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saturable absorber material is essential for passive Q-switching, as it is integrated into
the laser cavity to produce an instantaneously Q-switched pulse fiber laser. While
these materials have been effective in generating pulsed lasers, they often come with
unresolved issues, such as long-term exposure to two-dimensional materials can pose
health risks. To address this gap, researchers have shifted their interest toward natural
or organic materials in the quest for new saturable absorbers. This mini-review
provides a comprehensive overview of the saturable absorber mechanism, including
essential theoretical equations and key measurement parameters. The next section
continues by exploring the fundamentals and early development of saturable
absorbers, followed by an in-depth explanation of the Q-switched pulse generation
process using erbium-doped fiber as the gain medium and saturable absorber. Critical
parameters influencing the performance of Q-switched pulse fiber lasers are discussed,

Keywords: with special attention given to recent advancements in organic-based saturable
Erbium-doped fiber laser; fiber optic absorbers for Q-switching. The potential of spider silk as an innovative saturable
communication; natural biological absorber in Q-switched pulse fiber laser applications is highlighted. Finally, the review
material; optical pulse fiber sensor; delves into the wide-ranging applications of these lasers, including tunable and
organic-based saturable absorbers; switchable dual-wavelength fiber lasers with sensor for temperature measurement
passively Q-switched; spider silk and to detect adulteration in pure kelulut honey and sucrose solution.

1. Introduction

The fiber laser combines the fiber gain medium’s function as a fiber amplifier, transforming it into
laser output through integration within a cavity configuration. Meanwhile, a pulsed fiber laser is
capable of generating short bursts of laser emission characterized by high peak power levels. Since
its establishment by Fred J. McClung in 1962, the idea of pulse creation in lasers has gained significant
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traction, leading to a proliferation of research in the field of pulsed laser technology. His theory is
referred to as Q-switching. Initially, this technique involved the utilization of Kerr cell shutters to
generate significant pulses, resulting in peak power approximately 100 times greater than that
produced by ruby lasers [1]. The foundations of both active and passive approaches are also
recognized [2—-4]. Using passive saturable absorbers has been regarded as a viable approach for
achieving narrow pulse widths and broad spectral ranges [5]. The investigation of high-performance
saturable absorbers is widely pursued in the field of ultrafast photonics research. High-performance
saturable absorbers possess notable attributes such as efficient heat dissipation, a high threshold for
laser damage, and wavelength independence. In addition, their compact size makes them suitable
for analyzing small-scale samples and accessing limited or hard-to-reach areas [6,7]. A saturable
absorber material is essential for passive Q-switching, as it is integrated into the laser cavity to
produce an instantaneously Q-switched pulse fiber laser. While these materials have been effective
in generating pulsed lasers, however, they often come with some unresolved issues such as the
challenging and expensive fabrication processes for transition metal dichalcogenides material [8-10],
and their low damage threshold [11-15]. Additionally, long-term exposure to two-dimensional
materials, including topological insulators, can pose health risks [16—18].

To address this gap, researchers have shifted their interest towards natural or organic material
in the quest for new saturable absorber. Therefore, this mini review exploring organic-based
saturable absorbers, focusing on spider silk to generate the Q-switched pulse erbium-doped fiber
laser source. Natural spider silk is a protein-based biological material produced by spiders naturally
through silk glands in their bodies [19]. Interestingly, these silks serve as photon carriers, with light
guiding through dragline silk recently proven to have transmission losses of only a few dB/cm [20—
22], paves the way for its incorporation as natural biological saturable absorber to generate Q-
switched pulse fiber laser applications.

2. Saturable Absorber
2.1 Saturable Absorber Mechanism

A saturable absorber is an optical device or material that exhibits a nonlinear response to incident
light. It is essential for passively Q-switched fiber lasers as it facilitates the formation of optical pulses
(initiating operation in the pulsed state), regulates the output intensity of lasers, and controls
characteristics such as repetition rate, pulse width, and pulse energy. It significantly contributes to
stabilizing laser output by reducing fluctuations and providing consistent pulse parameters. It is
characterized by its ability to modulate the light intensity passing through it, depending on the
intensity of the incident light. The mechanism of a saturable absorber is based on the concept of
intensity-dependent transmission or absorption of light [23]. Specifically, understanding this
mechanism relates to the framework of the saturable absorber material’s energy levels and their
interaction with light.

When saturable absorber material is placed within the laser cavity under low light intensity, it
remains in its ground state with relatively high absorption. During this stage, most electrons are in
the ground state and absorb photons at low intensity, exciting them to higher energy levels. As the
intensity of the incident light continues to increase, the electrons within the saturable absorber
material continues to excite, transitioning to higher energy states, resulting in a decrease in the
saturable absorber material’s absorption. At sufficiently high light intensities, the absorption
becomes saturated due to the fully-occupied of electrons in higher level.
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2.2 Saturable Absorber Parameters

As discussed in Subsection 2.1, saturable absorption is a phenomenon that occurs in certain
materials or devices, wherein the degree of light absorption relies on the optical intensity of the
incoming light, causing a decrease as the light intensity increases. Understanding the parameters of
a saturable absorber is important for assessing the desired performance of the resulting laser output.
The nonlinear behaviour exhibited by saturable absorber material can be effectively characterized by
utilizing a straightforward two-level saturable absorption model. This model serves as a resource for
identifying the significant parameters such as the saturable absorption, non-saturation absorption,
saturation intensity, and recovery time. The expression of the two-level saturable absorption model
is given by Wang et al., and Xing et al., [24,25]:

a(I) = a_sl+ Aps (1)
14—

Isat

where a (1) denotes the absorption coefficient that is dependent on the intensity of the incident light,
a, is the linear limit of saturable absorption (modulation depth), I is the input laser intensity, I,; is
the saturation intensity, and a5 is the non-saturable absorption coefficient.

Saturable absorption, also known as modulation depth, can be experimentally measured using
the twin-detector method, also known as the twin-balanced or balanced twin-detector technique
[26-30], Z-scan measurement [31], and P-scan measurement [32]. The experiment for the twin-
detector method is carried out with the help of an ultrafast pulse source of a specific wavelength
transmitted into a saturable absorber. The modulation depth is determined by measuring the
maximum change that can occur in the induced optical loss. A saturable absorber with a modulation
depth of 10 % or higher is preferred, as this allows for a more stable pulse laser function [33-35]. In
addition, a saturable absorber with a larger modulation depth can produce significant pulse shaping,
which is necessary for achieving short pulse durations. The only disadvantage of a saturable absorber
with high modulation depth is its propensity towards Q-switched instabilities. Furthermore, saturable
absorption can be expressed as:

a; = asgN (2)
where a,, is the absorption cross-section at the ground state of the saturable absorber and N is the
concentration of the saturable absorber material. The saturable absorption is determined by the
relative number of photons absorbed per unit distance by the saturable absorber material. A high
saturable absorption coefficient means more photons are absorbed by the saturable absorber rather
than penetrating deeper, over a relatively short distance. This concept is illustrated in Figure 1, which
shows the distance, X for two different absorption coefficient values versus photon intensity, .
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Meanwhile, the loss that cannot be saturated by the saturable absorber material, known as non-
saturable absorption, is expressed as a percentage of linear absorption due to normalization [36].
This loss can be attributed to transmission loss, free carrier absorption, Auger recombination, and
scattering loss. Scattering loss can occur due to surface roughness of the material, lattice defects,
and rough interfaces. Additionally, the modulation depth of the saturable absorber material is related
to the minimum pulse width of the Q-switched laser, which is regulated by the properties of saturable
absorption and non-saturable loss.

