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Modulation of microRNAs (miRNAs) through miRNA-based therapeutics faces several 
challenges, including in vivo instability and activation of the innate immune response. 
Moringa oleifera offers a promising natural alternative for regulating miR-21-5p 
expression due to its rich phytochemical profile and lower immunogenic risk. This study 
investigated the impact of Moringa extract on miR-21-5p expression in BALB/c mice, 
followed by bioinformatic prediction and analysis of the downstream effects on its 
identified target gene. Mice were split into two groups, with the treatment group 
receiving 300 mg/kg of Moringa extract via oral gavage for 12 days in a row, while the 
control group was given the same amount of distilled water. Gene expression levels 
were analysed using RT-PCR. Bioinformatic analysis using TargetScan predicted a total 
of 303 potential miR-21-5p’s target genes, among which SMAD7 was chosen for further 
RT-PCR analysis due to its strong predicted interaction and known role in disease 
regulation. The results showed that the treatment group's expression of miR-21-5p 
was significantly downregulated (p = 0.028), with the average normalised band 
intensity decreasing from 0.55 ± 0.059 in the control group to 0.21 ± 0.009 in the 
treatment group (n = 3 mice per group). This reduction was accompanied by an 
increase in SMAD7 mRNA levels, from 2.61 ± 0.979 to 3.29 ± 1.374 (p = 0.7083), 
indicating that miR-21-5p directly targets SMAD7. Consequently, the potential of 
Moringa extract as a natural modulator of miRNA expression is supported by these 
findings. 
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1. Introduction 
 

MicroRNAs (miRNAs) are a class of non-coding RNAs that are single stranded and short, 
comprising approximately 22 nucleotides [1]. Thousands of miRNAs have been discovered in a variety 
of organisms, including animals, plants and microorganisms [2]. The post-transcriptional stage of 
gene expression is significantly regulated by these molecules, primarily by binding to messenger RNAs 
(mRNAs) and repressing their expression, thereby influencing various biological processes and 
disease-related pathways [3,4]. In most cases, this regulation entails the interaction of the target 
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mRNA's 3ʹ untranslated region (3ʹ UTR) with the miRNA seed region, leading to reduced translation 
efficiency or mRNA degradation [5]. However, miRNAs can also interact with regions other than 3ʹ 
UTR, including the coding sequence, gene promoters, and 5ʹ UTR [6]. Notably, binding of miRNA to 
the coding regions and 5ʹ UTR has been shown to suppress gene expression, while interactions with 
promoter regions have been associated with transcriptional activation [7]. 

As one of the most thoroughly investigated miRNAs, miR-21 is acknowledged for its vital role in 
controlling gene expression in numerous biological functions, such as cell development, 
differentiation, inflammation, proliferation, apoptosis and metabolic homeostasis [8]. In both murine 
and Homo sapiens, miR-21 is situated within the 11th intron of the TMEM49 (VMP1) gene, located 
on chromosome 11 and chromosome 17 at position 17q.23.1, respectively [9,10]. Like most miRNAs 
processed via the canonical pathway, miR-21 biogenesis is initiated by RNA polymerase II-mediated 
transcription of the primary transcript, pri-miR-21 [11,12]. The Drosha-DGCR8 complex later 
processes this transcript into a precursor miRNA (pre-miR-21), which exportin-5 carries to the 
cytoplasm. After that, the precursor is trim into a miRNA duplex by the RNase III enzyme Dicer, from 
which the guide strand is incorporated into the miRNA-induced silencing complex (miRISC) and the 
passenger strand is typically broken down [9,13]. The mature miRNA may arise from either arm of 
the precursor: the 3ʹ strand (miR-21-3p) or the 5ʹ strand (miR-21-5p) [14]. Among these, miR-21-5p 
is the dominant isoform and has been widely implicated in pathological conditions including fibrosis, 
inflammation, cancer and cardiovascular diseases [15].   

