

Semarak International Journal of Entrepreneurship, Economics and Business Development

Journal homepage: https://semarakilmu.online/index.php/sijeebd/index ISSN: 3083-8053

Social Media Usage and International Performance: The Mediating Role of Open Innovation in Chinese Cross-Border E-Commerce SMEs

Chen Xue^{1,*}, Mohd Najib Mansor¹

¹ School of International Studies, Universiti Utara Malaysia, Kedah, Malaysia, 06010 Sintok, Kedah, Malaysia

ARTICLE INFO

ABSTRACT

Article history:

Received 14 September 2025 Received in revised form 25 September 2025 Accepted 30 September 2025 Available online 20 October 2025

Cross-border e-commerce (CBEC) has emerged as a major pathway for the internationalization of Chinese small and medium-sized enterprises (SMEs), and firms increasingly use social media to reach foreign customers, sense demand, and provide service. However, the pathway by which social media usage translates into superior performance in foreign markets remains unclear. This study tests whether open innovation mediates the relationship between social media usage and international performance among export-oriented SMEs in Yiwu, Zhejiang. A multi-wave field survey produced 289 valid firm-level responses. Established multi-item Likert scales measured social media usage across marketing, customer relations and service, and information accessibility; open innovation as inbound and outbound open innovation; and international performance with a multi-indicator scale. Measurement quality was verified through internal consistency checks and standard validity diagnostics. The analysis combined multiple regression with a bootstrapped mediation model based on 5,000 resamples. Results show that social media usage is positively related to international performance and that open innovation partially mediates this relationship. At the subdimension level, customer relations and service and information accessibility exhibit significant indirect effects through both inbound and outbound open innovation routines, whereas marketing does not display a nonsignificant mediated effect. Managers should channel social media activity into inbound knowledge sourcing and outbound commercialization routines, prioritizing customer service and information accessibility rather than marketing communication alone. Policymakers can support these routines by expanding knowledge-exchange platforms, providing intellectual property and compliance services, partner matchmaking, and training in data tools, thereby helping SMEs convert open innovation into measurable gains in international performance.

Keywords:

Social media usage; open innovation; international performance; cross-border e-commerce; small and medium-sized enterprises

1. Introduction

E-mail address: chen xue@gsgsg.uum.edu.my

https://doi.org/10.37934/sijeebd.6.1.118

1

^{*} Corresponding author.

1.1 Background Problem

Global diffusion of social platforms is reshaping how SMEs internationalize by lowering search and transaction costs, accelerating market learning, and enabling continuous relationship-building with overseas customers [1,2]. In this setting, social media usage (SMU) is conceptualized not merely as a communication tool but as a knowledge interface that connects firms with customers, communities, and partners across borders, turning dispersed interactions into inputs for product and service improvement [3]. Open innovation (OI) refers to purposive knowledge inflows and outflows that accelerate internal innovation and expand external markets, with recent work elaborating OI maturity in the digital age [4,5]. Building on this perspective, SMU is expected to improve international performance (IP) through firm-level OI routines that source and diffuse external knowledge.

In China, CBEC has expanded rapidly, driven by the rollout of comprehensive pilot zones and the buildout of overseas warehouses, which reinforce platform-enabled internationalization and signal ongoing institutional support [6,7]. Within this competitive, data-intensive ecosystem, the quality of firms' social media usage (SMU) in content, interaction, and analytics, together with conversion capability, is decisive for export outcomes [2].

Despite growing evidence that exporters' social media use enhances relationship quality and cross-cultural communication with foreign buyers, mechanism-focused explanations in CBEC remain scarce [8]. This study advances a single-antecedent mediation framework in which SMU influences IP through OI routines that transform online interactions into innovation outputs and, ultimately, performance. Inbound OI denotes acquiring external knowledge and outbound OI denotes purposefully diffusing internal knowledge to external actors [9,10]. Recent SME evidence further links social-media-enabled knowledge acquisition to innovation and then to performance, supporting the proposed pathway in digitally intensive export settings [11,12].

A clear gap remains in explaining how SMU translates into IP in Chinese CBEC SMEs: recent studies emphasize associations while underspecifying firm-level mechanisms and the distinct roles of inbound versus outbound OI. Addressing this gap is practically significant for capability building in resource-constrained SMEs operating on platform ecosystems with intense competition and compliance demands. Accordingly, the study sets three objectives: (1) to develop and test a mediation model in which OI routines transmit the effects of SMU to IP; (2) to differentiate marketing, customer relations, and information accessibility paths; and (3) to derive actionable OI routines for CBEC SMEs.

1.2 Theoretical Framework

1.2.1 Diffusion of innovations theory

Diffusion of Innovations (DOI) explains how new ideas spread through a social system over time via specific channels, and it is shaped by four elements (innovation, communication channels, time, and the social system) and by five perceived attributes that influence adoption: relative advantage, compatibility, complexity, trialability, and observability [13]. Applied to CBEC, DOI provides a lens for understanding how Chinese SMEs utilize social media to create awareness and, critically, to enable low-cost market sensing, sustained interaction with global customers, and rapid experimentation with offerings (e.g., [14,15]). In this study, SMU is modeled as a diffusion channel that supplies actionable external knowledge and collaboration opportunities, which in turn feed inbound open innovation (acquiring and integrating external ideas and customer insights) and facilitate outbound OI (codifying and sharing firm knowledge for diffusion and commercialization). Through these

mechanisms, digital engagement is expected to translate into improved IP. In export selling contexts, social-media-enabled communication effectiveness translates into sales outcomes, reinforcing the diffusion lens for CBEC SMEs [16].

1.3 Hypotheses Development

1.3.1 The relationship between social media usage and the international performance of Chinese SMEs in CBEC

Social media offers Chinese SMEs in CBEC low-cost, real-time channels to reach foreign customers, manage relationships, and sense markets. Prior work shows that social media enables two-way communication, strengthens customer relationship management, and is associated with improved firm outcomes [17], including internationalization-related performance gains [18]. In CBEC settings, firms combine content, service interactions, and market scanning to enhance brand visibility, accelerate information flows, and support faster, better-informed decisions [19]. Such digital engagement has been linked to gains in brand equity, loyalty, and innovation through collaboration with external stakeholders [20], which together imply a positive association with IP.