The optical peak intensity that equates to a 50 % reduction of the saturated region of its
absorption is known as the saturation intensity. Additionally, the Eq. (1) for saturation intensity,
represents the intensity required in a steady state to reduce the absorption to half of its unsaturated
value:

I, = 2 (3)

OsgTse

where h is Plank’s constant, f is the light frequency of operation, gy, is the absorption cross-section
at the ground state of the saturable absorber, and 74, is the absorber recovery time or excited state
lifetime. According to Eq. (3), less continuous-wave intensity is needed to saturate the saturable
absorber when the excited state lifetime is longer before recombination.

Figure 2 shows a graph of the normalized nonlinear absorption, based on Eq. (1), at different
normalized light intensity [37]. According to the Figure 2, the absorption is high, and lasing is
disallowed when the laser resonator (pump diode source) light intensity is lower than the saturable
absorber saturation intensity (I < I ). The absorption reduces, and transmissivity gradually becomes
higher when the light intensity is [ > [;. Overall, the absorption is saturated when [ > [, because of
the high Q-value of the resonator, initiating Q-switched laser oscillation. Due to non-saturable loss
property, a, s of the saturable absorber, the nonlinear saturable absorption cannot reach 0 %.
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3. Overview of the Saturable Absorber
3.1 Graphene

The research on two-dimensional materials has seen rapid development since the first graphene
saturable absorber was introduced in 2009 [38,39]. It is ideally suited as a saturable absorber in
pulsed fiber laser systems due to its significant fast response times and broad wavelength range [40—
45]. Despite its potential, graphene has certain drawbacks, including a low modulation depth, as the
absorption per layer is only 2.3 % [46—52]. Apart from that, because graphene is easily oxidized, a
hydrogen ambient atmosphere is necessary during its manufacture using chemical vapour deposition
[53]. Thus, further investigations into other materials are needed to find high-performing saturable
absorbers.

3.2 Topological Insulators

Topological insulator (TI) materials with the formula Y2X3, where Y can be either Bi or Sb, and X
can be either Te or Se. A HgTe is an example of a two-dimensional material, while Bi,Tes, Bi,Ses, and
Sb,Tes are examples of three-dimensional materials. Hsieh et al. reported the initial discovery of
three-dimensional Tl material in 2008 [54]. Numerous studies have been conducted to generate
pulsed fiber laser-based Tls material [55—-66]. Tls are quantum states of matter in which the interior is
an insulator, whereas the surface states are conductive, allowing electrons to only travel along the
surface of the material [67,68]. The electronic configurations of Tl films are affected by film thickness
due to electron quantum confinement, which drives the TI materials to generate pulsed fiber lasers
in the range of visible, near-infrared, and mid-infrared wavelengths [69]. However, there are still
challenges to overcome, primarily in understanding how the electronic structure of Tl materials
works. These materials exhibit intricate electronic structures due to the strong spin-orbit interaction,
making it challenging to theoretically predict their bandgap energies and verify them experimentally
[69]. Furthermore, the pulse bandwidth and high non-saturable loss are affected not only by the
nonlinearity of the fibers, but also by the presence of impurities, defects, and dislocations in the
material [69—71]. Additionally, material preparation for compounds such as Bi>Tes, Bi>Ses, ShaoTes is
complex because they are made of two different elements [72,73]. Moreover, Tl saturable absorbers
are restricted with a low damage threshold, meaning they can only tolerate a relatively small amount
of energy before becoming saturated [11,74,75].
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3.3 Transition Metal Dichalcogenides

Transition metal dichalcogenides (TMDs) belong to the category of two-dimensional materials
and have attracted attention due to their layer-dependent bandgap, which allows the bandgap to be
controlled by manipulating the number of material layers. This property enables saturable absorption
over a broad wavelength range and is accompanied by high optical nonlinearity [15,76—81]. TMDs
are a family of anisotropic semiconductor materials with the common formula MX;, where M
represents a transition metal element from groups IV to X, including Ti, Zr, and Hf (group IV), group
V contains V, Nb, and Ta, group VI involves Mo and W, group VII consists of Mn, Tc and Re, group VIII
(Fe, Ru, and Os), group IX (Co, Rh, and Ir), and group X (Ni, Pd, and Pt). The X represents chalcogen
elements such as S and Se [82]. TMD materials from groups IV to VIl are typically layered, while those
from groups VIII to X are often non-layered. The layer-dependent bandgap in TMD materials makes
them an appealing target for study in the approach of exploiting saturable absorbers for pulse
generation [76,83]. Active research on TMDs-based saturable absorbers and their application in fiber
lasers is ongoing. Studies have demonstrated that materials such as titanium trisulfide [84], hafnium
sulfide [81], platinum [85], molybdenum ditelluride [86], rhenium disulfide [87], and antimony sulfide
[79] act as saturable absorbers to produce Q-switched pulses in an erbium-doped fiber laser cavity.
Despite the fact that their bandgaps can be adjusted by changing the layer numbers, their absorption
in the mid-infrared wavelength is relatively poor, which might further increase the optical loss [88].
Additionally, TMDs may be inhaled as airborne particles during the fabrication or disposal of two-
dimensional TMD-based products, necessitating an evaluation of their biosafety. The preparation
methods for TMDs are also somewhat complicated [8—10]. Moreover, these materials are susceptible
to low optical damage thresholds [11-15], which can impact their laser generation performance.