Moringa oleifera, commonly referred to as ‘pokok kelor’ in Malaysia, is a nutrient-rich plant 
widely valued for its medicinal and nutritional properties [16]. Belonging to the family Moringaceae, 
Moringa originates from South Asia, with its native range spanning northern West Bengal, India and 
northeast Pakistan [17].  Most of the Moringa plant’s parts, including the flowers, seeds, leaves and 
pods are suitable for consumption and have been traditionally used in India’s ancient Ayurvedic 
medicine, where the plant is believed to help treat over 300 diseases [18,19]. Toxicological 
assessments have shown that aqueous leaf extracts of Moringa are generally safe at doses 
≤1000 mg/kg, while acute toxicity has been observed at supra-supplementation levels (≥3000 mg/kg) 
in Sprague-Dawley rats [20]. Recent studies have identified a range of bioactive phytochemicals in 
Moringa, including phenolic acids, flavonoids and polyphenols, which contribute to its anti-
inflammatory, antioxidant, antibacterial and anti-diabetic activities [21-23]. 

miR-21-5p is consistently and aberrantly upregulated in a wide spectrum of pathological 
conditions, where it suppresses essential regulatory genes such as PDCD4, PTEN, and SMAD7, 
thereby driving pathological processes including fibrosis, inflammation, and oncogenesis [24–26]. 
While RNAi-based therapeutics have demonstrated efficacy in inhibiting miR-21, their clinical 
translation has been severely constrained by immune-related toxicities arising from the intrinsic 
immunostimulatory properties of RNA molecules [27,28]. This limitation exposes a critical and 
unresolved gap in the development of safe and effective strategies for modulating pathogenic miRNA 
expression. In this context, Moringa oleifera, a phytochemical-rich plant with potent anti-
inflammatory and antioxidant activities, presents a compelling candidate for investigation [29]. 
Evidence from other bioactive compounds such as resveratrol, genistein, and quercetin indicates that 
plant-derived molecules can modulate miR-21 expression by targeting upstream transcriptional 
regulators and signalling pathways [30,31]. This study aims to critically evaluate the capacity of M. 
oleifera leaf extract to modulate miR-21-5p expression in a murine model. The findings are expected 
to advance the concept of phytochemical-based miRNA modulation as a potentially safer, plant-
derived alternative to conventional RNAi therapeutics, with broad implications for managing miR-
21–driven pathologies.  
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2. Methodology  
2.1 Application of Ethical Approval 

 
Before conducting the research, ethical approval was first obtained from the UTM Research Ethics 

Committee. The research design and animal handling procedures were strictly adhered to the ethical 
rules and guidelines for Animal Care and Use for Research Ethics at UTM. (Approval No.: UTMREC-
2025-114)  
 
2.2 Oral Supplementation of Moringa extract on Mice 
 

Resource equation approach was utilised for the determination of sample size as it is suitable for 
the study whenever assumptions about standard deviation and effect size are not feasible [32]. As a 
result, a total of 20 normal and wild type BALB/c mice aged 5 weeks were purchased from Sapphire 
A Enterprise. Female mice were selected because they exhibit less unstructured variability compared 
to males, even without controlling for oestrous cycles [33]. The mice first underwent a 3 days 
acclimatisation period to ensure proper adaptation and reduce handling stress. They were kept in 
cages within the animal facility at Block T02, UTM, with unrestricted access to food and water, under 
controlled conditions at 25 ± 5°C, following an alternating 8-hour light/16-hour dark cycle. After 
acclimatisation, each mouse’s body weight was measured and documented. The animals were 
subsequently assigned randomly into two groups, each consisting of ten mice. The treatment period 
lasted for twelve days and the dosage of Moringa extract given to the treatment group was 300 
mg/kg [34]. The extract used in this study was obtained in the form of health supplement capsules. 
Oral gavage was performed each morning at approximately 10 a.m. The control group was 
administered 200 µL of distilled water, whereas the treatment group received Moringa extract 
dissolved in 200 µL of distilled water, with the dosage calculated according to each mouse’s body 
weight. A 1 mL syringe and a reusable 45 mm bulb-tipped, stainless steel curved oral gavage needle 
with an inner diameter of 0.5 mm were used for each feeding group. Both groups had unrestricted 
access to food and water and maintained under the same caging conditions as previously. 

After the 12-day feeding period, anaesthesia was induced in the mice via intraperitoneal injection 
of a ketamine and xylazine mixture (Ilium Ketamil, Xylazil-100, 100 mg/mL, Troy Laboratories, 
Glendenning, New South Wales, Australia) at a dosage of 0.1 mL/100 g of body weight. A volume of 
0.5 to 1 mL of blood was collected through facial vein puncture or cardiac puncture and stored in a 3 
mL EDTA tube. A 100 µL whole blood sample was thoroughly mixed with the RNA isolator (1 mL) and 
stored at 4°C in a refrigerator for subsequent RNA extraction. The remaining blood samples were 
kept at -80°C in a freezer.  
 
