of integration.

1.2 Numerical Integration in Real World Applications

Computational fluid dynamics (CFD) relies on numerical methods to solve Navier-Stokes
equations, which describe the movement of fluids. These equations are integral to applications
ranging from aerospace engineering such as designing aircraft wings to predicting weather patterns
and ocean currents. According to Ferziger et al., numerical integration enables the discretization of
complex fluid behaviors over computational grids, making it possible to model turbulence and
optimize designs [9].

In finance, numerical integration underpins the modelling of complex financial systems. Monte
Carlo integration, in particular, is essential for pricing derivatives, such as options, by simulating a
wide range of possible outcomes. Risk management also employs numerical methods to evaluate
high-dimensional integrals associated with portfolio optimization and asset pricing. Based on Hull
and Glasserman, these techniques allow financial analysts to account for uncertainty and variability,
improving decision-making in volatile markets [10,11].

In medicine, numerical integration is critical for determining appropriate drug dosages.
Pharmacokinetics, the study of how drugs are absorbed, distributed, metabolized, and excreted by
the body, often involves solving integrals of concentration-time curves. Numerical methods allow for
precise calculation of areas under curves (AUC), which are used to optimize dosage regimens. This
ensures therapeutic efficacy while minimizing adverse effects. Other than that, Lotstedt state that
numerical integration is implemented in the simulation of the mechanical behaviour of biological
cells [12].
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1.3 Existed GUI Numerical Integration Calculator

There is various numerical integration calculator that available on website. For instance,
AtoZmath.com that developed by Piyush N Shah in 2000 [13] are the oldest numerical integration
calculator that have been found in website. The calculator offers only the Trapezoidal Rule and
Simpson’s Rule, making it less useful for users who wish to compare different methods or those who
require multiple methods for their calculations. The intuitive design is not user-friendly, making it
difficult for users to navigate and use effectively. Otherwise, there is another beneficial numerical
integration calculator called Simpson’s Rule Calculator, developed by Paul in 2020 [14]. As its name,
the calculator only provides a Simpson’s rule method which less beneficial compared to others
calculator. On top of that, another numerical integration calculator called “PlanetCalc” that have
been developed by Anton on 2021 [15] that provides customizable parameters, error estimation and
visual presentation that serves as a valuable learning resource for understanding numerical
integration concepts. The calculator encounters some interval limitations which the precision of the
approximation can be influenced by the number of intervals specified.

2. Methodology
2.1 GUI Development Using MATLAB

Graphical User Interface (GUI) was created using MATLAB App Designer, providing an interactive
environment for users to enter inputs and view results. The interface includes:
o Text boxes for entering the function to be integrated.
Input fields for lower and upper limits of integration.
Option to define step size or number of subintervals.
Drop Down boxes to select which integration methods to use.
Tabs for displaying numerical results, tables, graphs, and errors.

2.2 Numerical Integration Implementation

Each integration method is implemented based on its respective mathematical formulation as
described in the literature review. The code accepts the input function and parameters, then
computes the approximate value of the definite integral using the selected methods.

e Trapezoidal Rule: Utilizes linear interpolation between each subinterval.

e Simpson’s 1/3 and Simpson’s 3/8 Rules: Apply quadratic and cubic polynomial fitting,

respectively.

e Midpoint Rule: Evaluates function at subinterval centers.

e Gauss Quadrature: Applies weighted nodes for high precision.

2.3 Error Calculation and Comparison

The accuracy of each method is calculated by using its error.
Error formula is defined as equation (6):

Absolute Error = | Exact Value — Approximated Value)| (6)
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3. Results
3.1. Numerical Integration Calculator (NIC) Interface

The numerical integration calculator within the MATLAB application was carefully implemented
to allow users to input functions, integration limits, and step sizes, number of sub interval
streamlining the process of calculating definite integrals. The result of Numerical Integration
Calculator is displayed in Figure 1.