Building on this literature, the study operationalizes SMU along three dimensions. Marketing activities should enhance brand assets and cross-border reach; customer relations and service should raise satisfaction, loyalty, and retention; and information accessibility should strengthen market intelligence and responsiveness. Accordingly, SMU is expected to relate positively to international performance among Chinese CBEC SMEs. In light of these observations, the following hypotheses are postulated:

H1: SMU is positively related to IP

H1a: Social media for marketing is positively related to IP

H1b: Social media for customer relations and service is positively related to IP

H1c: Social media for information accessibility is positively related to IP

1.3.2 The relationship between social media usage and open innovation

SMU creates continuous, interactive touchpoints with customers, communities, and partners, lowering the costs of external search, co-creation, and coordination that underpin OI. Prior research shows that social technologies support inbound OI by sourcing and integrating external ideas and user insights, and enable outbound open innovation by codifying, sharing, and commercializing knowledge with external actors (e.g., [21,22]). In CBEC, these effects are amplified: marketing activities build visibility and partner touchpoints; customer relations and service generate problem-specific feedback and co-solutioning that feed inbound routines; and information accessibility enhances market sensing and competitive/consumer intelligence, informing both inbound selection and outbound partnering. Accordingly, SMU should be positively associated with both inbound and outbound OI routines among Chinese CBEC SMEs.

H2: SMU is positively related to OI among Chinese SMEs engaged in CBEC

H2a: Social media for marketing is positively related to inbound OI

H2b: Social media for customer relations and service is positively related to inbound OI

H2c: Social media for information accessibility is positively related to inbound OI

H2d: Social media for marketing is positively related to outbound OI

H2e: Social media for customer relations and service is positively related to outbound OI

H2f: Social media for information accessibility is positively related to outbound OI

1.3.3 The relationship between open innovation and international performance of Chinese SMEs in CBEC

OI is conceptualized as inbound OI (acquiring and integrating external ideas, knowledge, and technologies) and outbound OI (codifying, sharing, and commercializing a firm's knowledge with external partners) [21]. Inbound OI improves product—market fit and responsiveness by embedding user and partner insights into offerings, while outbound OI expands reach and shortens time to market through partner-enabled diffusion and co-commercialization [22]. Recent syntheses report positive performance links for both directions of OI and highlight their complementarity when implemented together, implying additive gains for firms that combine inbound and outbound practices [23]. In the CBEC setting, digital platforms reduce search and coordination costs, making these routines especially effective for Chinese SMEs seeking to adapt offerings and scale commercialization across borders. Accordingly, both inbound and outbound OI routines are expected to relate positively to international performance.

H3: OI is positively related to IP

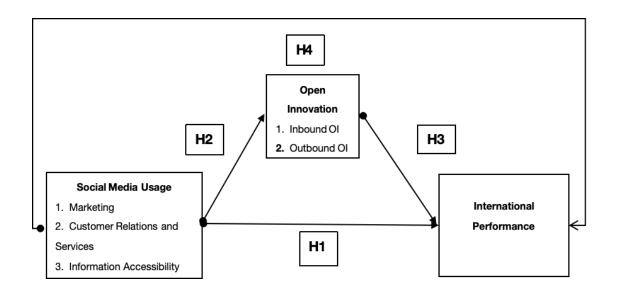
H3a: Inbound OI is positively related to IP H3b: Outbound OI is positively related to IP

1.3.4 The mediating role of open innovation between social media usage and international performance

SMU provides SMEs with low-cost, real-time access to external knowledge and partners, and its contribution to IP depends on whether firms convert these digital inputs into implementable innovations through OI. OI supplies this conversion mechanism through inbound routines that integrate user and partner insights and outbound routines that codify, share, and commercialize knowledge with external actors [21,22]. In the CBEC context, platformization lowers search and coordination costs, so SMU more readily activates inbound sensing and feedback acquisition as well as outbound partnering and co-creation, and the joint use of these practices is associated with superior performance [24,25]. Accordingly, OI is expected to mediate the SMU–IP relationship at both the construct level and across SMU's marketing, customer relations and service, and information accessibility dimensions, while effectiveness ultimately depends on firms' capabilities to manage digital interactions to avoid information overload and diluted innovation focus [26]. As shown in Figure 1, social media usage (SMU) influences international performance (IP) directly (H1) and indirectly via open innovation (OI) through inbound and outbound routines (H2–H4).

H4: OI mediates the relationship between SMU and IP

H4a: Inbound OI mediates the relationship between social media for marketing and IP


H4b: Inbound OI mediates the relationship between social media for customer relations and services and IP

H4c: Inbound OI mediates the relationship between social media for information accessibility and IP

H4d: Outbound OI mediates the relationship between social media for marketing and IP

H4e: Outbound OI mediates the relationship between social media for customer relations and services and IP

H4f: Outbound OI mediates the relationship between social media for information accessibility and IP

Fig. 1. Conceptual model and hypotheses (SMU \rightarrow OI \rightarrow IP)

2. Methodology

2.1 Research Design

A quantitative cross-sectional survey design is used to test a mediation model in which SMU influences IP through firm-level OI routines. The model specifies SMU as the antecedent, inbound and outbound OI as mediators, and IP as the outcome. Mediation effects are evaluated with nonparametric bootstrapping, consistent with contemporary conditional process analysis, using percentile-bootstrap confidence intervals with 5,000 resamples [27].

2.2 Sampling Frame and Data Collection

The target population comprised Chinese SMEs engaged in CBEC exporting in Yiwu, with emphasis on apparel, accessories, and beauty. The sampling frame was compiled using Yiwu E-commerce Industry Association listings, government business registries, and firm directories on major CBEC platforms, and then verified in Tianyancha against preset inclusion criteria: registered in Yiwu, primary activity in wholesale or retail trade, holding valid import—export credit certification, core business in apparel, accessories, or beauty, and meeting the MIIT definition of an SME. Given the nonprobability design, purposive recruitment with category quotas was used to ensure coverage of the three focal categories. Invitations were sent to information-rich firms identified in the frame; where registry coverage was incomplete, limited supplementation outside the frame was permitted under the same eligibility checks. One response per firm was enforced, and participation was voluntary with informed consent.

Data were collected via a structured online questionnaire administered over a two-month window to managers responsible for social media operations, international sales, or innovation. Procedural remedies to mitigate common method bias included construct separation, anonymity

assurances, and minimum completion-time rules [28]. The achieved sample size meets conventional guidance for multiple regression and bootstrapped mediation [27]. In total, 350 invitations were issued, 311 responses were received (response rate = 88.9%), and 289 complete, eligible questionnaires were retained after screening for completeness and internal consistency.

