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Numerical integration is a key technique for approximating definite integrals, 
especially when analytical solutions are difficult or impossible to obtain. Although 
various numerical methods exist, most tools lack an intuitive interface for comparing 
their efficiency and accuracy. This study develops a MATLAB-based Graphical User 
Interface that implements five selected integration methods which are Gaussian 
Quadrature, Simpson’s 1/3 Rule, Simpson’s 3/8 Rule, the Trapezoidal Rule, and the 
Midpoint Rule. The Graphical User Interface, designed using MATLAB Application 
Designer, enables users to input functions, define integration limits, step sizes, and 
subintervals, and provides tables, graphs, and error analyses for result visualization. 
Comparative evaluations, including case studies and applications in fluid dynamics, 
option pricing, and medical dosage, demonstrate that Gaussian Quadrature 
consistently delivers the highest accuracy, followed by Simpson’s 1/3 Rule and 
Simpson’s 3/8 Rule, while the Midpoint and Trapezoidal Rules yield larger errors. The 
proposed tool facilitates clear performance comparison and supports informed 
method selection, making it well-suited as an educational platform that enhances 
accessibility and understanding of numerical integration methods. 

 
 
Keywords: 
Numerical integration; graphical user 
interface; numerical integration 
calculator 

 
1. Introduction 
 

In domains such as engineering, physics, and finance, numerical integration is crucial for resolving 
definite integrals when analytical solutions are impractical. Approximation techniques are necessary 
because many real-world situations contain complex or empirical functions that are challenging to 
integrate analytically. Effective solutions are obtained by using numerical approaches such the 
Trapezoidal Rule, Simpson's Rules, Midpoint Rule, and Gauss Quadrature, which divide the issue into 
manageable calculations. However current tools frequently lack an easy-to-use interface that makes 
comparing and using these techniques simple. 

This study fills that gap by creating a Graphical User Interface (GUI) based on MATLAB that 
combines five common techniques including Gauss Quadrature Rule, Midpoint Rule, Simpson's 1/3 
Rule, Simpson’s 3/8 Rule, and Trapezoidal Rule. Users may specify step sizes or subintervals, define 
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integration restrictions, and input functions using the Graphical User Interface. They can evaluate the 
results, related errors, and visual comparisons between all techniques. This application makes 
numerical integration more accurate and accessible, which benefits professionals, educators, and 
students alike. 

The Graphical User Interface facilitates real-world problem solving, fosters greater 
comprehension, and makes difficult mathematical calculations easier by providing an intuitive 
platform and automated analysis. Additionally, it serves as a teaching tool, assisting users in gaining 
an understanding of the advantages and disadvantages of various numerical techniques in a practical 
setting. 
 
1.1 Numerical Integration 
1.1.1 Trapezoidal rule 

 
Trapezoidal Rule sums up the areas of trapezoids beneath a curve to approximate the integral.  

Press et al., [1] state that the Trapezoidal Rule minimises error and works effectively when the 
integrand is smooth and the interval is precisely divided. However, the Trapezoidal Rule has 
significant drawbacks, particularly with regard to accuracy, even if it is computationally 
straightforward. Additionally, in computer engineering, Ali and Abbas [2] state that trapezoidal 
method was used to solve fractional differential equations with different numerical techniques by 
checking the accuracy and stability in a high-resolution digital system. 
 
Trapezoidal Rule is defined as Eq. (1): 
 

! 	𝑓(𝑥)𝑑𝑥	
!

"
≈	
ℎ
2	
[𝑓(𝑎) + 𝑓(𝑏)], ℎ = 𝑏 − 𝑎 (1) 

  
where: 
ℎ =  step size of each interval. 
𝑎	 =	upper limit of integration. 
𝑏	 = lower limit of integration. 
 
1.1.2 Simpson’s 1/3 rule 
 

Simpson's 1/3 Rule's fundamental concept is to approximate the function using quadratic 
polynomials rather than linear polynomials, which enhances the Trapezoidal Rule. This improves its 
accuracy for continuous and smooth functions. Simpson's 1/3 Rule formula is very useful for many 
real-world applications in the physical sciences and engineering as it is made to yield precise answers 
for polynomial functions of degree three or less. According to Burden and Faires [3], this improved 
accuracy results from the method's ability to address the curvature of the integrated function.  
 