3.4 Black Phosphorus

Two-dimensional mono-elemental materials, such as black phosphorus (BP), have piqued the
interest of researchers due to their natural characteristics [89—93]. In 2014, experiments conducted
by Ye and Zhang independently discovered that BP exhibits anisotropic properties with a variable
bandgap [94,95]. Anisotropy refers to materials exhibiting properties that vary with the direction in
which they are observed. Along with its layered orthorhombic structure, through which electrons,
phonons, and their interactions with photons propagate in an anisotropic manner within the layers’
plane. The anisotropic structure of BP thin films is disclosed using angle-resolved Raman and infrared
spectroscopies, as well as angle-resolved transport research by Xia et al., [96]. Both theoretical
calculations and experimental evidence indicate that BP has direct bandgap characteristics
depending on the number of layers (layer-dependent bandgap), with values ranging from 0.10 eV to
0.35eV forbulk BPand 1.0 eV to 1.7 eV for monolayer BP. Another remarkable aspect of this material,
which has garnered considerable research interest, is its ability to absorb light across a wide range of
wavelengths, from ultraviolet to infrared [97-99]. In 2021, a Q-switched erbium-doped fiber laser
using exfoliated BP as a saturable absorber, was demonstrated by Alghamdi et al. achieving a highest
pulse energy of 171.7 nJ [72]. Despite its numerous impressive qualities, BP has two major drawbacks
that hinder its widespread use. One of these drawbacks is the low stability of two-dimensional BP in
ambient conditions. Although the phosphorus allotrope BP is most stable in bulk form, when
exfoliated into a few-layer structure, it rapidly reacts with oxygen and moisture in the air, leading to
the breakdown of its crystal structure [9,100-103]. Another issue is the difficulty in producing high-
quality, large-area few-layer BP using existing synthesis techniques [104,105].
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4. Passively Q-Switched Pulse Fiber Laser

A pulsed fiber laser is a subset of fiber laser technology that generates optical pulses, or light
pulses, as its output. It can produce more powerful energy than a continuous-wave laser. One
technique for generating optical pulses is the passively Q-switched fiber laser, where saturable
absorption serves as the essential element [106,107]. Q-switching is a technique used to produce
energetic and short pulses, also known as giant pulses. This pulse is not ultrashort. The first
experimental works on Q-switched were conducted at Hughes Research laboratories [108]. Hellwarth
[109] predicted that a laser would emit short pulses if the loss in an optical resonator was rapidly
changed from a high to a low value. This prediction was experimentally confirmed a year later by
Collins and Kisliuk [110] and McClung and Hellwarth [111].

By adjusting a laser resonator's quality factor (Q-factor), Q-switching enables the generation of
short-duration laser pulses ranging from nanoseconds to picoseconds with high pulse energy. The Q-
factoris a dimensionless variable that measures the strength measurement of its oscillation damping.
It is determined by:

__ 2mfpE
Q= Lt (4)
where f, is the resonant frequency, € the stored energy in the cavity and P = —Z—f is the power
dissipated.

The quality factor (Q-factor) indicates a laser cavity's ability to preserve its energy. A higher Q-
factor signifies lower intracavity losses. The term Q-switching describes the process of switching the
laser setup from a low Q to a high Q to create a short pulse duration. Initially, the Q-factor is kept low
(with large losses) to prevent lasing. The gain medium provides constant pumping, leading to the
accumulation of spontaneous emissions in the cavity, and thereby storing energy. When the Q-factor
is suddenly increased to a high level and the necessary amount of energy is collected, the laser pulse
begins to build up in the cavity following spontaneous emission, becoming a laser. The pulse
intensifies until the losses equal the gain. The laser can no longer oscillate when the pulse peak power
is exceeded and the gain is fully depleted. The Q-switch is then opened again (low Q), and the process
starts over to build up more inversion for the next consecutive pulse [112].

Passively Q-switched pulse fiber lasers are increasingly useful and relevant in real-life
applications. For example, in industrial settings, they are extensively used for precise material
processing tasks such as cutting [113,114], engraving [115-119], and marking [120-122]. These lasers
deliver high peak powers (ranging from several kilowatts to tens of kilowatts) and short pulse widths
(in the nanoseconds range), enabling precise, high-quality processing with minimal thermal effects
on ceramics, metals, and polymers. Q-switched pulse fiber lasers are also practical in the aerospace
sector [123,124], and electronics industries [125] for manufacturing components with complex
designs and precise dimensions. Next, these lasers are highly useful in dermatology [126-130],
ophthalmology [131,132], and precision surgery [133—137]. They are employed in operations where
meticulous control over energy delivery and minimal thermal damage are essential, such as eye
surgery, skin resurfacing, and tattoo removal [138,139]. These lasers enable medical professionals to
conduct delicate and precise treatments with little to no damage to surrounding tissues. Additionally,
they are used in LIDAR systems for atmospheric research, environmental monitoring, and remote
sensing applications [140-144]. In telecommunications, a passively Q-switched pulse fiber laser is
necessary for high-speed data transmission, wavelength conversion, signal amplification, signal
processing, and data routing [145]. Their stability and reliability, combined with their ability to
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operate continuously, compact size, lightweight design due to the use of optical fiber as the gain
medium, and high efficiency in converting a significant portion of input light energy into laser output,
help reduce operating costs and power consumption. These attributes make them indispensable
components in fiber optic networks and communication systems, supporting the growing demands
of modern telecommunications technologies. Passively Q-switched pulse fiber lasers can create high-
energy pulses with good temporal characteristics and narrow linewidths over long distances, making
them applicable for military and security devices. These applications include target designation,
range finding, and active imaging, all of which require intense bursts of energy [146—148]. In scientific
research, this technique is used by researchers to explore ultrafast processes, analyze material
properties, and carry out accurate spectroscopic analyzes. It is instrumental in broadening the
understanding of basic scientific ideas and opening doors for innovations across various fields of
study. Passively Q-switched pulse fiber lasers offer additional key advantages that make them highly
desirable, including relatively low maintenance requirements compared to other laser types. They
do not require frequent sophisticated component repairs or replacements, resulting in minimized
downtime and reduced operational costs over the long term [149,150]. This laser exhibits high beam
quality, characterized by strong focusing ability, low divergence, and a well-defined mode structure
[130,151-153]. The high beam quality ensures accurate and precise material processing,
measurement, and imaging, making them appropriate for applications requiring high spatial
resolution and beam manipulation. Passively Q-switched pulse fiber lasers are comparatively easy to
operate, unlike several other types of lasers that require complex external modulators [154]. They
have a simpler design and are less prone to failure because they do not require alignment to generate
a Q-switched pulse [155,156].

4.1 The Principal Process in Generating Q-Switched Pulse Fiber Laser with Saturable Absorber

The generation of Q-switched pulses occurred when a photon of light entered the core of the
erbium-doped fiber. This erbium-doped fiber served as the gain medium in the laser cavity to amplify
the light. Erbium ions in the fiber absorbed the energy supplied by the pump diode, transferring the
energy to the erbium ions and creating a population inversion. This means that the exceeded ions
were in a higher state rather than the ground state ions.

The pump diode continuously supplied energy to the gain medium, thus maintaining the
population inversion. Following that, the light passed through the area containing the saturable
absorber material. The saturable absorber material was designed to have high absorption, creating
significant losses within the laser cavity and thus inhibiting lasing from occurring.

As mentioned before, the pump diode continuously supplied energy to the gain medium. After a
specific time, the energy within the gain medium achieved a threshold value higher than the loss in
the cavity created by the saturable absorber. This caused the absorption of the saturable absorber
to suddenly become saturated and then transition to a transparent state.