2.3 Measures of Variables

All latent constructs were measured with validated multi-item Likert scales in a unified five-point agreement format (1 = strongly disagree, 5 = strongly agree). To ensure semantic equivalence and contextual fit, a translation—back-translation procedure was implemented, followed by researcher review to harmonize item wording. Scale items were adapted from prior validated instruments and contextualized to the CBEC setting. A pilot survey was conducted prior to the main study to assess item clarity, response variance, and preliminary reliability, and minor wording adjustments were made accordingly.

2.3.1 Social media usage

Social media usage (SMU) is the extent and manner in which a firm uses social media platforms in the CBEC context to support marketing communication, customer relations and services, and access to market information [29,30]. SMU is operationalized as a three-facet construct—marketing, customer relations/service, and information access—assessed with 14 Likert items (5, 5, 4) adapted from prior scales [30-32] and contextually refined for Chinese CBEC SMEs.

2.3.2 Open innovation

Open innovation (OI) is the purposeful management of knowledge inflows and outflows with external partners to accelerate value creation and capture in products, processes, and markets [4,33]. Consistent with prior research, OI is operationalized with two facets: inbound (acquiring, integrating, and using external knowledge from customers, communities, platforms, partners, and research institutions) and outbound (sharing, licensing, and commercializing internal knowledge with external parties via collaboration and market mechanisms) [9,34]. The scale comprises 14 items (7 inbound; 7 outbound) adapted from validated measures and contextually refined for CBEC SMEs (e.g., [35,36]).

2.3.3 International performance of firms

International performance (IP) refers to the outcomes a firm achieves in foreign markets, including market share, sales growth, profitability, and progress toward international strategic objectives in the CBEC context [37,38]. IP is assessed with a five-item, multidimensional Likert-type scale adapted from validated instruments [39-42] and contextualized for Chinese CBEC SMEs. The five items capture foreign sales growth, foreign market share, profitability from international operations, attainment of international strategic objectives, and customer satisfaction/retention in foreign markets. The recall window is the past three years. A manager-reported, perceptual approach is appropriate for SMEs because comparable international accounting benchmarks are often unavailable, and managers' assessments provide a reliable summary of broader outcomes in CBEC settings [43].

2.4 Reliability and Validity

The abbreviations used in this section are: SMU (social media usage); SMM (social media marketing); SMC (customer relations and services); SMI (information accessibility); OI (open innovation); OII (inbound open innovation); OIO (outbound open innovation); and IP (international performance).

2.4.1 Reliability assessment

Internal consistency was evaluated using Cronbach's alpha, adopting $\alpha \ge 0.70$ as the conventional threshold for acceptable reliability [44]. Construct-level coefficients indicated good to excellent reliability: SMU ($\alpha = 0.837$; 14 items), OI ($\alpha = 0.908$; 14 items), and IP ($\alpha = 0.875$; 5 items). Subdimension alphas were likewise satisfactory: SMM ($\alpha = 0.800$), SMC ($\alpha = 0.857$), SMI ($\alpha = 0.823$), OII ($\alpha = 0.914$), and OIO ($\alpha = 0.899$). These results indicate adequate to strong internal consistency for all focal constructs and subdimensions (Table 1).

Table 1Cronbach's alpha: Reliability analysis

	Reliability Analysis						
Dimension	Cronbach's Alpha	N of Items					
SMU	0.837	14					
SMM	0.8	5					
SMC	0.857	5					
SMI	0.823	4					
OI	0.908	14					
OII	0.914	7					
OIO	0.899	7					
IP	0.875	5					

Note: $\alpha \ge 0.80 = \text{Good}$; $0.60 \le \alpha < 0.80 = \text{Acceptable}$; $\alpha < 0.60 = \text{Poor}$ (Sekaran & Bougie, 2019).

2.4.2 Validity assessment

An exploratory principal component analysis (PCA) with orthogonal Varimax rotation without Kaiser normalization was used to assess dimensionality and provide preliminary construct-related evidence for SMU (SMM, SMC, SMI), OI (OII, OIO), and IP. KMO values of 0.837 for SMU, 0.931 for OI, and 0.875 for IP, together with significant Bartlett's tests for each construct (p < 0.001), indicated sufficient intercorrelations for component extraction. Using the Kaiser criterion (eigenvalues greater than one), six components were retained and accounted for 64.255 percent of the total variance (Table 4); the rotation converged in six iterations (Table 3). Salience was defined as an absolute loading of 0.50 or higher, with coefficients below 0.50 suppressed for presentation. Items loaded cleanly on their intended components with no salient cross-loadings at or above 0.50. Rotated loading ranges by construct were IP 0.756–0.832; SMM 0.678–0.783; SMC 0.733–0.800; SMI 0.699–0.805; OII 0.750–0.816; OIO 0.737–0.788 (Table 3). These patterns provide preliminary evidence of convergent validity (substantial within-construct loadings) and discriminant validity (absence of salient cross-loadings), in line with established reporting standards [44] and the original Varimax rotation framework [45].

KMO and Bartlett's Test

Construct	p (items)	KMO	Bartlett's χ ²	df	Sig. (p)
All items (SMU+OI+IP)	33	0.889	4856.616	528	< 0.001
SMU	14	0.837	1550.642	91	< 0.001
OI	14	0.931	2278.968	91	< 0.001
IP	5	0.875	669.007	10	< 0.001

 $KMO \ge 0.80$ indicates good sampling adequacy (Kaiser, 1974); Bartlett's test p < 0.001 indicates the correlation matrix is suitable for factor analysis

Table 3Rotated Component Matrixa

	пропент іма		ted Componen			
_			Com	ponent		
	1	2	3	4	5	6
IP1			.756			
IP2			.750			
IP3			.832			
IP4			.773			
IP5			.764			
SMM1					.678	
SMM2					.747	
SMM3					.783	
SMM4					.725	
SMM5					.688	
SMC1				.735		
SMC2				.778		
SMC3				.800		
SMC4				.798		
SMC5				.733		
SMI1						.699
SMI2						.805
SMI3						.764
SMI4						.805
OII1	.775					
OII2	.790					
OII3	.816					
OII4	.750					
OII5	.795					
OII6	.760					
OII7	.768					
0101		.737				
0102		.759				
0103		.788				
0104		.753				
0105		.764				
0106		.738				
0107		.782				

Extraction Method: Principal Component Analysis.