Simpson’s 1/3 Rule is defined as Eq. (2): 
 

! 𝑓(𝑥)𝑑𝑥 ≈ 	
ℎ
3	
[𝑓(𝑎) + 4𝑓(𝑎 + ℎ) + 𝑓(𝑏)],

!

"
	ℎ = 	

𝑏 − 𝑎
2  

 
(2) 

 
where: 
ℎ =  step size of each interval. 
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𝑎	 =	upper limit of integration. 
𝑏	 = lower limit of integration. 
  
1.1.3 Simpson’s 3/8 rule 
 

Simpson’s 3/8 Rule is a numerical integration method that enhances the accuracy of definite 
integral approximations by employing cubic polynomials. The core idea behind the 3/8 Rule is to 
approximate the area under a curve by dividing the interval of integration into segments consisting 
of three equal parts. In practical applications, Simpson’s 3/8 Rule is widely used in fields such as 
engineering, physics, and finance, where the need to compute integrals from real-world data is 
common.   
 
Simpson’s 3/8 Rule is defined as Eq. (3): 
 

! 𝑓(𝑥)𝑑𝑥 ≈ 	
3
8 ℎ
[𝑓(𝑎) + 3𝑓(𝑎 + ℎ) + 3𝑓(𝑎 + 2ℎ) + 𝑓(𝑏)]

!

"
, ℎ = 	

𝑏 − 𝑎
3  (3) 

  
where: 
ℎ =  step size of each interval. 
𝑎	 =	upper limit of integration. 
𝑏	 = lower limit of integration. 
 
1.1.4 Midpoint rule 
 

Midpoint Rule approximates the integral of a function by calculating the value of the function at 
the midpoint of each subinterval, and then summing these values to estimate the total area under 
the curve. Early developments in numerical integration focused on partitioning the area under a 
curve into simple shapes, such as rectangles, for easier computation. According to Subramaniam and 
Gilat [4], Midpoint Rule is an improvement over the naive rectangle method . Midpoint Rule does 
have limitations. For functions with sharp corners or rapid changes, the Midpoint Rule’s 
approximation can still be inaccurate, especially with fewer subintervals that state by Kharab et al., 
[5]. For example, Stroud [6] state that Midpoint Rule has been employed in computing work and 
energy in mechanical systems. 
 
Midpoint Rule is defined as Eq. (4): 
 

! 𝑓(𝑥)𝑑𝑥	 ≈ ℎ6𝑓(𝑥#)
$

#%&

!

"
 (4) 

  
where: 
ℎ =  step size of each interval. 
𝑎	 =	upper limit of integration. 
𝑏	 = lower limit of integration. 
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1.1.5 Gauss quadrature rule 
 

Gauss Quadrature Rule approximates the integral of a function by evaluating the function at 
specific points called nodes within each subinterval and weighting these values appropriately. 
Gaussian Quadrature is particularly useful when high accuracy is required, especially for functions 
that can be well-approximated by polynomials. Gaussian Quadrature is widely used in various 
scientific, engineering, and computational fields. In physics, Gautschi and Walter state that it is 
employed in solving problems in quantum mechanics, electromagnetism, and fluid dynamics, where 
integrals often appear in differential equations or energy calculations [7]. In computational finance, 
state by Wilmott et al., Gaussian Quadrature is applied to calculate areas under probability density 
functions, cumulative distribution functions, and pricing options [8]. 
 
Gauss Quadrature Rule is defined as Eq. (5): 
 

! 𝑓(𝑥)𝑑𝑥	 ≈ ℎ6𝑓(𝑥#)
$

#%&

!

"
 (5) 

  
where: 
ℎ =  step size of each interval. 
𝑎	 =	upper limit of integration. 
𝑏	 = lower limit of integration. 
 
1.2 Numerical Integration in Real World Applications 
 

Computational fluid dynamics (CFD) relies on numerical methods to solve Navier-Stokes 
equations, which describe the movement of fluids. These equations are integral to applications 
ranging from aerospace engineering such as designing aircraft wings to predicting weather patterns 
and ocean currents. According to Ferziger et al., numerical integration enables the discretization of 
complex fluid behaviors over computational grids, making it possible to model turbulence and 
optimize designs [9]. 