At that moment, the loss of the cavity was reduced, and the accumulated energy in the gain
medium was released, forming the Q-switched pulse with high energy and short duration (Figure 3).

After the pulse was generated, the saturable absorber entered the recovery phase, preparing for
the next round of lasing. During this time, the saturable absorber returned to its high absorption
state, causing high losses of the cavity and inhibiting lasing. The pump diode continued to supply
energy to the gain medium, preparing for the next cycle.

The entire process repeated itself. As the saturable absorber recovered, the loss in the cavity
increased, inhibiting lasing. The energy in the gain medium continued to accumulate until it reached
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the threshold value, at which point the saturable absorber switched states, leading to the generation
of the Q-switched pulses.

Laser pulse

Giant pulse laser
action takes place

Fig. 3. A visualization depicting the creation of a Q-
switched pulse

4.2 Q-Switched Pulse Fiber Laser Key Parameters

The temporal characteristics of Q-switched pulse fiber laser is typically characterized by several
key parameters, such as repetition rate, pulse width, pulse energy, and peak power (Figure 4),
measured using an oscilloscope.

The first parameter, repetition rate, indicates the number of pulses emitted by the laser within a
given time interval, often measured in seconds. This repetition rate can be simply measured from the
oscilloscope by monitoring the duration between the output pulse trains. The Q-switched pulse
repetition rate typically ranges from a few kilohertz to 100 kHz, representing its fundamental feature
[157-159].

Secondly, the pulse width, also known as pulse duration, is identified as the full width at half-
maximum, which represents 50 % of the time interval between the rising edge-marking the initiation
of the pulse and a drop edge, signifying the end point of the pulse, within the framework of laser
pulses. According to Herda et al., the pulse width exhibits a decreasing trend with an increase in
pump power [160]. Typically, the pulse width occurs within the microseconds range [10,161].

The term pulse energy pertains to the amount of energy encapsulated within each pulse
produced by the laser. It is calculated by dividing the average power by the repetition rate. The
measurement of pulse energy is commonly expressed in units of nanojoules [162—-164].

Another criterion of a Q-switched pulse is peak power. The peak power of an optical pulse refers
to the maximum optical intensity that the pulse can achieve. Peak power is commonly measured in
milliwatts or decibel-milliwatts [165].

Meanwhile, an optical spectrum analyzer is used to measure the spectral properties of the laser
output, including the main wavelength at which the laser operates. This helps identify the lasing
medium and assess the tuning capabilities of the Q-switched laser.

The manipulation of pump power induces noteworthy effects on the Q-switched parameters. As
the pump power increases, more energy becomes available for the gain medium in the fiber laser,
leading to faster population inversion and quicker recovery of the gain medium. This allows for a
higher repetition rate as the laser system can undergo more cycles of energy storage and release in
a given period. Simultaneously, the pulse width decreases. Increased pump power accelerates the
build-up of energy in the gain medium, resulting in a higher inversion level in the gain medium that
allows for quicker release of stored energy during the Q-switched process. Quicker release of energy
results in shorter pulse durations, leading to a decrease in pulse width. Furthermore, the pulse energy
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exhibits a notable increase, as the augmented pump power provides more energy for storage in the
gain medium, resulting in @ more substantial release during the Q-switched operation. Finally, the
higher pump power leads to more stimulated emission events, contributing to a more intense laser
output and, consequently, an increase in the overall output power, owing to the combined effects of
higher repetition rates and increased pulse energy.

Pulse repetition rate emission

7\ Peak power

Energy

s Time
7

Pulse width
Fig. 4. An illustration of the pulse laser emission

5. Organic Based Saturable Absorber

Currently, the market for various saturable absorbers has been growing, including organic-based
saturable absorbers from different classes, which have been successfully used to generate pulsed
laser output in erbium-doped fiber laser systems. Over the past five years (since 2021), organic
semiconductor material was made from Poly(3-hexylthiophene-2,5-diyl) regioregular, which was
used to drive Q-switched pulse generation at maximum repetition rate of 78.63 kHz. In the same year
(2021), the Q-switched laser output using 8-Hydroxyquonolino cadmium chloride hydrate as
saturable absorber were realized in two different erbium-doped fiber laser’s cavity configurations
having different output couplers. Najm et al., demonstrated a modulation depth of 11 % as shown in
Figure 5. They prepared as saturable absorber by mechanical exfoliation technique and
demonstrated Q-switched pulse output of 136 kHz using 50/50 optical coupler. In addition, the same
group also used 8-Hydroxyquonolino cadmium chloride hydrate as a saturable absorber using 95/5
optical coupler, achieved 173 kHz Q-switched pulse output. Later, researchers prepared 8-
Hydroxyquinolino cadmium chloride hydrate material as a saturable absorber in the thin-film form,
exhibit modulation depth of 18 % which enabled Q-switched pulse generation at 150 kHz and 143
kHz, respectively. These studies suggest that organic-based saturable absorber materials can be
effectively engineered to generate a broader pulse range.

The operation of the organic-based saturable absorbers was extended by using turmeric material,
prepared by embedding turmeric powder into polyvinyl alcohol (PVA) film. A stable Q-switched pulse
with a pulse width of 0.725 us and a repetition rate of 90.09 kHz was obtained at a central wavelength
of 1566.96 nm (Figure 6).
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Due to the optical response of poly (3,4 ethylenedioxythiophene): poly (4-styrenesulfonate),
organic conducting material, Al-Hiti et al., were fabricated thin-film saturable absorber by mixing poly
(3,4 ethylenedioxythiophene): poly (4-styrenesulfonate) with polyvinyl alcohol (PVA), prepared by
simple solution casting and spin-coating method. From the balanced twin detector measurement
revealed that it has potential to be performed as a pulse initiator in 1.5 um region as it owns
moderate of saturable absorption of 50 % and 22 % respectively.

Natural dyes, considered among the organic-based materials, are colorants acquired from plants,
minerals, and/or invertebrates. Henna (Lawsonia inermis) is one such dye material, obtained from
the leaves of the plant, traditionally used to create intricate designs on women's hands. The leaves
of the plant are dried, crushed, and then boiled with water to extract the dye. The potential of
lawsone-based saturable absorbers has been highlighted due to their nonlinear optical properties at
low input power. Soboh et al., in 2021 reported the generation of stable Q-switched pulses at a
central wavelength of 1564 nm, with the highest repetition rate of 80 kHz, and the lowest pulse width
of 1.7 us, utilizing lawsone as the saturable absorber [168].

Furthermore, phthalocyanines based saturable absorber allow for the operation wavelength for
instance, S. Wadi et al., demonstrated a modulation depth of 8.8 % at 1532.1 nm with repetition rate
of 77.2 kHz. Additionally, the same group also used phthalocyanines film as saturable absorption (9.5
%) achieving 48.6 kHz pulse repetition rate.