 $\label{thm:continuous} \textbf{Rotation Method: Varimax without Kaiser Normalization.}$

a. Rotation converged in 6 iterations.

Table 4Total Variance Explained

		Total Variance Explained	
		Extraction Sums of Squar	ed Loadings
Component	Total	% of Variance	Cumulative %
1	8.427	25.536	25.536
2	3.896	11.806	37.342
3	2.725	8.259	45.600
4	2.275	6.893	52.493
5	2.181	6.609	59.102
6	1.700	5.152	64.255

Extraction Method: Principal Component Analysis.

Common method bias

Given that SMU, OI, and IP were obtained from a single cross-sectional self-report survey, potential common method bias (CMB) was mitigated through procedural and statistical remedies. Procedurally, respondent anonymity was ensured and ambiguous or leading items were avoided to reduce social-desirability bias and improve clarity [46]. Statistically, an unrotated exploratory factor analysis (Harman's single-factor test) on all 33 items (SMU, OI, IP) yielded multiple components with eigenvalues greater than one; the first unrotated factor accounted for 25.536 percent of the variance—well below the commonly cited 40 percent heuristic—suggesting no dominant general factor. Consistent with recent guidance, this test is interpreted as a preliminary diagnostic; taken together, these procedures and diagnostics indicate that CMB is unlikely to materially bias the relationships among SMU, OI, and IP [46].

3. Result

3.1 Descriptive Statistics and Correlations

Descriptive statistics for the focal constructs (N = 289; five-point Likert) indicated that means were 3.755 for IP, 3.809 for SMU, and 3.873 for OI, with standard deviations of 0.856, 0.566, and 0.691, respectively; subdimensions averaged 3.898 (SMM), 3.833 (SMC), 3.696 (SMI), 3.909 (OII), and 3.837 (OIO). Skewness values (-0.546 to -0.909) and kurtosis values (-0.637 to 0.822) fell within conventional guidelines, supporting the use of parametric analyses (Table 3.1). Pearson correlations were positive and statistically significant (two-tailed): SMU–IP r = 0.394, OI–IP r = 0.404, and SMU–OI r = 0.275 (all p < .01; Table 6); no correlation exceeded 0.80, suggesting limited bivariate redundancy. Collinearity diagnostics for the outcome equation (IP regressed on SMU and OI) indicated no multicollinearity concerns, with VIFs of 1.21 for SMU and 1.22 for OI (Table 7). Collectively, these patterns provide initial support for the proposed relationships and motivate the subsequent regression and bootstrapped mediation analyses.

Table 5Descriptive statistics

	Descriptive Statistics								
					Std.				
	N	Minimum	Maximum	Mean	Deviation	Skew	ness	Kur	tosis
							Std.		
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Error	Statistic	Std. Error
IP	289	1.4	5	3.755	0.856	-0.546	0.143	-0.637	0.286
SMM	289	1.6	5	3.898	0.695	-0.507	0.143	-0.273	0.286
SMC	289	1.4	5	3.833	0.807	-0.629	0.143	-0.451	0.286
SMI	289	1.25	5	3.696	0.84	-0.635	0.143	-0.08	0.286
SMU	289	1.55	5	3.809	0.566	-0.654	0.143	0.439	0.286
OII	289	1.429	5	3.909	0.838	-0.869	0.143	0.023	0.286
OIO	289	1.429	5	3.837	0.801	-0.682	0.143	-0.286	0.286
OI	289	1.429	5	3.873	0.691	-0.909	0.143	0.822	0.286
Valid N	289	•				•	•	•	•
(listwise)									

Table 6Pearson correlations among SMU, OI, and IP

	IP	SMU	OI
IP	1	0.394**	0.404**
SMU	0.394**	1	0.275**
OI	0.404**	0.275**	1

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Table 7Collinearity Statistics

Commedity Statistics		
	Collinearity Statis	tics
	Tolerance	VIF
SMU	0.829	1.21
OI	0.821	1.22

3.2 Regression Results (Direct Effects)

Ordinary least squares (OLS) regressions show that SMU is positively associated with IP after controls (β = 0.394, t = 7.257, p < .001; N = 289), supporting H1. When the three SMU subdimensions are entered simultaneously—marketing (SMM), customer relations and service (SMC), and information accessibility (SMI)—SMM is not significant (β = 0.005, t = 0.082, p = .935), whereas SMC (β = 0.240, t = 4.226, p < 0.001) and SMI (β = 0.287, t = 4.931, p < 0.001) are positive and significant, providing partial support at the subdimension level (H1b and H1c supported; H1a not supported). The construct-level model explains 15.5% of the variance in IP (α = 0.155; F(1, 287) = 52.667; p < 0.001), and the subdimension model explains 18.0% (α = 0.180; F(3, 285) = 20.827; p < 0.001). Standardized coefficients (α) and two-tailed tests are summarized in Table 8.

Table 8Direct relationship between SMU and IP

Hypotheses	Relationships	β (Standardized)	t-value	p-value	Decision
H1	SMU → IP	0.394	7.257	<0.001	Supported***
H1a	SM for Marketing	0.005	0.082	0.935	Not Supported
	$(SMM) \rightarrow IP$				
H1b	SM for Customer	0.240	4.226	< 0.001	Supported***
	Relations and				
	Service (SMC) \rightarrow IP				
H1c	SM for Information	0.287	4.931	< 0.001	Supported***
	Accessibility (SMI) →				
	IP				

Model Summary:

Construct-level (IP \sim SMU): R² = 0.155, F = 52.667, p < 0.001

Dimension-level (IP \sim SMM + SMC + SMI): R² = 0.180, F = 20.827, p < 0.001.

Remarks: Two-tailed tests. Standardized coefficients (β) are reported. Listwise N = 289. Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05

Consistent with H2, a construct-level simple regression shows a positive association between SMU and OI (β = 0.275, t = 4.846, p < 0.001; R² = 0.076; F(1, 287) = 23.486; N = 289; two-tailed tests). At the subdimension level (SMM, SMC, SMI entered simultaneously), SMC and SMI predict inbound OI (β = 0.254, t = 4.267, p < 0.001; β = 0.148, t = 2.431, p = 0.016), whereas SMM is not significant (β = -0.044, p = 0.468); model R² = 0.099, F(3, 285) = 10.482, p < 0.001. A similar pattern holds for outbound OI—SMC and SMI remain significant (β = 0.124, t = 2.044, p = 0.042; β = 0.200, t = 3.204, p = 0.002), whereas SMM is not (β = -0.061, p = 0.321); model R² = 0.061, F(3, 285) = 6.160, p < 0.001. Overall, social-media—enabled customer relations and service, as well as information accessibility, rather than marketing alone, drive both inbound and outbound OI routines (Table 9).