2.3 RNA Extraction and Evaluation of RNA Purity and Concentration 
 

Total RNA was extracted from whole blood using the MiPure Cell/Tissue miRNA Kit (RC201-01; 
Vazyme, Nanjing, China) following the manufacturer’s instructions [35]. In short, RNA isolator and 
chloroform were mixed with the blood samples, followed by phase separation via centrifugation. The 
supernatant was collected, mixed with absolute ethanol, and loaded onto the MiPure RNAspin 
Column in two steps. The column was sequentially washed with Buffer miRW1, Buffer miRW2, and 
80% ethanol, then dried and eluted with RNase-free water. The total RNA was stored at –80°C for 
later use. After that, the extracted RNA’s concentration and purity were determined using a 
NanoDrop™ 1000 spectrophotometer (Thermo Scientific, Massachusetts, USA), with OD260/230 and 
OD260/280 ratios used to assess purity [36]. RNA integrity was evaluated by 1% agarose gel 
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electrophoresis, with SYBR™ Safe DNA Gel Stain (S33102; Thermo Scientific, Massachusetts, USA) 
incorporated into the gel for visualisation. For size reference, the first lane was loaded with a marker 
consisting of 1 µL of Blue/Orange 6X Loading Dye (G190A; Promega, Madison, WI, USA) and 5 µL of 
1 kb DNA Ladder (G571A; Promega, Madison, WI, USA). The remaining lanes were loaded with RNA 
samples, in which 200 ng of RNA mixed with 1 µL loading dye and nuclease-free water (to 6 
µL). Finally, electrophoresis ran at 90 V for 60 minutes, and band visualisation was performed using 
the Bio-Rad Gel Imaging System. 
 
2.4 cDNA Synthesis 
 

The RevertAid First Strand cDNA Synthesis Kit (K1621; Thermo Fisher Scientific, Waltham, MA, 
USA) was employed to synthesised complementary DNA (cDNA) in accordance with the 
manufacturer’s protocol, with a concentration of 700 ng total RNA being used [37]. A volume of 12 
µL reaction mixture was first prepared by mixing appropriate volume of RNA samples with the 
oligo(dT)₁₈ primers and nuclease-free water. Subsequently, 5X Reaction Buffer (4 µL), RiboLock RNase 
Inhibitor (1 µL), RevertAid M-MuLV Reverse Transcriptase (1 µL) and dNTP Mix (2 µL) were added, 
bringing the total reaction volume to 20 µL. After gentle mixing and brief centrifugation, the mixture 
was incubated at 42 °C. After 60 minutes, the mixture was heated for 5 minutes to terminate the 
reaction at 70 °C. The synthesised cDNA was subsequently used for PCR analysis or stored at –70 °C 
for long-term storage and –20 °C for short-term use. 

 
2.5 RT-PCR Analysis: miR-21-5p Expression 
 

Following the instructions provided by the manufacturer, the OneTaq® Quick-Load 2X Master Mix 
with Standard Buffer (M0486S; New England Biolabs, Massachusetts, USA) was utilised to perform 
PCR [38]. Three cDNA samples were randomly selected from both control and treatment groups. Each 
25 µL reaction mixture consisted of the cDNA template (1 µL), OneTaq® Quick-Load 2X Master Mix 
(12.5 µL), nuclease-free water (10.5 µL) and 10× diluted forward and reverse primers specific to miR-
21-5p (0.5 µL each). The reaction mixture was briefly centrifuged to eliminate air bubbles, which 
could interfere with thermal transfer and increase evaporation during amplification [39]. The same 
procedure was repeated using the reference gene U6 for normalisation and the sequences of all 
primers involved are listed in Table 1. 

The following thermal conditions were used for PCR amplification: 30 seconds of initial 
denaturation at 94°C, followed by 35 cycles of denaturation at 94°C (30 seconds), annealing at 45°C 
for 15 seconds, and extension at 68°C for 1 minute. A final extension step lasting five minutes at 68°C 
brought this to a close. As previously mentioned in Section 2.3, the amplified products were then 
resolved on a 1% (w/v) agarose gel. A pre-stained 1 kb DNA ladder was used as a molecular size 
reference, while 20 µL of each PCR sample was loaded into the remaining wells. 