Ahmad et al., (2024) practically using Polyacrylonitrile film as a saturable absorber for generating
Q-switched pulses with the combination of Polyacrylonitrile, a resin material, and polyvinyl alcohol.
Polyacrylonitrile is a synthetic polymer derived from the monomer acrylonitrile, and it is structurally
composed of a linear polymer featuring repeating units of acrylonitrile monomers. This organic
polymer exhibits a semicrystalline nature and is characterized by the chemical formula [CsH3N]n, with
a nitrile (CN) functional group attached to its polyethylene backbone as the fundamental unit
structure. The nitrile group, acting as a hydrogen bonding acceptor, possesses a large dipole moment
between the electron-deficient carbon atom and the electron-rich nitrogen atom, facilitating
relatively strong attractive interactions. The Polyacrylonitrile film saturable absorber, fabricated via
a casting approach, was generated Q-switched laser pulses at a central wavelength of 1572.0 nm.
The highest repetition rate and the lowest pulse width achieved was 66.1 kHz and 2.43 s,
respectively.

Q-switched pulse generation-based Poly(9-vinylcarbazole) saturable absorber was validated by
Samsamnun et al., Poly(9-vinylcarbazole) has a bandgap energy of about 3.4 eV and it has been used
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to investigated the nonlinear optical properties of Poly(9-vinylcarbazole) thin film fabricated by spin-
coating approach. The highest pulse obtained at 1562 nm band characterizes a pulse width of 395 us
at a repetition rate of 77.2 kHz.

Spider silk, with its exceptional all-encompassing characteristics, has become one of the most
sought-after natural biological materials among researchers. Natural spider silk is a type of protein-
based biological material produced naturally by the spider through the silk gland in its body [19,169].
Spider silk shows high transmittance and sparkles in the sunlight, prompting researchers to delve
deeper into its optical transmission potential. In 2013, Huby et al., proved that natural spider silk can
be utilized as a sustainable and efficient optical fiber, capable of propagating light. A straight spider
silk fiber was found to have an attenuation coefficient of 10.5 dB/cm in air. The propagation of light
was further confirmed through various arrangements, including spider silk arranged in a loop
configuration, silk submerged in a physiological liquid, and the integration of silk fiber into photonic
chips via a hybridization process involving synthetic polymers (photoresist) and natural silk fibers
[21].

In addition, Tow et al., implemented spider dragline silk as a means to use as a chemically active
optical fiber to measure ambient relative humidity levels. The proposed concept was validated by a
polarimetric setup consisting of a laser, polarization controller, single-mode fiber, gas chamber with
controlled temperature and humidity levels, dragline silk, and polarization analyzer. They applied a
polarization analyzer to measure the phase change of the transmitted light. They have demonstrated
that spider silk possesses the inherent ability to effectively direct light within a certain range of
wavelengths, spanning from the visible spectrum to around 1400 nm. This light-guiding capability is
accompanied by minimal signal attenuation, with propagation losses measuring below 1 dB/mm. The
aforementioned characteristics enable the employment of silk as a means of transmitting light,
serving as a chemically responsive protein thread that functions as a fiber-optic sensor for quantifying
the level of ambient relative humidity [170,171]. Those studies describe the uses of spider silk as an
efficient light guide, as biological media in an integrated photonic chip, and as an optical sensor.

5.1 The Specific Properties of Spider Silk That Make It Suitable for Use as A Saturable Absorber

Natural spider silk is featured by the composition of the protein that makes up the silk. The amino
acid composition, produced by the major ampullate glands of the spider and used as the primary
structural material of its web, consists predominantly of glycine (30%-40%) and alanine (20%-30 %).
The glutamine content exceeds 10 %, while the proline content is about 5 %, suggesting that the silk
possesses both hydrophobic and hydrophilic properties [172]. Silk protein sequences exhibit a
distinctive structural characteristic in which they are arranged into two types of domain sections. The
first type is a B-sheet block, consisting of small repetitive units that are typically hydrophobic and
form the crystalline portion of the silk. The second type is organized in a-helices, consisting of the
non-repetitive hydrophilic part of the core sequence, which constitutes the amorphous regions
[173,174]. The silk is a protein thread made up of repeated arrays of polypeptides that have both
separate and distinct crystalline and non-crystalline sections. These sections align along the axis of
the silk. The attachment between these two sections is maintained by reversible hydrogen bonds
(see Figure 7), which can be modified by various types of molecules. This property makes them well-
suited for detecting modifying agents including water molecules, acids, and bases. Molecules that
interact will either attach to the amino acids in the a-helical section, impacting the silk ability to
elongate, or attach to the amino acids in the B-sheet blocks, altering the silk crystallinity or the
orientation of the crystalline blocks. These unique conformational events result in changes in the
optical characteristics of the light passing through the silk [170].
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The optical abilities combined with unique biocompatibility, and tensile strength of spider silk
enable its manipulation for advanced optical investigations and pave the way for its incorporation as
a natural biological saturable absorber material to generate pulsed fiber laser [21,170,175-194].

Fa¥a¥a¥a¥aV,l
1INl H-bonds AnAAAA f-sheet N\ Amorphous region

Fig. 7. This diagram illustrates the structure of silk protein,
with the B-sheets (crystalline region) enclosed within the
amorphous region. The crystal orientation is maintained
along the silk axis by reversible hydrogen bonds (red lines)
[170]

5.2 Experimental Findings

According to Muhammad et al.,, 2024, they quantified the nonlinear absorption of spider silk
saturable absorber which is evident from the fitting curve given in Figure 8 that spider silk functioning
as a saturable absorber exhibits a modulation depth of 26 + 8 % and a saturation intensity of 0.02
0.01 WM/cm?. Additionally, in the design of the Q-switched erbium-doped fiber laser, Figure 9
demonstrated that the pulse width decreased as the pump power increased, while the repetition
rate concurrently increased. The maximum output power and pulse energy were 0.04 £ 0.01 mW and
1.4 + 0.3 nJ in Figure 10, respectively. The output spectrum wavelength of 1569 + 23 nm was
determined using an optical spectrum analyzer (Yokogawa, AQ6370D), with a 2 nm resolution having
a wavelength range of 600 - 1700 nm, as shown in Figure 11. The pulse characteristics were observed
utilizing a InGaAs biased detector (Thorlabs, DETO8CFC/ M) with a 5 GHz bandwidth connected to an
oscilloscope (Tektronix, MDO3104). These observations indicated that when the pump power was
set at 200 mW, the minimum pulse width recorded was 10 £ 5 us, which occurred simultaneously
with the maximum pulse repetition rate of 29 + 6 kHz. A stable pulse train was observed across
varying time scales, as illustrated in Figure 12, through the use of an oscilloscope. These experimental
results demonstrate the effectiveness of spider silk as a saturable absorber which provide practical
insights and validate the theoretical claims.
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Table 1 below shows the summarize of the results on the performance of Q-switched pulse fiber laser
exploiting different organic-based saturable absorbers.
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Table 1

Summarization results on the performance of Q-switched pulse fiber laser exploiting different organic-based saturable absorbers

SA category SA material MD  Saturation Lgpr  PPp Ac Max. RR  Min. PW SNR PE (nJ)  Ref.