Table 9Direct relationship between SMU and OI

Hypotheses	Relationships	β (Standardized)	t-value	p-value	Decision
H2	SMU → OI	0.275	4.846	< 0.001	Supported***
H2a	SM for Marketing				
	$(SMM) \rightarrow inbound$				
	OI	-0.044	-0.727	0.468	Not Supported
H2b	SM for Customer				
	Relations and				
	Service (SMC) \rightarrow				
	inbound OI	0.254	4.267	< 0.001	Supported***
H2c	SM for Information				
	Accessibility (SMI) →				
	inbound OI	0.148	2.431	0.016	Supported*
H2d	SM for Marketing				
	$(SMM) \rightarrow outbound$				
	OI	-0.061	-0.995	0.321	Not Supported
H2e	SM for Customer				
	Relations and				
	Service (SMC) \rightarrow				
	outbound OI	0.124	2.044	0.042	Supported*
H2f	SM for Information				
	Accessibility (SMI) →				
	outbound OI	0.2	3.204	0.002	Supported**

Model Summary:

Construct-level (OI \sim SMU): R² = 0.076, F = 23.486, p < 0.001

Dimension-level:

Inbound model (OII \sim SMM + SMC + SMI): $R^2 = 0.099$, F = 10.482, p < 0.001.

Outbound model (OIO \sim SMM + SMC + SMI): $R^2 = 0.061$, F = 6.160, p < 0.001

Remarks: Two-tailed tests. Standardized coefficients (β) are reported. Listwise N = 289. Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05

Consistent with H3, a construct-level simple regression shows that OI positively predicts IP (β = 0.404, t = 7.481, p < 0.001; R² = 0.163; F(1, 287) = 55.969; N = 289). When inbound OI (OII) and outbound OI (OIO) are entered simultaneously, both are positive and significant predictors of IP, with a comparatively larger effect for OII (β = 0.290, t = 4.870, p < 0.001) and a smaller yet significant effect for OIO (β = 0.187, t = 3.144, p = 0.002; two-predictor model R² = 0.166; F(2, 286) = 28.386; p < 0.001). These results indicate that both inbound and outbound OI routines are associated with higher IP, with inbound activities exhibiting the stronger standardized effect in this specification (Table 10).

Table 10Direct relationship between OI and IP

Hypotheses	Relationships	β (Standardized)	t-value	p-value	Decision
H3	$OI \rightarrow IP$	0.404	7.481	< 0.001	Supported***
НЗа	Inbound OI (OII) $ ightarrow$ IP	0.290	4.870	< 0.001	Supported***
H3b	Outbound OI (OIO) → IP	0.187	3.144	0.002	Supported**

Model Summary:

Construct-level (IP \sim OI): R² = 0.163, F = 55.969, p < 0.001

Two-direction (IP \sim OII + OIO): R² = 0.166, F = 28.386, p < 0.001

Remarks: Two-tailed tests. Standardized coefficients (β) are reported. Listwise N = 289. Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05.

3.3 Mediation Results Via Open Innovation

Mediation was tested with PROCESS Model 4 using 5,000 bootstrap resamples and 95% percentile bootstrap confidence intervals; indirect effects were deemed significant when the CI excluded zero. At the construct level, SMU exhibited a significant positive indirect effect on IP via OI (ab = 0.133, BootSE = 0.036, 95% CI [0.070, 0.208]), supporting H4 and indicating partial mediation (the direct effect of SMU on IP remained significant). At the dimension level, inbound OI yielded significant indirect effects for customer relations and service (H4b: 0.0914, BootSE = 0.0263, 95% CI [0.0440, 0.1456]) and for information accessibility (H4c: 0.0646, BootSE = 0.0227, 95% CI [0.0240, 0.1124]), whereas marketing was not significant (H4a: 0.0305, BootSE = 0.0222, 95% CI [-0.0082, 0.0793]). For outbound OI, customer relations and service (H4e: 0.0462, BootSE = 0.0200, 95% CI [0.0120, 0.0906]) and information accessibility (H4f: 0.0536, BootSE = 0.0200, 95% CI [0.0198, 0.0976]) were significant, while marketing was not (H4d: 0.0135, BootSE = 0.0206, 95% CI [-0.0244, 0.0575]). Taken together, these results indicate that SMU contributes to IP primarily by activating inbound and outbound OI routines centered on customer relations and service and on information accessibility, rather than on marketing alone (Table 11).

Table 11Bootstrapped indirect effects via inbound OI and outbound OI

Hypothesis	path	Indirect effect (a × b)	BootSE	BootLLCI	BootULCI	Decision
Н4	$SMU \rightarrow OI \rightarrow IP$	0.133	0.036	0.070	0.208	Supported (partial mediation)
Н4а	SM for Marketing → Inbound OI → IP SM for Customer	0.0305	0.0222	-0.0082	0.0793	Not Supported
H4b	Relations and Service → Inbound OI → IP SM for Information	0.0914	0.0263	0.0440	0.1456	Supported
H4c	Accessibility \rightarrow Inbound OI \rightarrow IP	0.0646	0.0227	0.0240	0.1124	Supported
H4d	SM for Marketing → Outbound OI → IP SM for Customer	0.0135	0.0206	-0.0244	0.0575	Not Supported
H4e	Relations and Service → Outbound OI→ IP	0.0462	0.0200	0.0120	0.0906	Supported
H4f	SM for Information Accessibility → Outbound OI→ IP	0.0536	0.0200	0.0198	0.0976	Supported

4. Conclusion

4.1 Interpretation of Findings

4.1.1 Social media usage and international performance (H1)

The evidence indicates that H1 is supported: SMU is positively related to IP. At the facet level, H1b and H1c are supported, meaning effects arise primarily through customer relations and service and through information accessibility, while H1a (marketing) is not supported. Substantively, value comes less from one-way promotion and more from routines that resolve customer issues, capture feedback, and convert market signals into action. Firms convert online engagement into performance when they institutionalize social listening, inquiry handling, and market sensing rather than relying on broadcast communication alone [17,18].