In finance, numerical integration underpins the modelling of complex financial systems. Monte 
Carlo integration, in particular, is essential for pricing derivatives, such as options, by simulating a 
wide range of possible outcomes. Risk management also employs numerical methods to evaluate 
high-dimensional integrals associated with portfolio optimization and asset pricing. Based on Hull 
and Glasserman, these techniques allow financial analysts to account for uncertainty and variability, 
improving decision-making in volatile markets [10,11]. 

In medicine, numerical integration is critical for determining appropriate drug dosages. 
Pharmacokinetics, the study of how drugs are absorbed, distributed, metabolized, and excreted by 
the body, often involves solving integrals of concentration-time curves. Numerical methods allow for 
precise calculation of areas under curves (AUC), which are used to optimize dosage regimens. This 
ensures therapeutic efficacy while minimizing adverse effects. Other than that, Lötstedt state that 
numerical integration is implemented in the simulation of the mechanical behaviour of biological 
cells [12]. 
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1.3 Existed GUI Numerical Integration Calculator 
 

There is various numerical integration calculator that available on website. For instance, 
AtoZmath.com that developed by Piyush N Shah in 2000 [13] are the oldest numerical integration 
calculator that have been found in website. The calculator offers only the Trapezoidal Rule and 
Simpson’s Rule, making it less useful for users who wish to compare different methods or those who 
require multiple methods for their calculations. The intuitive design is not user-friendly, making it 
difficult for users to navigate and use effectively. Otherwise, there is another beneficial numerical 
integration calculator called Simpson’s Rule Calculator, developed by Paul in 2020 [14]. As its name, 
the calculator only provides a Simpson’s rule method which less beneficial compared to others 
calculator. On top of that, another numerical integration calculator called “PlanetCalc” that have 
been developed by Anton on 2021 [15] that provides customizable parameters, error estimation and 
visual presentation that serves as a valuable learning resource for understanding numerical 
integration concepts. The calculator encounters some interval limitations which the precision of the 
approximation can be influenced by the number of intervals specified. 
 
2. Methodology 
2.1 GUI Development Using MATLAB  
 
Graphical User Interface (GUI) was created using MATLAB App Designer, providing an interactive 
environment for users to enter inputs and view results. The interface includes: 

• Text boxes for entering the function to be integrated. 
• Input fields for lower and upper limits of integration. 
• Option to define step size or number of subintervals. 
• Drop Down boxes to select which integration methods to use. 
• Tabs for displaying numerical results, tables, graphs, and errors. 

 
2.2 Numerical Integration Implementation 
 

Each integration method is implemented based on its respective mathematical formulation as 
described in the literature review. The code accepts the input function and parameters, then 
computes the approximate value of the definite integral using the selected methods. 

• Trapezoidal Rule: Utilizes linear interpolation between each subinterval. 
• Simpson’s 1/3 and Simpson’s 3/8 Rules: Apply quadratic and cubic polynomial fitting, 

respectively. 
• Midpoint Rule: Evaluates function at subinterval centers. 
• Gauss Quadrature: Applies weighted nodes for high precision. 

 
2.3 Error Calculation and Comparison 
 
The accuracy of each method is calculated by using its error.  
Error formula is defined as equation (6): 
 
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝐸𝑟𝑟𝑜𝑟 = |	𝐸𝑥𝑎𝑐𝑡	𝑉𝑎𝑙𝑢𝑒 − 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑	𝑉𝑎𝑙𝑢𝑒| (6) 
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3. Results 
3.1. Numerical Integration Calculator (NIC) Interface 
 

The numerical integration calculator within the MATLAB application was carefully implemented 
to allow users to input functions, integration limits, and step sizes, number of sub interval 
streamlining the process of calculating definite integrals. The result of Numerical Integration 
Calculator is displayed in Figure 1. 

Based on Figure 1, it begins with user inputs for the function, upper and lower integration limits, 
step size or number of subintervals. The calculator then computes the exact solution of the given 
integral, which serves as a reference for error comparison.  After obtaining the results, the calculator 
calculates the error for each approximation by comparing the results to the exact solution. Finally, it 
generates a table and a graph to show the relationship between the step size and the error for each 
method. 
 
 

 
Fig. 1. Numerical integration calculator interface 

 
3.1 Comparative Analysis of Numerical Integration Methods 
3.1.1 Case 1 (Che Rahim Che The, 2010) 
 

!
2𝑥 + 1
√4 − 𝑥'

	𝑑𝑥	
&

(
 (7) 

 
Exact value of Eq. (7) is 1.0595. 
 