(%) intensity (m) (mwW)  (nm) (kHz) (us) (dB)
(MW/cm2)

Organic material  Poly(3-hexylthiophene-2,5-diyl) 11 80.45 2.4 63 1562 78.63 3.79 49.72 15 [16]

(semiconductor)  regioregular

Organic material  8-Hydroxyquonolino cadmium 11 2 1 50 1530.49 136 2.076 81 172 [166]
chloride hydrate (50/50 OC)

Organic material  8-Hydroxyquonolino cadmium 11 2 1 101 1530.49 173 1.66 75 10 [166]
chloride hydrate (95/5 OC)

Organic material  8-Hydroxyquinolino cadmium 18 0.1 1 101 1530 150 726 ns 72 4.5 [196]
chloride hydrate

Organic material  Turmeric 23 0.16 2 119 1566.96 90.09 0.725 80 150.96 [167]

Organic material  Poly(3,4 ethylenedioxythiophene): 50 0.14 2 113 1568.03 108.69 9.2 79 192.11 [8]
poly (4-styrenesulfonate)

Organic material Lawsone (2-hydroxy-1,4- 12 3.5 2.4 26 1564 80 1.7 71 53.7 [168]

(natural dye) naphthoquinone)

Organic material  Poly(3,4- ethylenedioxythiophene): 22 0.21 2 87 1563.3 85.91 1.97 65 155.51 [197]
poly(styrenesulfonate)

Organic Copper phthalocyanines 8.8 7 2.4 66.3 1532.1 77.2 3.95 55.4 49.2 [15]

compound

Organic Iron phthalocyanines 9.5 0.01 1.8 35.2 1531.3 48.6 4.34 60.28 53.6 [198]

compound

Organic thin film  8-HQCACI,H,0 18 0.1 1 71 1531 143 1.85 82 167 [199]

Organic polymer  Polyacrylonitrile 11.4 20 0.7 113.3 1572 66.1 2.43 52.1 52 [200]

Organic Poly (9-vinylcarbazole) 4 202.07 2.4 63.4 1562 91.91 3.43 51.14 8.73 [201]

semiconductor

Organic (natural  Spider silk 26+ 0.02%0.01 3 301 1569+ 29+6 105 54 + 14+ [195]

biological) 8 23 14 0.3
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6. Q-Switched Pulse Fiber Laser Applications

Q-switched pulse fiber laser is versatile tools with a wide range of applications. It can be tuned to
different wavelengths, which is useful as tunable laser source. It also supports dual-wavelength
switching. In temperature sensing, Q-switched laser provide accurate measurements by detecting
subtle changes in temperature. Additionally, it is used to detect adulteration in pure kelulut honey,
offering a quick and non-invasive method to ensure its purity. These applications highlight the
adaptability and precision of Q-switched pulse fiber laser, making them a focus of ongoing research
and innovation.

6.1 Tunable and Switchable Dual-Wavelength
6.1.1 Wavelength tunable

Wavelength tunable refers to the ability of a laser to adjust its output to various specific
wavelengths within a certain range. This adjustment can be achieved using different tunable filters,
which are frequently used to tune the wavelength of the pulsed laser. Examples include curved
multimode fiber [202], fiber Bragg grating (FBG) [203], multimode interference filter [204], rotating
mirrors in combination with a diffraction grating [205,206], Sagnac interferometer [207,208], tilted
fiber Bragg grating [209], and tunable bandpass filter (TBF) [28,210-219]. A wavelength tunable laser
is imperative in applications where the precise matching of the laser wavelength to specific
absorption lines or material properties is necessary. Such lasers are extensively applied in the
treatment of pigmented lesions, teeth whitening procedures, and multiphoton microscopy
technology.

A wavelength-tunable device using TBF has been designed to possess an adjustable transmission
band, enabling it to selectively transmit light within a certain range of wavelengths. The operational
mechanism of the TBF has its foundation based on the Fabry-Perot interferometer, as described by
Frankel et al., [220]. To modify the incident angle of the beam, the wavelength must be identified
according to the expression given below [220]:

2= () (cos0) (5)

The variables in the Eq. (5) are defined as follows: A is the wavelength of interest, n represents the
refractive index of the etalon, L represents the thickness of the etalon filter, m is an integer, and 6
represents the angle between the incident beam and the normal axis. The model of the fiber-coupled
TBF is shown in Figure 13 (a), whereas Figure 13 (b) depicts the light propagation via the Fabry-Perot
etalon filter. The light beam emitted by the single-mode fiber is directed through a collimator. The
light subsequently passes through a region of free space, which serves as a filter when it encounters
a Fabry-Perot etalon. Before entering the second single-mode fiber, the propagating beam
recombines in the second collimator. By adjusting the Fabry-Perot etalon, it is possible to change the
angle at which the beam propagates, allowing for the selection of a specific wavelength. The
adjustability of the TBF allows for precise tuning to select any desired wavelength within its
operational range. This adjustment results in the rotation of the Fabry-Perot etalon, resulting in the
desired output.

In another view, the tuning of wavelength to various specific wavelengths within a certain range
is achieved with the support of a tunable bandpass filter. The operational mechanism of the tunable
bandpass filter is based on the Fabry-Perot etalon, an optical device, in the experimental setup. This
Fabry-Perot etalon is designed with two parallel mirrors that are partially reflective and separated by
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a spacer. When light enters the etalon, a portion of it is partially reflected while the rest is transmitted
at each mirror. Constructive interference occurs when the optical path difference (the distance
between two light paths) between the reflected beams multiple with an integer of the wavelength,
leading to reinforcement and the creation of a bright fringe. Destructive interference, on the other
hand, occurs when the optical path difference between the reflected beams is multiple with half of
the integer wavelength, causing the waves to cancel out and resulting in a dark fringe. Next, the
desired wavelength is selected by adjusting the spacer thickness (distance), which is designed to be
adjustable. Adjusting this spacer thickness changes the interference, thereby producing the desired
wavelength output. Overall, the measurement of the resulting tunable wavelength is caused by the
light transmitting through the etalon, which produces interference fringes. By analyzing these fringes,
the desired output of a wavelength-tunable Q-switched pulse erbium-doped fiber laser is achieved.

Fabry-Perot etalon

K (b) Fabry-Perot etalon

SMF A\ .