 
2.6 Identification of Genes regulated by miR-21 
 

The miR-21-5p’s target genes prediction was accomplished using bioinformatics approaches. 
Specifically, databases like TargetScan (https://www.targetscan.org/mmu_80/) was utilised to 
identify potential target genes. This computational platform identifies potential miRNA targets by 
detecting specific binding sites such as 8mer, 7mer and 6mer sequences, which are complementary 
to the miRNA’s seed region [40]. TargetScanMouse version 8.0 was utilised to predict miR-21-5p’s 
target genes with all parameters remained at their default settings. Finally, the research was done by 

https://www.targetscan.org/mmu_80/
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inserting the name of the miRNA, “miR-21” into the search bar of TargetScanMouse and the analysis 
was run. The predicted miR-21-5p target genes were then further validated through RT-PCR to assess 
their expression levels. 
 
2.7 RT-PCR Analysis: Expression of the Identified Target Genes 
 

PCR and agarose gel electrophoresis were conducted according to the same protocols as 
described in the section of 2.5, with different primers used (SMAD7 and GAPDH, the reference gene 
for normalisation) [38].  
 
                       Table 1 
                       Supplemental table (primers used) 

Genes Forward (5ʹ-3ʹ) Reverse (5ʹ-3ʹ) 
miR-21-5p TGTTGAGTCGTATCCAGTGCAA GTATCCAGTGCGTGTCGTGG 
U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT 
SMAD7 TTCCTCCGCTGAAACAGGG CCTCCCAGTATGCCACCAC 
GAPDH ACAACTTTGGTATCGTGGAAGG GCCATCACGCCACAGTTTC 

 
2.8 Statistical Analysis 

 
Relative expression levels were determined by quantifying band intensities using ImageJ software 

(version 1.54p) [41]. GAPDH was used as the reference gene for mRNA analysis, while U6 served as 
the reference for miRNA quantification. The mean ± standard error of the mean (SEM) was used for 
presenting all numerical data. Comparisons between control and treatment groups were assessed 
using Welch’s t-test, which is appropriate for small sample sizes (n = 3) and unequal variances often 
observed in biological data [42]. With a p-value of less than 0.05 considered statistically significant, 
GraphPad Prism version 10.0 (GraphPad Software Inc., San Diego, California, USA) was used for 
statistical analysis and graphical visualisations. 
                     
3. Results  
3.1 Body Weight of Mice Throughout the Twelve Days Feeding Period 

 
The body weight of mice was recorded and subsequently plotted as a line graph in Figure 1. 
 

 
Fig. 1. Mice's body weight throughout the twelve days feeding period; 
Data were presented as mean ± SEM, n = 10 mice/group 
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Unfortunately, a total of six mice died before the blood withdrawal session was carried out, with 
five mice from the treatment group and one mouse from the control group. The occurrence of 
mortality was most likely due to incidents such as gastroesophageal reflux disease, accidental 
introduction of fluid into the trachea and lungs, chronic inflammation, bleeding and hepatic apoptosis 
[43]. Additionally, progressive weight loss was observed in most of the mice models. This is because 
oral gavage can induce a stress response and may cause oesophageal tears due to repeated gavage, 
which lead to feeding difficulties and loss of appetite [44]. 

A greater reduction in body weight was perceived in the group of mice administered with Moringa 
extract which may be attributed to its anti-obesity properties [45]. A notable reduction in body 
weight, along with decreased epididymal, perirenal, and mesenteric fat tissues, was observed 
following oral administration of Moringa oleifera leaf petroleum ether extract (0.125, 0.25, and 0.5 
g/kg) to high-fat diet-induced mice over a 14-week period [46].  
 