Based on Figure 1, it begins with user inputs for the function, upper and lower integration limits,
step size or number of subintervals. The calculator then computes the exact solution of the given
integral, which serves as a reference for error comparison. After obtaining the results, the calculator
calculates the error for each approximation by comparing the results to the exact solution. Finally, it
generates a table and a graph to show the relationship between the step size and the error for each
method.

NUMERICAL INTEGRATION CALCULATOR

Instructions | Use a dot before operators like multiplication *, division /, or exponentiation * to perform Description
element-wise

The GUI for numerical integration allows users to easily calculate integrals using
the Trapezoidal Rule, 1/3 Simpson's Rule, 3/8 Simpson’s Rule, Midpoint Rule and
operations in MATLAB. For example, use .* for element-wise multiplication, ./ for element- Gauss Quadrature Rule. Users can input a function and set the integration

wise division limits,and the GUI will display the results for each method. This tool makes it

and .* for element-wise exponentiation. For example, pi.*(1+(x/2)./2).2 simple to compare the accuracy of these numerical methods.

Function

User Manual Result | Emor | Table  Graph

User needs to key in:

1. Function

2. Upper & Lower Limit

3. Step Size or Subinterval (Please choose one)

Exact Value

Trapezoidal Rule

= 1/3 Simpson's Rule
Upper Limit
pper 3/8 Simpson's Rule
Lower Limit —
Subiaterval | | | Caloulate Midpoint Rule
Subinterval
Step Size [ ‘ Gauss Quadrature

Reset

Fig. 1. Numerical integration calculator interface

3.1 Comparative Analysis of Numerical Integration Methods
3.1.1 Case 1 (Che Rahim Che The, 2010)

T2x+1 4 .
O—T_xz x (7)

Exact value of Eq. (7) is 1.0595.

Table 1 and Table 2 shows the numerical analysis of Case 1 is solved by using Trapezoidal rule,
Simpson’s 1/3 rule, Simpson’s 3/8 rule, Midpoint Rule and Gauss Quadrature Rule. Based on Table 1
and Table 2, the results show that Gauss Quadrature gives the most accurate answers, with the
smallest error, even when the number of subintervals is low. This method provides highly accurate
results because of its use of optimized points and weights. Simpson’s 1/3 Rule also gives very good
results, with errors that are slightly higher than Gauss Quadrature, but still much smaller than the
other methods. Simpson’s 3/8 Rule performs slightly less accurately than Simpson’s 1/3 Rule, but
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better than the Trapezoidal and Midpoint Rules. Trapezoidal Rule, although simple to use, shows
larger errors and is less accurate overall. Midpoint Rule is slightly more accurate than the Trapezoidal
Rule, but still not as reliable as Simpson’s 1/3, 3/8 or Gauss Quadrature methods.

Table 1
Result of numerical integration method for Eq. (7) by using numerical integration calculator
. Trapezoidal Simpson’s Simpson’s Midpoint Gauss Quadrature
Step Sizes
Rule 1/3 Rule 3/8 Rule Rule Rule
% 1.0595649 1.0594972 1.0594972 1.0594633 1.0594972
1
22 1.0596031 1.0594972 1.0594973 1.0594442 1.0594972
1
18 1.0596854 1.0594974 1.0594977 1.0594031 1.0594972
1
IH 1.0599205 1.0594983 1.0594997 1.0592856 1.0594971
1
g 1.0611872 1.0595145 1.0595343 1.0586538 1.0594964
Table 2
Result of errors numerical integration method for Eq. (7) by using numerical integration calculator
Step Trapezoidal Simpson’s Simpson’s Midpoint Gauss Quadrature
Sizes Rule 1/3 Rule 3/8 Rule Rule Rule
1
30 6.7775 x 1075 2.9109 x 1078 6.5347 x 1078 3.3885 x 107° 1.2149 x 107°
1
22 0.00010589 7.0976 x 1078 1.5914 x 1077 5.2939 x 107° 2.965 x 107°
1
I 0.00018823 2.2371x 1077 5.0025 x 1077 9.4093 x 107> 9.364 x 107°
1
v 0.00042336 1.1238 x 107 2.495 x 107° 0.00021157 47306 x 1078
1
A 0.0016901 1.729 x 107> 3.7146 x 107° 0.00084334 7.4851 x 1077