4.1.2 Social media usage and open innovation (H2)

Evidence supports H2: SMU is positively related to OI. At the subdimension level, H2b and H2c are supported for inbound OI, and H2e and H2f are supported for outbound OI, whereas H2a and H2d are not. In practical terms, service interactions and information accessibility, not marketing alone, consistently feed firms' OI routines. Managers should formalize pipelines that capture conversational insights, translate them into problem definitions and solution backlogs, and maintain partner arrangements for joint development and commercialization. This interpretation aligns with research showing that social technologies facilitate outside in and coupled knowledge flows [21,22].

4.1.3 Open innovation and international performance (H3)

The evidence indicates that H3 is supported: OI is positively related to international performance. At the facet level, H3a and H3b are both supported, with inbound OI showing the stronger association

and outbound OI providing additional gains. Substantively, systematic acquisition and assimilation of external ideas improve product—market fit and responsiveness, while codification, sharing, and partner commercialization help scale solutions across markets. These roles are complementary and align with prior findings that firms benefit most when they combine outside-in learning with outside-out diffusion in a coordinated system [23,47]. Managerially, firms should strengthen scanning, evaluation, and assimilation routines, link them to outward mechanisms for co-development and licensing, and track execution metrics such as time to insight and time to implementation.

4.1.4 The mediating role of open innovation (H4)

Evidence supports H4 as partial mediation based on PROCESS Model 4 with 5,000 bootstrap resamples and 95 percent confidence intervals. Social media usage improves international performance in part because it activates open innovation routines. At the subdimension level, mediation is selective: H4b and H4c are supported through inbound OI, and H4e and H4f are supported through outbound OI, whereas H4a and H4d are not supported. Substantively, customer relations and service and information accessibility supply inputs that firms can absorb, integrate, codify, and diffuse, while marketing alone does not yield a reliable mediated pathway. Managerially, firms should formalize pipelines that connect social listening and service interactions to inbound screening, assimilation, and learning, and then to outbound partnering and commercialization, with execution metrics such as time to insight and time to implementation. This pattern is consistent with the view that open innovation provides the channel through which digital engagement is translated into performance gains, and it aligns with resampling-based mediation inference [22,48].

4.2 Theoretical Contributions

This study contributes to CBEC research in three respects. First, it pinpoints the facets of SMU that matter for international performance, showing that customer relations and service and information accessibility, rather than marketing communication, align with the communication and knowledge flows central to diffusion theory and more reliably convert digital engagement into export outcomes [13,49]. Second, it establishes open innovation as the transmission mechanism and distinguishes inbound from outbound routines, with evidence of partial mediation in which inbound acquisition and integration relate more strongly to performance and outbound codification, sharing, and commercialization add complementary gains [50]. Third, it proposes a concise, testable framework that links SMU to international performance through inbound and outbound open innovation, advancing mechanism-based explanations of digitally enabled internationalization in SME settings [49,50].

4.3 Managerial and Policy Implications

Managers should treat social media as infrastructure for learning and service rather than only as a promotional outlet. Prioritize workflows for customer inquiry handling, social listening, and market sensing, and connect social channels to CRM, ticketing, and a searchable knowledge base so that each interaction yields reusable knowledge. Formalize inbound open innovation gates for capturing, screening, and assimilating external insights, and develop outbound open innovation playbooks for partner co-development, trials, and selective knowledge sharing. Track a small set of execution metrics such as response time, first-contact resolution, time to insight, and time to implementation.

These practices reflect evidence that social technologies create value when embedded in cross-functional routines and linked to innovation processes [49].

Policymakers can amplify these firm-level efforts by lowering the costs of learning and collaboration. Useful levers include knowledge-exchange platforms, accessible IP and compliance advisory, partner matchmaking for pilots and commercialization, and targeted training in customer analytics and inquiry management. Such support aligns with open-innovation guidance that stresses building absorptive and diffusion capacity alongside internal R&D so that SMEs can translate digital engagement into measurable international performance [50].

4.4 Limitations and Future Research

This study relies on cross-sectional, self-reported measures from single informants, which may inflate associations and underrepresent the behavioral micro-processes unfolding on social platforms and in partner interactions. Causal direction cannot be established, so endogeneity and reverse causality remain possible along the SMU \rightarrow OI \rightarrow IP pathway. External validity is bounded by a Yiwu-based CBEC sample and by firm-level, aggregate indicators of inbound and outbound OI that do not capture project portfolios, partner types, or governance specifics. Future work should combine surveys with multi-source evidence such as platform digital traces, customer-service logs, partner contracts, and archival export indicators to triangulate interactional and information flows and to mitigate common-method concerns [51]. Researchers should also broaden generalizability through comparative designs across regions, platforms, and industries, and incorporate fine-grained indicators of inbound and outbound routines, partner roles, and governance of IP and compliance; such extensions align with guidance that effective open innovation requires orchestrating internal absorption with outward diffusion and commercialization [50].

Acknowledgments

The authors thank the owners and managers of CBEC SMEs in Yiwu, Zhejiang, for participating in the multi-wave survey, and the local trade associations and platform contacts for facilitation. Appreciation is extended to the supervisors for guidance and to fellow graduate students for helpful comments during instrument piloting, data collection, and coding. No specific funding was received for this study.

References

- [1] Cao, Guangming, and Jay Weerawardena. "Strategic use of social media in marketing and financial performance: The B2B SME context." *Industrial Marketing Management* 111 (2023): 41-54. https://doi.org/10.1016/j.indmarman.2023.03.007
- [2] Zhou, Jihong, and Peerayuth Charoensukmongkol. "How social media use in B2B export selling contributes to sales performance: The media synchronicity theory perspective." *International Journal of Business Communication* 61, no. 3 (2024): 650-676. https://doi.org/10.1177/23294884231176279
- [3] Witek-Hajduk, Marzanna K., and Piotr Zaborek. "Social media use in international marketing: Impact on brand and firm performance." *International Journal of Management and Economics* 58, no. 2 (2022): 121-142.https://doi.org/10.2478/ijme-2022-0011
- [4] Chesbrough, Henry, and Marcel Bogers. 2014. "Explicating Open Innovation: Clarifying an Emerging Paradigm for Understanding Innovation." *In New Frontiers in Open Innovation*, edited by Henry Chesbrough, Wim Vanhaverbeke, and Joel West, 3–28. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199682461.003.0001
- [5] Enkel, Ellen, Marcel Bogers, and Henry Chesbrough. "Exploring open innovation in the digital age: A maturity model and future research directions." *R&d Management* 50, no. 1 (2020). https://doi.org/10.1111/radm.12397
- [6] Wang, Wenwen, Muqing Sun, and Dong Zhou. "The impact of cross-border e-commerce comprehensive pilot zone on corporate financial constraints in China." *Humanities and Social Sciences Communications* 12, no. 1 (2025): 1-