Table 1 and Table 2 shows the numerical analysis of Case 1 is solved by using Trapezoidal rule, 
Simpson’s 1/3 rule, Simpson’s 3/8 rule, Midpoint Rule and Gauss Quadrature Rule. Based on Table 1 
and Table 2, the results show that Gauss Quadrature gives the most accurate answers, with the 
smallest error, even when the number of subintervals is low. This method provides highly accurate 
results because of its use of optimized points and weights. Simpson’s 1/3 Rule also gives very good 
results, with errors that are slightly higher than Gauss Quadrature, but still much smaller than the 
other methods. Simpson’s 3/8 Rule performs slightly less accurately than Simpson’s 1/3 Rule, but 
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better than the Trapezoidal and Midpoint Rules. Trapezoidal Rule, although simple to use, shows 
larger errors and is less accurate overall. Midpoint Rule is slightly more accurate than the Trapezoidal 
Rule, but still not as reliable as Simpson’s 1/3, 3/8 or Gauss Quadrature methods. 
 
         Table 1 
         Result of numerical integration method for Eq. (7) by using numerical integration calculator 

Step Sizes 
Trapezoidal 

Rule 
Simpson’s  
1/3 Rule 

Simpson’s  
3/8 Rule  

Midpoint 
Rule 

Gauss Quadrature 
Rule 

1
30 1.0595649 1.0594972 1.0594972 1.0594633 1.0594972 

1
24 1.0596031 1.0594972 1.0594973 1.0594442 1.0594972 

1
18 1.0596854 1.0594974 1.0594977 1.0594031 1.0594972 

1
12 1.0599205 1.0594983 1.0594997 1.0592856 1.0594971 

1
6 1.0611872 1.0595145 1.0595343 1.0586538 1.0594964 

 
 

      Table 2 
      Result of errors numerical integration method for Eq. (7) by using numerical integration calculator 

Step  
Sizes 

Trapezoidal 
Rule 

Simpson’s  
1/3 Rule 

Simpson’s  
3/8 Rule  

Midpoint 
Rule 

Gauss Quadrature 
Rule 

1
30 6.7775 × 10!" 2.9109 × 10!# 6.5347 × 10!# 3.3885 × 10!" 1.2149 × 10!$ 

1
24 0.00010589 7.0976 × 10!# 1.5914 × 10!% 5.2939 × 10!" 2.965 × 10!$ 

1
18 0.00018823 2.2371 × 10!% 5.0025 × 10!% 9.4093 × 10!" 9.364 × 10!$ 

1
12 0.00042336 1.1238 × 10!& 2.495 × 10!& 0.00021157 4.7306 × 10!# 

1
6 0.0016901 1.729 × 10!" 3.7146 × 10!" 0.00084334 7.4851 × 10!% 

 
Based on Figure 2, it clearly shows that as the step size increase, the errors for all three methods 
increase. However, Gauss Quadrature rule consistently results in the smallest error, regardless of the 
step size. 
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Fig. 2. Graph of relationship between error and step size for Equation (7) when integrating the functions using 
those methods. 
 
 
3.1.2 Case 2 (Che Rahim Che The, 2010) 

! 𝑠𝑖𝑛(2𝑥) (1 + 3 𝑠𝑖𝑛(2𝑥))𝑑𝑥
'

(
 (8) 

 
Exact value of Equation (8) is 3.45581247. 
 

Based on Table 3 and Table 4, the results show that Gauss Quadrature consistently provided the 
best accurate approximations. Even when the step size increase, its accuracy was increase. Other 
effective method were Simpson's 1/3 Rule and Simpson's 3/8 Rule, especially at lower step sizes. 
Both approaches produced results with little inaccuracy. However, both of Simpson's approaches are 
still dependable for everyday use, striking a balance between precision and simplicity of usage. 
Trapezoidal Rule is more likely to be inaccurate when applied to functions with substantial curvature 
or nonlinearity since it depends on linear approximations between points. Midpoint Rule yielded the 
least accurate findings while being computationally straightforward.  
 