Based on Figure 2, it clearly shows that as the step size increase, the errors for all three methods
increase. However, Gauss Quadrature rule consistently results in the smallest error, regardless of the
step size.
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Step Size vs Error

2
102¢
£ |—8— simpson's 1/3 Rule
Simpson's 3/8 Rule

—&— Midpoint Rule

103
0
£ | —®— Gauss Quadrature

Error (log scale)

108

L 1 ]
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

109t

Step Size (h)
Fig. 2. Graph of relationship between error and step size for Equation (7) when integrating the functions using
those methods.

3.1.2 Case 2 (Che Rahim Che The, 2010)
2
f sin(2x) (1 + 3 sin(2x))dx (8)
0

Exact value of Equation (8) is 3.45581247.

Based on Table 3 and Table 4, the results show that Gauss Quadrature consistently provided the
best accurate approximations. Even when the step size increase, its accuracy was increase. Other
effective method were Simpson's 1/3 Rule and Simpson's 3/8 Rule, especially at lower step sizes.
Both approaches produced results with little inaccuracy. However, both of Simpson's approaches are
still dependable for everyday use, striking a balance between precision and simplicity of usage.
Trapezoidal Rule is more likely to be inaccurate when applied to functions with substantial curvature
or nonlinearity since it depends on linear approximations between points. Midpoint Rule yielded the
least accurate findings while being computationally straightforward.

Table 3
Result of numerical integration method for equation (8) by using numerical integration calculator
. Trapezoidal Simpson’s Simpson’s Midpoint Gauss Quadrature
Step Sizes
Rule 1/3 Rule 3/8 Rule Rule Rule
% 3.4567884 3.4558034 3.4557919 3.4553237 3.4558128
% 3.4573393 3.4557902 3.4557617 3.455047 3.4558134
% 3.4585345 3.4557414 3.4556481 3.4544449 3.4558154
1
g 3.4619865 3.4554402 3.4549196 3.4526921 3.4558273
1
3 3.4816252 3.4485628 3.4330176 3.4423477 3.4560616
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Table 4
Result of errors numerical integration method for equation (8) by using numerical integration calculator
Step Trapezoidal Simpson’s Simpson’s Midpoint Gauss Quadrature
Sizes Rule 1/3 Rule 3/8 Rule Rule Rule
1
I 0.0009759 9.0569 x 107° 2.0575 x 1073 0.00048879 3.7474 x 1077
1
' 0.0015268 2.2231 x107° 5.0781 x 107° 0.00076547 9.1621 x 1077
% 0.002722 7.1087 x 107° 0.00016436 0.0013675 2.9046 x 107°
1
g 0.006174 0.00037227 0.00089286 0.0031203 1.4835 x 107°
% 0.025813 0.0072497 0.022795 0.013465 0.00024916

Figure 3 shows both graphs consistently show that as the step size increase, the errors for all three
methods increase.

o Step Size vs Error
107 ¢ |
—©— Trapezoidal Rule
—&— Simpson's 1/3 Rule
Simpson's 3/8 Rule

—&— Midpoint Rule
2 —#— Gauss Quadrature

Error (log scale)

L 1 ]
0.05 0.1 0.15 0.2 0.25 03 0.35

Step Size (h)

Fig. 3. Graph of relationship between error and step size for Eq. (8).

3.2 Real World Application using Numerical Integration
3.2.1 Drug dosage calculation

Suppose a 500 mg drug is injected as an IV bolus, with V; = 50 L and k = 0.15 hour~! and as
the total observation period is 0 to 12 hours, the function of total drug exposure over time will
becomes

12 12500 12
f C(t)dt :f . e 05t gt :f 10 - e~ 015t gt
0 0

, 50 (9)

Based on Figure 4, greater drug exposure is often indicated by a larger AUC, which may be
associated with a stronger therapeutic impact or, if too high, a risk of toxicity. The result of NIC
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indicates that the drug's plasma concentration builds up to this total quantity over the course of 24
hours (in concentration x time units, such as mg - hr/L).