3.2 RNA Quality Assessment by NanoDrop and Agarose Gel Electrophoresis 
 

As shown in Table 2, most of the extracted RNA samples exhibited high purity as indicated by 
260/280 absorbance ratios close to 2.0, suggesting minimal protein contamination [47]. However, 
sample 6 from the treatment group showed a lower 260/280 ratio of 1.68, implying the potential 
presence of protein, phenol or other substances that absorb near 280 nm. Moreover, all samples 
were found to have notably low 260/230 ratios, which may suggest contamination by salts or other 
organic compounds with strong absorbance near 230 nm. In order to enhance RNA purity and 
eliminate residual impurities such as phenol and salts, an additional ethanol wash step is 
recommended [48]. The RNA concentrations across all samples were within an acceptable range, 
with the highest concentration observed at 336.7 ng/µL and the lowest at 70 ng/µL. These values 
indicate that the extraction protocol the kit used were generally effective in yielding sufficient RNA 
for downstream applications.  

 
      Table 2 
      Purity and concentration of extracted total RNA 

Control group Treatment group 
 A260/A280 A260/A230 RNA Concentration 

(ng/µL) 
 A260/A280 A260/A230 RNA Concentration 

(ng/µL) 
C1 1.92 0.74 70.0 T1 1.81 1.04 70.7 
C3 1.91 0.89 178.9 T2 1.87 0.79 117.0 
C4 1.82 0.83 130.4 T6 1.68 0.95 152.2 
C5 1.98 0.90 188.1 T9 1.98 1.38 336.7 
C6 2.00 0.69 214.5 T10 1.96 0.99 188.0 
C8 2.01 1.67 115.1     

 
Distinct bands were observed on the 1% agarose gel as shown in Figure 2, corresponding to the 

28S and 18S ribosomal RNA (rRNA) components that typically found in total RNA extracts. The 28S 
rRNA band appeared around 3000 bp, while the 18S rRNA band was located at approximately 1000 
bp. In addition, faint bands beneath the 18S rRNA suggest the presence of smaller RNA fragments. 
Notably, no high molecular weight bands were detected, indicating the absence of genomic DNA 
contamination [49]. Since the eighth control sample loaded in Lane 7 did not exhibit distinct 28s rRNA 
band and 18s rRNA band, it was excluded from further RT-PCR analysis due to severe RNA 
degradation [50]. 
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Fig. 2. Gel image of extracted RNA. Lane 1: 1 kb DNA ladder; 
Lanes 2–12: extracted RNA samples 

 
rRNA serves as a useful reference because small RNA species are often difficult to detect clearly 

on agarose gels. It makes up approximately 80% of total RNA, with the 28S and 18S subunits being 
the most prominent and thus more easily detected [51]. In gel electrophoresis, high RNA integrity is 
typically indicated by a 28S to 18S band intensity ratio of approximately 2:1 or greater [52].  

Based on these criteria, the extracted RNA samples (excluding Lane 7) demonstrated acceptable 
integrity, with most lanes showing distinct and well-resolved rRNA bands. Although slight smearing 
was observed in several lanes, the overall band pattern indicates that the RNA was sufficiently intact 
for downstream RT-PCR analysis. This partial degradation is likely due to RNA’s natural instability and 
the widespread presence of RNases in the environment [53]. Therefore, maintaining an RNase-free 
environment is crucial. This includes using gloves, sterile and nuclease-free pipette tips and tubes 
and treating buffers with diethyl pyrocarbonate (DEPC) to inactivate RNases [54].  
 
3.3 RT-PCR Products of miR-21-5p and U6 Analysed by Agarose Gel 
 

The RT-PCR process was successful as a single clear band was observed around 100 bp in all 
loaded lanes as shown in Figure 3. There was no significant smearing and no high molecular weight 
secondary structures appearing in the upper region of the gel. These observations suggest that the 
primers used were highly specific and the annealing temperature of 45 °C was appropriate for 
effective amplification [55]. The bands representing miR-21-5p expression appeared relatively faint, 
which is consistent with the generally low abundance of miRNAs within cellular environments [56]. 
In contrast, strong, sharp and intact bands were observed in the lanes containing PCR products 
amplified using U6 primers. U6 is a reference gene which can also be considered as a housekeeping 
gene, characterised by its stable expression and minimal variation under diverse experimental 
conditions [57]. Therefore, it is essential for reducing systematic bias and ensuring accurate 
normalisation of gene expression data [58]. 
 