14. https://doi.org/10.1057/s41599-025-05409-3

- [7] Liu, Chanjuan, Jinran Wu, and Harshanie Lakshika Jayetileke. "Overseas warehouse deployment for cross-border e-commerce in the context of the belt and road initiative." *Sustainability* 14, no. 15 (2022): 9642. https://doi.org/10.3390/su14159642
- [8] Rialp, Alex, Josep Rialp, and Pilar López-Belbeze. "Unveiling the dynamics of exporting firms: How social media shapes export costs and relationships." *International Business Review* 33, no. 5 (2024): 102326. https://doi.org/10.1016/j.ibusrev.2024.102326
- [9] Chesbrough, Henry, and Adrienne Kardon Crowther. "Beyond high tech: early adopters of open innovation in other industries." *R&d Management* 36, no. 3 (2006): 229-236. https://doi.org/10.1111/j.1467-9310.2006.00428.x
- [10] Enkel, Ellen, Oliver Gassmann, and Henry Chesbrough. "Open R&D and open innovation: exploring the phenomenon." *R&d Management* 39, no. 4 (2009): 311-316. https://doi.org/10.1111/j.1467-9310.2009.00570.x
- [11] Ghazwani, Sarah Salem, and Saeed Alzahrani. "The use of social media platforms for competitive information and knowledge sharing and its effect on SMEs' profitability and growth through innovation." *Sustainability* 16, no. 1 (2024): 106. https://doi.org/10.3390/su16010106
- [12] Franco-Riquelme, José N., Alberto Tejero, Luis Rubalcaba, and Joaquín B. Ordieres-Meré. "Measuring the Connection Between Open Innovation, Dynamic Capabilities, and LinkedIn in Tech-Based Companies." *Journal of the Knowledge Economy* (2024): 1-39. https://doi.org/10.1007/s13132-024-02343-8
- [13] Rogers, Everett M. "A prospective and retrospective look at the diffusion model." *Journal of health communication* 9, no. S1 (2004): 13-19. https://doi.org/10.1080/10810730490271449
- [14] Tajvidi, Rana, and Azhdar Karami. "The effect of social media on firm performance." *Computers in Human Behavior* 115 (2021): 105174. https://doi.org/10.1016/j.chb.2017.09.026
- [15] Kapoor, Kawaljeet Kaur, Kuttimani Tamilmani, Nripendra P. Rana, Pushp Patil, Yogesh K. Dwivedi, and Sridhar Nerur. "Advances in social media research: Past, present and future." *Information systems frontiers* 20, no. 3 (2018): 531-558. https://doi.org/10.1007/s10796-017-9810-y
- [16] Zhou, Jihong, and Peerayuth Charoensukmongkol. "How social media use in B2B export selling contributes to sales performance: The media synchronicity theory perspective." *International Journal of Business Communication* 61, no. 3 (2024): 650-676. https://doi.org/10.1177/23294884231176279
- [17] Parveen, Farzana, Noor Ismawati Jaafar, and Sulaiman Ainin. "Social media usage and organizational performance: Reflections of Malaysian social media managers." *Telematics and informatics* 32, no. 1 (2015): 67-78.https://doi.org/10.1016/j.tele.2014.03.001
- [18] Qalati, Sikandar Ali, Li Wen Yuan, Muhammad Aamir Shafique Khan, and Farooq Anwar. "A mediated model on the adoption of social media and SMEs' performance in developing countries." *Technology in Society* 64 (2021): 101513. https://doi.org/10.1016/j.techsoc.2020.101513
- [19] Nguyen, Bang, Xiaoyu Yu, T. C. Melewar, and Junsong Chen. "Brand innovation and social media: Knowledge acquisition from social media, market orientation, and the moderating role of social media strategic capability." *Industrial Marketing Management* 51 (2015): 11-25. https://doi.org/10.1016/j.indmarman.2015.04.017
- [20] Kim, Angella J., and Eunju Ko. "Do social media marketing activities enhance customer equity? An empirical study of luxury fashion brand." *Journal of Business research* 65, no. 10 (2012): 1480-1486. https://doi.org/10.1016/j.jbusres.2011.10.014
- [21] Dahlander, Linus, and David M. Gann. "How open is innovation?." *Research policy* 39, no. 6 (2010): 699-709. https://doi.org/10.1016/j.respol.2010.01.013
- [22] West, Joel, and Marcel Bogers. "Leveraging external sources of innovation: A review of research on open innovation." *Journal of product innovation management* 31, no. 4 (2014): 814-831. https://doi.org/10.1111/jpim.12125
- [23] Bogers, Marcel, Ann-Kristin Zobel, Allan Afuah, Esteve Almirall, Sabine Brunswicker, Linus Dahlander, Lars Frederiksen et al. "The open innovation research landscape: Established perspectives and emerging themes across different levels of analysis." *Industry and Innovation* 24, no. 1 (2017): 8-40. https://doi.org/10.1080/13662716.2016.1240068
- [24] Wang, William YC, David J. Pauleen, and Tingting Zhang. "How social media applications affect B2B communication and improve business performance in SMEs." *Industrial marketing management* 54 (2016): 4-14. https://doi.org/10.1016/j.indmarman.2015.12.004
- [25] Cassiman, Bruno, and Giovanni Valentini. "Open innovation: are inbound and outbound knowledge flows really complementary?." *Strategic Management Journal* 37, no. 6 (2016): 1034-1046. https://doi.org/10.1002/smj.2375
- [26] Schlagwein, Daniel, and Monica Hu. "How and why organisations use social media: five use types and their relation to absorptive capacity." *Journal of Information Technology* 32, no. 2 (2017): 194-209. https://doi.org/10.1057/jit.2016.7