   Table 3 
   Result of numerical integration method for equation (8) by using numerical integration calculator 

Step Sizes 
Trapezoidal 

Rule 
Simpson’s  
1/3 Rule 

Simpson’s  
3/8 Rule  

Midpoint 
Rule 

Gauss Quadrature 
Rule 

1
15 3.4567884 3.4558034 3.4557919 3.4553237 3.4558128 

1
12 3.4573393 3.4557902 3.4557617 3.455047 3.4558134 

1
9 3.4585345 3.4557414 3.4556481 3.4544449 3.4558154 

1
6 3.4619865 3.4554402 3.4549196 3.4526921 3.4558273 

1
3 3.4816252 3.4485628 3.4330176 3.4423477 3.4560616 
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  Table 4 
  Result of errors numerical integration method for equation (8) by using numerical integration calculator 

Step  
Sizes 

Trapezoidal 
Rule 

Simpson’s  
1/3 Rule 

Simpson’s  
3/8 Rule  

Midpoint 
Rule 

Gauss Quadrature 
Rule 

1
15 0.0009759 9.0569 × 10!& 2.0575 × 10!" 0.00048879 3.7474 × 10!% 

1
12 0.0015268 2.2231 × 10!" 5.0781 × 10!" 0.00076547 9.1621 × 10!% 

1
9 0.002722 7.1087 × 10!" 0.00016436 0.0013675 2.9046 × 10!& 

1
6 0.006174 0.00037227 0.00089286 0.0031203 1.4835 × 10!" 

1
3 0.025813 0.0072497 0.022795 0.013465 0.00024916 

 
Figure 3 shows both graphs consistently show that as the step size increase, the errors for all three 
methods increase. 
 

 
Fig. 3.  Graph of relationship between error and step size for Eq. (8). 

 
3.2 Real World Application using Numerical Integration 
3.2.1 Drug dosage calculation 
 
 Suppose a 500 mg drug is injected as an IV bolus, with 𝑉) = 50	𝐿 and 𝑘 = 0.15	ℎ𝑜𝑢𝑟*& and as 
the total observation period is 0 to 12 hours, the function of total drug exposure over time will 
becomes 
 

! 𝐶(𝑡)𝑑𝑡
&'

(
= !

500
50 	 ∙ 	𝑒

*(.,-	𝑑𝑡 = ! 10	 ∙ 	𝑒*(.&,-	𝑑𝑡
&'

(

&'

(
	

 

(9) 

 
 Based on Figure 4, greater drug exposure is often indicated by a larger AUC, which may be 
associated with a stronger therapeutic impact or, if too high, a risk of toxicity. The result of NIC 
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indicates that the drug's plasma concentration builds up to this total quantity over the course of 24 
hours (in concentration × time units, such as 𝑚𝑔 · ℎ𝑟/𝐿). 
 

 

 
Fig. 4. Results of calculating AUC by using NIC 

 
 
3.2.2 Option Pricing in Finance 
 
Assume the price of a European call option can be represented as: 
 

! 𝑓(𝑥)	𝑑𝑥
'((

&((
= ! (𝑥 − 100) ∙ 	

1
√2𝜋

	𝑒*
&
'(/*&&()

'
𝑑𝑥

'((

&((
	

 
(10) 

 Based on Figure 5, it shows that Gauss Quadrature is very useful for smooth functions since it 
chooses optimal points and weights to evaluate the integral. It is much higher result suggests that it 
could be able to better capture the function's peak and form than the other approaches. 

 

 
Fig. 5. Results of calculating payoff function by using NIC 
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4.3.2. Computational Fluid Dynamics 
 
The total volumetric flow rate (Q) can produce by: 
 

! 𝑓(𝑟)𝑑𝑟 = 	! 4𝜋𝑟	(1 − 𝑟')	𝑑𝑟
&

(

&

(
 (11) 

 
Based on Figure 6, higher-order approaches like Gauss Quadrature and Simpson's rules proved 

preferable for smooth functions, particularly in computational fluid dynamics applications, even 
though all methods produced satisfactory approximations.   
 

 
Fig. 6. Results of calculating volumetric flow rate through pipe by using NIC 

 
4. Conclusion 

 
Gauss Quadrature consistently provides the highest accuracy, while Simpson’s rules provide a 

strong balance between performance and precision. Midpoint and Trapezoidal Rules are still useful 
for basic applications or rough approximations. In real-world situations including pharmacokinetics, 
finance, and engineering, the GUI also proved to be useful. This project improves user comprehension 
of numerical integration by providing a useful and instructive tool. Adaptive step size techniques, 
multidimensional instances, and support for improper integrals are possible future enhancements. 
Increasing the GUI's usability on online or mobile platforms may also increase its applicability in 
professional and educational use. 
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