Semarak International Journal of Animal Science and Zoology      
Volume 3, Issue 1 (2025) 1-18 

 

8 
 

 
Fig. 3. PCR gel image. Lane 1: 1 kb DNA 
ladder; Lanes 2–4: miR-21-5p (control); 
Lanes 5–7: miR-21-5p (treatment); Lanes 8–
10: U6 (control); Lanes 11–13: U6 
(treatment) 

 
3.4 Target Gene Prediction of miR-21-5p 
 

Table 3 shows a portion of the results generated from TargetScanMouse 8.0 for miR-21-5p target 
prediction. The complete list of predicted targets is accessible via the provided link. 
(https://data.mendeley.com/datasets/cgvj9jd8c4/1) 

 
   Table 3 
   Output from TargetScanMouse 8.0 for miR-21-5p target prediction 

 
 

It was discovered that 303 mRNA transcripts (target genes) had conserved binding sites for miR-
21-5p. Among these, the transcripts contain 322 conserved sites and 106 poorly conserved sites. miR-
21-5p can interact with multiple target genes as it only requires partial complementarity with the 3' 
UTR of target mRNA sequences to exert its regulatory effects. This unique characteristic of miRNAs 
enables miR-21-5p to regulate a broad spectrum of genes simultaneously, thereby influencing various 
signalling pathways and cellular functions [59]. 

The binding of miR-21 to its target genes involves both seed pairing and 3ʹ supplemental pairing 
[60]. Watson–Crick base-pairing principles govern seed pairing, where uracil (U) pairs with adenosine 
(A) and cytosine (C) pairs with guanine (G) [40]. The 'seed region’, encompassing nucleotides 2–8 at 
the 5ʹ-end of the miRNA facilitates the canonical miRNA–target interactions, where they will bind to 
the miRNA responsive elements (MREs), the complementary sites that typically located in the 3ʹUTRs 

https://data.mendeley.com/datasets/cgvj9jd8c4/1
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of target mRNAs, leading to translational inhibition or repression. However, MREs can also be found 
within the protein coding sequence or 5ʹUTRs [61]. Among the canonical binding sites, 8mer-A1 sites 
which are characterised by complementarity at positions 2–8 and the presence of a t1A, demonstrate 
the highest regulatory efficiency. These sites are followed in decreasing regulatory strength by 7mer 
sites (complementarity at positions 2–8), 7mer-A1 sites (complementarity at positions 2–7 and a t1A), 
6mer sites (complementarity at positions 2–7) and 6mer offset sites (complementarity at positions 
3–8), as illustrated in Figure 4 [62]. 
 

 
Fig. 4. Types of miRNA-mRNA interaction 
contributing to different regulatory efficiencies [62] 

 
As the seed region of miR-21 has been reported to have low GC content, seed pairing with target 

mRNAs is relatively weak and 3ʹ supplemental pairing is required [60].  The 3ʹ supplemental pairing 
plays a crucial role in determining the specificity and efficiency of miRNA target recognition. During 
this process, additional nucleotides, specifically positions 13–16, become accessible after the initial 
seed pairing between the miRNA seed region and its target mRNA. This interaction induces a 
conformational change in the AGO protein, further stabilising the miRNA-mRNA complex and 
enhancing target regulation [63]. 

Alternative polyadenylation (APA), a process that occurs during the maturation of pre-mRNA, 
allows most mammalian genes to utilise multiple polyadenylation sites [64]. This mechanism 
generates distinct 3ʹ termini on mRNAs, enabling a single gene to produce multiple transcript variants 
with diverse 3ʹ UTR compositions. Such variations in 3ʹ UTR isoforms can include or exclude miRNA 
binding sites, leading to changes in transcript abundance, stability and translation efficiency. Poly(A)-
position profiling by sequencing (3P-seq) is a technique capable of globally identifying novel APA 
events by generating reads directly adjacent to the poly(A) tail, which facilitates precise 
quantification of 3ʹ UTR isoforms [65]. In other words, a higher number of 3P-seq tags provides strong 
experimental evidence for miRNA-mRNA interactions, enhancing confidence in the predicted 
regulatory relationships. 