& MATLAB App - o X

NUMERICAL INTEGRATION CALCULATOR

Result Error Table Graph
User Manual

User needs to key in: :
o Exact Value | 19.95042496
2. Upper & Lower Limit

3. Step Size (The value must produce even sub-interval)

or Subinterval (Please choose one) Trapezoidal Rule 20054225
Insert 1/3 Simpson's Rule | 19.950855
) 12 i .
R 3/8 Simpson's Rule | 19.951385
Lower Limit |0
Cakoutate Midpoint Rule | 19.898565
Subinterval |24
19.950407
Step Size Gauss Quadrature

Reset

Fig. 4. Results of calculating AUC by using NIC

3.2.2 Option Pricing in Finance

Assume the price of a European call option can be represented as:

200 200

1 1
f(x)dx = f (x —100) - \/? e_f(x_llo)zdx

100 T (10)

100

Based on Figure 5, it shows that Gauss Quadrature is very useful for smooth functions since it

chooses optimal points and weights to evaluate the integral. It is much higher result suggests that it
could be able to better capture the function's peak and form than the other approaches.

NUMERICAL INTEGRATION CALCULATOR

o * 10 perform element-wise Description | The GUI for num
0, 1 for element-wise division Ru

Function exp( X)
Resut  Emor  Table  Graph
User Manual
User needs to key in: :
A Exact Value | 19.95042496

2 Upper & Lower Limit
3. Step Size (The value must produce even sub-interval)

or Subinterval (Please choose one) Trapezoidal Rule | 20.054225

Insert 1/3 Simpson's Rule | 19.950855

b 12 i _

MR 3/8 Simpson's Rule | 19.951385
Lower Limit | 0

Calculate Midpoint Rule | 19.898565
Subinterval |24

19.950407
Step Size Gauss Quadrature

Reset

Fig. 5. Results of calculating payoff function by using NIC
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4.3.2. Computational Fluid Dynamics

The total volumetric flow rate (Q) can produce by:

flf(r)dr = fl4nr (1—-7%)dr (11)

Based on Figure 6, higher-order approaches like Gauss Quadrature and Simpson's rules proved
preferable for smooth functions, particularly in computational fluid dynamics applications, even
though all methods produced satisfactory approximations.

NUMERICAL INTEGRATION CALCULATOR

Instructions | Use a cot befor e mu vision /, or exponentiation A 1o parform
oo n. 1 for ele

Description | The GUI for aloy 0 eas iculate integrals using the Trapezosda
Rule.

and * for element-wise e

Fuaction |4 " pi*x."(1-x2

Resut  Emor  Table  Graph
User Manual

User needs to key in: . .
1. Function Exact Value | 3.14159265
2. Upper & Lower Limit

3. Step Size (The value must produce even sub-interval)

or Subinterval (Please choose one) Trapezoidal Rule |3.1361385

Insert 1/3 Simpson's Rule | 3.1415927

UrperLimit | 3/8 Simpson's Rule | 3.1415927
LowerLimit |0
Cantale Midpoint Rule | 3.1443197
Subinterval | 24
Gauss Quadrature | 3.1415927

Step Size

Reset

Fig. 6. Results of calculating volumetric flow rate through pipe by using NIC
4. Conclusion

Gauss Quadrature consistently provides the highest accuracy, while Simpson’s rules provide a
strong balance between performance and precision. Midpoint and Trapezoidal Rules are still useful
for basic applications or rough approximations. In real-world situations including pharmacokinetics,
finance, and engineering, the GUl also proved to be useful. This project improves user comprehension
of numerical integration by providing a useful and instructive tool. Adaptive step size techniques,
multidimensional instances, and support for improper integrals are possible future enhancements.
Increasing the GUI's usability on online or mobile platforms may also increase its applicability in
professional and educational use.
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