Incident ray

Collimated
beam lensed
comector

[ Collimated
! beam lensed
L comnector

Transmitted ray

Rotation tage

(a) (b)
Fig. 13. (a) The model of fiber-coupled tunable bandpass filter; (b) The propagation of light via the
Fabry-Perot etalon filter

6.1.2 Switchable dual-wavelength

Switchable dual-wavelength refers to the ability to rapidly and discretely adjust the laser emission
from one fixed wavelength to another dominant wavelength. This feature is beneficial in applications
where swift switching between different wavelengths is demanded, such as in modern
communication networks, including terahertz signals [221]. It facilitates the effective and adaptable
administration of optical signals, particularly in situations where multiple channels must be accessed
consecutively for data transmission or processing.

To obtain switchable dual-wavelength operation, the polarization controller is required to
manipulate the polarization state of light, impacting the Q-switched operation with two fiber Bragg
gratings [222]. This assists in generating dual-wavelength pulses by reflecting different wavelengths.
A fiber Bragg grating operates as a wavelength-selective mirror, carefully structured with distinct
grating periods that align with the targeted wavelengths at which they reflect light [223,224]. The
fiber Bragg grating's design parameters, such as the period and amplitude of the refractive index
variation, determine the specific wavelength that the grating reflects. When light travels through an
optical fiber, the fiber Bragg grating causes the reflection of the Bragg wavelength, leading to a
distinct reflection peak at that specific wavelength while transmitting all others.
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6.2 Sensor Applications

The pulse generated remains stable due to the gain and modulated loss of the saturable absorber.
At the same time, the pulse can detect external stimuli, such as changes in temperature or the
presence of adulterants in honey solutions, making it function as an optical sensor. This can be
achieved by integrating sensing elements like side-polished fiber or fiber Bragg grating within the
cavity.

6.2.1 Sensing element
6.2.1.1 Side-polished fiber

The investigation of side-polished fiber (SPF) has spanned four decades since its initial
development by Bergh et al., in 1980 [225]. Side-polished fiber provides a flexible and adaptable
framework for developing optical fiber devices and sensors. It exhibits dependable mechanical
features and effective immunity to electromagnetic interference, making it suitable for various
applications, including temperature sensing [226]. Figure 14 portrays the structure of side-polished
fiber, which comprises three distinct segments: the lead-in and lead-out optical fiber (the transitional
area), and the flat area. During the fabrication of side-polished fiber, it is necessary to remove a
portion of the cladding through polishing. The distance between the polished surface and the core is
typically on the order of a few microns, so the evanescent field of the light propagating through the
fiber will escape or leak from this polished region [227]. The flat area is in the middle of the polished
region, situated between the two transition regions. The residual thickness refers to the
measurement of the distance between the polished surface and the bottom surface of the fiber. This
parameter identifies the interaction strength between the transmitted light in the side-polished fiber
and the surrounding media [228].

Side-polished fiber is prevalently used as a sensing device to detect temperature variation. As
mentioned earlier, the surface of the side-polished fiber is partially polished in the centre area to
facilitate the propagation of light. The polished region acts as a sensing area, confining light within
the core due to the high refractive index of the core. However, when the side-polished fiber is
immersed in hot water, for example, a portion of light leaks from the core to the cladding or
surrounding medium. The outcome of this process leads to the formation of an evanescent wave
[229]. An evanescent wave is a near-field electromagnetic wave that exhibits an exponential decay
as it propagates into a medium [226]. It is a unique characteristic of wave propagation that occurs
when a wave, such as light, moves from a medium with a higher refractive index to one with a lower
refractive index. This occurs when the angle of incidence surpasses the critical angle [230]. When this
happens, instead of being transmitted over the interface, a fraction of the wave's energy is preserved
and propagates along the interface in the form of an evanescent wave. The evanescent wave
undergoes interaction with the external medium, and variations in the surrounding environment,
such as fluctuations in temperature due to immersion in hot water, can affect this interaction [231].
The changes in the properties of the evanescent wave due to temperature changes can be identified
and measured such as monitoring the wavelength or radio frequency change of the light that is
transmitted through the fiber.
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6.2.1.2 Fiber Bragg grating

A fiber Bragg grating is a type of fiber optic component that incorporates a distributed Bragg
reflector within a tiny section of the fiber core. This section is manufactured and incorporated within
the optical fiber using an ultraviolet lithography technique. It is designed to selectively reflect a
particular range of wavelengths associated with the guided modes while allowing the transmission
of all other wavelengths. Figure 15 portrays the basic structural arrangement of fiber Bragg grating,
which is manufactured with a periodically uniform grating structure. This grating constitutes the core
of the optical fiber, characterized by refractive index variation with constant segments from one
grating to another. These gratings are recognized as fundamental components in the manufacture of
most Bragg grating structures, which periodically modulate the phase or intensity of a light wave that
is reflected or transmitted by them [232—-235].

Fiber Bragg grating works based on constructive interference, meaning that as the incident light
travels along the fiber Bragg grating and matches with the Bragg condition (twice the grating spacing
multiplied by the effective refractive index of the core), a portion of the incident light will undergo
reflection. However, due to destructive interference (when the incident light travelling along the fiber
Bragg grating does not match the Bragg condition), the light continues to be transmitted along the
fiber. The incident wavelength that satisfies the Bragg condition, or the Bragg wavelength, is denoted
as Ag. The effective refractive index of the mode propagating in the fiber is denoted as n.¢¢, and the
grating period, A has an impact on the Bragg wavelength. The wavelength at which a significant
reflection will occur is determined by Eq. (6), [236]. The reflection of light can be attributed to
changes in refractive index, which can be comprehended through a physical perspective. If the
reflections from points that are spaced apart by a spatial period are in phase, then the cumulative
reflections combine coherently to produce a robust reflection. Eq. (6) indicates that any change in
the physical or mechanical properties of the grating region has an impact on the reflected
wavelength, Az. The Bragg wavelength experiences a shift due to perturbations of the external
medium that surrounds the fiber.

AB=2Aneff (6)
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6.2.2 Temperature Sensor

Temperature monitoring is prominent in several industries such as the aerospace domain,
metallurgical sector, medical profession, and nuclear energy generation [238,239]. The
implementation of temperature monitoring inside the turbines and combustion chambers of an
aircraft or aero-engine can contribute to the prolongation of its operational lifespan [240-242]. On
the contrary, monitoring the interior temperature of high-temperature boilers in the metallurgical
industry is critical for accurately assessing the combustion rate and ensuring safety measures are in
place [243,244]. In recent times, there has been a significant surge in attention given to temperature
monitoring instruments within the medical sector. This heightened interest is mostly attributed to
the emergence of COVID-19, which has necessitated the constant monitoring of individuals'
temperatures in public areas [245,246].