Out of the 303 predicted target genes, SMAD7 was selected for further validation via RT-PCR 
analysis. This selection was primarily based on the high-confidence interaction between miR-21-5p 
and SMAD7, supported by a high number of 3P-seq tags (871) and the presence of an 8mer seed 
match, a site type considered the most reliable for miRNA target prediction [66]. Figure 5 illustrates 
the predicted binding interaction, showing the 8mer site located at positions 1165–1172 within the 
SMAD7 3ʹ UTR. In addition, SMAD7 is a disease-relevant gene, acting as a negative regulator of the 
TGF-β signalling pathway. Its downregulation has been associated with pathological processes such 
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as uncontrolled cell proliferation, fibrosis and chronic inflammation [67]. This highlights its 
importance as a target for further investigation. 

 

 
Fig. 5. Predicted consequential pairing between 
SMAD7 (top) and miR-21-5p (bottom) generated 
using TargetScanMouse 8.0 

 
3.5 RT-PCR Products of SMAD7 and GAPDH Analysed by Agarose Gel 
 

The RT-PCR amplification was successful, yielding a single distinct band at approximately 100 bp 
across most of the lanes as shown in Figure 6. No non-specific amplification products of varying sizes 
were detected but higher degree of smearing was observed in the lanes corresponding to the treated 
group. This observation may reflect partial cDNA template degradation resulting from compromised 
RNA integrity [68]. Furthermore, the band intensity for the housekeeping gene, GAPDH appeared 
inconsistent across samples. This inconsistency may be attributed to RNA degradation, which can 
eliminate critical primer binding regions required for efficient reverse transcription [69]. Such 
degradation can lead to biased or reduced cDNA synthesis, potentially causing some transcripts to 
be underrepresented or undetectable in downstream analysis. Consequently, it is crucial to maintain 
RNA integrity by avoiding repeated freeze–thaw cycles and ensuring the use of RNase-free reagents 
and equipment throughout the extraction and PCR procedures. On top of that, variation in GAPDH 
band intensity may also result from pipetting errors, as improperly calibrated pipettes can introduce 
significant systematic bias. Therefore, regular pipette calibration is crucial to ensure accuracy and 
reproducibility [70].  
 

 
Fig. 6. Gel image of PCR products. Lane 1: 
1 kb DNA ladder; Lanes 2–4: SMAD7 
(control); 5–7: SMAD7 (treatment); 8–10: 
GAPDH (control); 11–13: GAPDH 
(treatment). 

 
3.6 Relative Gene Expression Analysis of miR-21-5p and Its Target Gene Using ImageJ 
 

The band intensities corresponding to miR-21-5p and the reference gene U6 were quantified 
using ImageJ software. In order to determine the relative expression of miR-21-5p, normalisation was 
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carried out by calculating the ratio of the target gene (miR-21-5p) integrated density to that of the 
reference gene (U6). The normalised band intensity for each sample is presented in Table 4, reflecting 
the expression levels of miR-21-5p. The mean relative expression for each group based on triplicate 
samples was subsequently calculated. 

 
     Table 4 
     Normalised band intensity of miR-21-5p in the control (C) and treatment (T) group respectively 

Sample  Integrated density Normalised 
intensity 

Mean ± standard error 
miR-21-5p U6 

C1 5041.731 7614.853 0.66 0.55±0.059 
C3 5508.439 11889.924 0.46 
C5 6109.095 11651.711 0.52 
T1  2787.811 13543.439 0.21 0.21±0.009 
T2 3315.104 14534.439 0.23 
T6 2642.861 13102.803 0.20 

 
A reduction in miR-21-5p expression was observed, decreasing from 0.55 ± 0.059 in the control 

group to 0.21 ± 0.008 in the treatment group. As shown in Figure 7, this reduction was statistically 
significant, as indicated by a p-value of 0.028, suggesting that Moringa treatment significantly 
downregulated miR-21-5p expression. 

This observation aligns with earlier research reporting the downregulation of miR-21-5p 
expression following treatment with naturally derived compounds. Moringa treatment significantly 
lowered miR-21-5p levels in high fat diet (HFD)-induced C57BL/6J mice, following an eight weeks 
supplementation at a dosage of 290 mg/kg [71]. Similarly, quercetin treatment at a concentration of 
15 mg/mL effectively attenuated TGF-β-induced miR-21-5p upregulation in HK-2 cells after 72 hours 
of exposure [72]. Furthermore, a significant reduction in miR-21 expression in thioacetamide-induced 
albino Wistar rats treated with 20 mg/kg of gallic acid and ferulic acid for six weeks [73]. 