- [27] Hayes, Andrew F., and Nicholas J. Rockwood. "Regression-based statistical mediation and moderation analysis in clinical research: Observations, recommendations, and implementation." *Behaviour research and therapy* 98 (2017): 39-57. https://doi.org/10.1016/j.brat.2016.11.001
- [28] Podsakoff, Philip M., Scott B. MacKenzie, Jeong-Yeon Lee, and Nathan P. Podsakoff. "Common method biases in behavioral research: a critical review of the literature and recommended remedies." *Journal of applied psychology* 88, no. 5 (2003): 879. https://doi.org/10.1037/0021-9010.88.5.879
- [29] Kaplan, Andreas M., and Michael Haenlein. "Users of the world, unite! The challenges and opportunities of Social Media." *Business horizons* 53, no. 1 (2010): 59-68. https://doi.org/10.1016/j.bushor.2009.09.003
- [30] Parveen, Farzana, Noor Ismawati Jaafar, and Sulaiman Ainin. "Social media's impact on organizational performance and entrepreneurial orientation in organizations." *Management Decision* 54, no. 9 (2016): 2208-2234. https://doi.org/10.1108/MD-08-2015-0336
- [31] Trainor, Kevin J., James Mick Andzulis, Adam Rapp, and Raj Agnihotri. "Social media technology usage and customer relationship performance: A capabilities-based examination of social CRM." *Journal of business research* 67, no. 6 (2014): 1201-1208. https://doi.org/10.1016/j.jbusres.2013.05.002
- [32] Ngai, Eric WT, Ka-leung Karen Moon, Sze Sing Lam, Eric SK Chin, and Spencer SC Tao. "Social media models, technologies, and applications: an academic review and case study." *Industrial Management & Data Systems* 115, no. 5 (2015): 769-802. https://doi.org/10.1108/IMDS-03-2015-0075
- [33] Chesbrough, Henry. "The logic of open innovation: managing intellectual property." *California management review* 45, no. 3 (2003): 33-58. https://doi.org/10.1177/000812560304500301
- [34] Laursen, Keld, and Ammon Salter. "Open for innovation: the role of openness in explaining innovation performance among UK manufacturing firms." *Strategic management journal* 27, no. 2 (2006): 131-150. https://doi.org/10.1002/smj.507
- [35] Lichtenthaler, Ulrich. "Outbound open innovation and its effect on firm performance: examining environmental influences." *R&d Management* 39, no. 4 (2009): 317-330. https://doi.org/10.1111/j.1467-9310.2009.00561.x
- [36] Hung, Kuang-Peng, and Christine Chou. "The impact of open innovation on firm performance: The moderating effects of internal R&D and environmental turbulence." *Technovation* 33, no. 10-11 (2013): 368-380. https://doi.org/10.1016/j.technovation.2013.06.006.
- [37] Knight, Gary A., and S. Tamar Cavusgil. "Innovation, organizational capabilities, and the born-global firm." *Journal of international business studies* 35, no. 2 (2004): 124-141. https://doi.org/10.1057/palgrave.jibs.8400071
- [38] Verbeke, Alain, and Liena Kano. "An internalization theory perspective on the global and regional strategies of multinational enterprises." *Journal of World Business* 51, no. 1 (2016): 83-92. https://doi.org/10.1016/j.jwb.2015.08.014
- [39] Shoham, Aviv. "Export performance: A conceptualization and empirical assessment." *Journal of international marketing* 6, no. 3 (1998): 59-81. https://doi.org/10.1177/1069031X9800600308
- [40] Styles, Chris, and Tim Ambler. "The impact of relational variables on export performance: An empirical investigation in Australia and the UK." *Australian Journal of Management* 25, no. 3 (2000): 261-281. https://doi.org/10.1177/031289620002500302
- [41] Morgan, Neil A., Anna Kaleka, and Constantine S. Katsikeas. "Antecedents of export venture performance: A theoretical model and empirical assessment." *Journal of marketing* 68, no. 1 (2004): 90-108. https://doi.org/10.1509/jmkg.68.1.90.24028
- [42] Zhou, Lianxi, Wei-ping Wu, and Xueming Luo. "Internationalization and the performance of born-global SMEs: the mediating role of social networks." *Journal of international business studies* 38, no. 4 (2007): 673-690. https://doi.org/10.1057/palgrave.jibs.8400282
- [43] Sadeghi, Arash, Sylvie Chetty, and Elizabeth L. Rose. "Perceived export performance: the invisible part of the iceberg." *Thunderbird International Business Review* 63, no. 6 (2021): 667-686. https://doi.org/10.1002/tie.22223
- [44] Hair, Joseph F., Jeffrey J. Risher, Marko Sarstedt, and Christian M. Ringle. "When to use and how to report the results of PLS-SEM." *European business review* 31, no. 1 (2019): 2-24. https://doi.org/10.1108/EBR-11-2018-0203
- [45] Kaiser, Henry F. "The varimax criterion for analytic rotation in factor analysis." *Psychometrika* 23, no. 3 (1958): 187-200. https://doi.org/10.1007/BF02289233
- [46] Podsakoff, Philip M., Nathan P. Podsakoff, Larry J. Williams, Chengquan Huang, and Junhui Yang. "Common method bias: It's bad, it's complex, it's widespread, and it's not easy to fix." *Annual Review of Organizational Psychology and Organizational Behavior* 11, no. 1 (2024): 17-61. https://doi.org/10.1146/annurev-orgpsych-110721-040030
- [47] Love, James H., and Stephen Roper. "SME innovation, exporting and growth: A review of existing evidence." *International small business journal* 33, no. 1 (2015): 28-48. https://doi.org/10.1177/0266242614550190
- [48] Preacher, Kristopher J., and Andrew F. Hayes. "Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models." *Behavior research methods* 40, no. 3 (2008): 879-891.

https://doi.org/10.3758/BRM.40.3.879

- [49] Appel, Gil, Lauren Grewal, Rhonda Hadi, and Andrew T. Stephen. "The future of social media in marketing." *Journal of the Academy of Marketing science* 48, no. 1 (2020): 79-95. https://doi.org/10.1007/s11747-019-00695-1
- [50] Chesbrough, Henry. "To recover faster from Covid-19, open up: Managerial implications from an open innovation perspective." *Industrial Marketing Management* 88 (2020): 410-413. https://doi.org/10.1016/j.indmarman.2020.04.010
- [51] Ohme, Jakob, Theo Araujo, Laura Boeschoten, Deen Freelon, Nilam Ram, Byron B. Reeves, and Thomas N. Robinson. "Digital trace data collection for social media effects research: APIs, data donation, and (screen) tracking." *Communication Methods and Measures* 18, no. 2 (2024): 124-141. https://doi.org/10.1080/19312458.2023.2181319