Fiber temperature sensors have the flexibility to endure challenging conditions of higher
temperatures and pressures, as well as the potential to perform distributed remote measurements
[247]. They are also beneficial in terms of compact size and immunity to electromagnetic interference
[248]. Temperature sensing often depends on either the wavelength shift or radio frequency shift of
the transmission spectrum or the fluctuation of transmitted power. To date, different techniques
have been employed for temperature sensing, encompassing standard fiber types such as single-
mode fiber and multi-mode fiber [249], photonic crystal fiber [250], fibers based on gratings structure
such as fiber Bragg grating [251], long-period grating, and tilted fiber Bragg grating [252], Fabry-Perot
interferometer fiber [253], as well as side-polished fiber [254]. In comparison to alternative fiber
optics for sensor measurement, grating-based and side-polished fiber as the sensing element exhibit
advantages such as excellent linearity and stable operation. Consequently, these sensors have found
extensive use in commercial applications. Muhammad et al., (2024) proposed and demonstrated
temperature sensing device incorporating side-polished fiber and fiber Bragg grating as the sensing
element within the passively Q-switched pulse fiber laser source [255]. The structure converts the
continuous wave generated by a self-constructed erbium-doped fiber ring cavity with a spider silk
saturable absorber into a pulsed laser of Q-switched. The Q-switched laser shows good
characteristics, including a high damage threshold and resistance to oxidization, deformation, or
environmental factors. The side-polished fiber and fiber Bragg grating temperature sensing area are
inserted into the ring cavity, whose characteristics are experimentally investigated by monitoring the
oscilloscope trace of the pulse train and radio frequency shifts, as well as assessing the stability,
sensitivity, and linearity of the device.

6.2.3 Detection of Adulteration in Pure Kelulut Honey
Pure kelulut honey is highly valued in Malaysia as a versatile health supplement. Numerous claims
are associated with it, including its potential as an antibacterial agent, antidiabetic compound, anti-

inflammatory substance, antioxidant, and antitumor agent. These observed effects are due to the
numerous bioactive constituents, which include acids, flavonoids, minerals, and phenolics [256—260].
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In addition, the presence of trehalulose has been discovered in kelulut honey, which is widely
distributed in kelulut bee farms in Malaysia. Trehalulose, an infrequent disaccharide, is an isomer of
sucrose that has a lower glycemic index [261]. These facts support the traditional claim that kelulut
honey is suitable for consumption by diabetics, as it has the potential to help lower blood glucose
levels [262].

The constituents of pure kelulut honey include minerals, proteins, natural sugars, and water [263]
However, in order to profit through unethical means, the purity of honey is compromised by adding
various cheaper ingredients such as beetroot sugar, cane sugar, or other sugar derivatives such as
high fructose corn syrup, high fructose inulin syrup, or invert sugar syrup [264-268]. These
compounds alter the biochemical properties and flavour of honey and have a negative impact on its
nutritional composition, which in turn affects human health negatively [269-271].

In response to the growing need for robust methods to detect adulteration in pure honey,
researchers have been working intensively on this aspect [272-274]. A variety of techniques have
been developed to detect adulteration in pure honey. These include Fourier transform infrared
spectroscopy [275], Fourier transforms Raman spectroscopy [276], gas chromatography [277], liquid
chromatography [278,279], liquid chromatography coupled with isotope ratio mass spectrometry
[280], near-infrared spectroscopy [281-283], nuclear magnetic resonance spectroscopy [284], stable
carbon isotope ratio mass spectrometry [285,286], and thermal analysis [287]. Despite their
effectiveness, these methods require specialized laboratory equipment and labour-intensive sample
preparation, time-consuming procedures, and incur significant costs [288]. Therefore, it is imperative
to develop and implement a robust method for the detection of adulteration in pure honey that not
only ensures the quality, safety, and reliability of pure honey but is also stable and easy to use.

The application of fiber optic structures has been extensively researched for detecting various
adulterants and contaminants in food. They represent a compelling alternative to other methods that
address the challenges [289-291]. Techniques such as fiber Bragg grating [292], lossy resonance
[293,294], and surface plasmon resonance have been investigated [295].

In 2024, Muhammad et al. presents the development of pulse fiber laser sensor structure for the
detection of adulteration in pure kelulut honey using fiber Bragg grating technology as the sensing
element [237]. The sensor is based on a Q-switched pulse erbium-doped fiber laser and uses spider
silk as the base material. The functionality of the proposed sensor is based on the principles of Bragg
grating fiber, wherein the Bragg wavelength is determined by the grating period and the effective
refractive index of the fiber. Changes in the concentration of the adulterated analyte result in changes
in the composition of the solution, leading to a shift in the refractive index of the adulteration solution
[296,297]. Variations in the refractive index of the adulteration solution affect the overall effective
refractive index, producing a response in the form of a resonance shift in the fiber Bragg grating
curve. The resonance shift is influenced by different frequencies associated with the different optical
wavelengths, altering the resonance angle and half-width of the fiber Bragg grating. This intricate
interplay between the optical parameters enables a detailed understanding of the sensor’s response
to changes in adulterant concentrations in kelulut honey solutions, ranging from 0 % to 50 %. This
dual mathematical and optical analysis greatly improves the precision and sensitivity of the proposed
pulse fiber sensor, making it a valuable tool for detecting subtle changes in complex solutions.

7. Limitations
The use of spider silk as a saturable absorber brings intriguing possibilities, but it is not without

limitations. One significant issue is related to material sourcing. Natural spider silk is difficult to obtain
in large quantities due to spiders' territorial and cannibalistic nature, making large-scale production
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impractical. Although synthetic production methods, such as genetic engineering in bacteria or
plants, offer promise, ensuring scalability and uniformity remains a challenge. Additionally,
integration challenges further complicate the use of spider silk as a saturable absorber. Its delicate
and fibrous nature makes handling and incorporation into optical systems more complex, often
requiring additional treatments to ensure compatibility and durability. These extra steps can increase
production costs and complicate the manufacturing process. These challenges highlight the need for
further research and development to address the limitations of spider silk and enhance its potential
as a viable saturable absorber.

8. Conclusions

In conclusion, we were driven by the need for novel solutions in the realm of Q-switched pulse
fiber laser applications. Traditional approaches often rely on saturable absorbers of synthetic origin
or inorganic material, presenting limitation in terms of environmental impact. The exploration of
organic-based saturable absorber such as spider silk stemmed from its unique properties, including
its biocompatibility, potential for cost-effective material without compromising the pulse fiber laser
generation, and interestingly, it has been proved that this spider silk served as photon carriers and
light guiding with transmission losses of a few dB/cm. Recognizing these attributes, researcher were
inspired to investigate its viability within the context of Q-switched pulse fiber lasers, aiming to not
only advance the field of photonics but also contribute to environmentally friendly and sustainable
technologies. This motivation guided our research endeavours, propelling us to explore innovative
avenues in the use of saturable absorber material for Q-switched pulse fiber laser development.
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