This modulation of miRNA expression following Moringa treatment is likely attributed to its rich 
phytochemical composition, particularly its high flavonoid content [74,75]. Among these, quercetin 
stands out as the predominant compound in Moringa extracts, with the highest reported 
concentration being 16.64 mg/g of dry weight [76]. Quercetin exhibits strong anti-inflammatory and 
antioxidant properties, which contribute to the suppression of inflammatory cytokines such as IL-6 
via inhibition of the IKK/NF-κB signalling pathway [77]. Specifically, quercetin interferes with IκB 
kinase (IKK) activity, thereby preventing phosphorylation and subsequent proteasomal degradation 
of IκBα. This stabilisation of IκBα inhibits the translocation of NF-κB to the nucleus, leading to 
decreased transcription of NF-κB-regulated genes, including IL-6. Reduced IL-6 levels subsequently 
diminish STAT3 phosphorylation, as activation of the JAK/STAT3 pathway is attenuated, impairing 
STAT3 dimerisation and nuclear translocation [78]. Since STAT3 is a key transcription factor that 
initiates miR-21 transcription by binding to promoter elements located between −4528 and −3340 
base pairs upstream of the transcription start site, its inhibition consequently leads to decreased 
expression of miR-21-5p [79]. 

The normalised band intensity of SMAD7 for each sample was calculated by dividing its integrated 
density by that of the reference gene, GAPDH. The mean relative expression for each group based on 
triplicate samples was subsequently calculated and presented as in Table 5. 
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     Table 5 
     Normalised band intensity of SMAD7 in the control (C) and treatment (T) group respectively 

Sample  Integrated density Normalised 
intensity 

Mean ± standard error 
SMAD7 GAPDH 

C1 13645.957 3354.669 4.07 2.61±0.979 
C3 4253.205 5646.075 0.75 
C5 13630.472 4534.347 3.01 
T1  21368.371 3667.79 5.83 3.29±1.374 
T2 21872.371 19679.714 1.11 
T6 17190.421 5846.51 2.94 

 
An increase in SMAD7 mRNA expression was observed, rising from 2.61 ± 0.979 in the control 

group to 3.29 ± 1.373 in the treatment group. However, as shown in Figure 8, this increase was not 
statistically significant (p = 0.7083), suggesting that Moringa treatment did not significantly affect 
SMAD7 expression levels. 

 

  
Fig. 7. Relative 
expression of miR-21-
5p in control and 
treatment groups (p 
&lt; 0.05); Data were 
presented as 
mean ± SEM, n = 3 
mice/group 

Fig. 8. Relative 
expression of SMAD7 
in control and 
treatment groups; 
Data 
were presented as 
mean ± SEM, n = 3 
mice/group 

 
This finding is consistent with a previous study that demonstrated increased SMAD7 mRNA 

expression in miR-21 knockout mice using RT-PCR [80]. Similarly, treatment with 50 mg/kg of 
quercetin resulted in decreased miR-21 expression and elevated SMAD7 protein levels in cadmium 
chloride-treated rats [81]. These support the role of miR-21-5p as a negative regulator of SMAD7. 

SMAD7 has been validated as a direct target of miR-21-5p in a previous study using dual-luciferase 
reporter assays, qRT-PCR, and Western blot analysis [82]. An 8-nucleotide miR-21-5p binding site was 
identified within the 3ʹ UTR of SMAD7. Transfection of miR-21-5p mimics into NIH3T3 fibroblasts led 
to reduced luciferase activity in reporter constructs containing the wild-type SMAD7 3ʹ UTR, along 
with decreased SMAD7 mRNA and protein levels. 

The observed increase in SMAD7 mRNA expression may be attributed to a reduced occurrence of 
miR-21-5p-induced mRNA degradation via deadenylation mechanisms as a result of decreased miR-
21-5p levels [83]. In this process, GW182, a key component of the miRISC recruits the CCR4–NOT 
deadenylase complex to facilitate the removal of the mRNA’s poly(A) tail. Following deadenylation, 
the mRNA undergoes decapping by the DCP2 enzyme, after which it is degraded by the major 
cytoplasmic 5ʹ to 3ʹ exonuclease XRN1. On top of that, target mRNA translation is essential for miRNA-
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mediated mRNA destabilisation, as reduced miRNA levels significantly increased mRNA expression of 
protein-coding genes, whereas long noncoding RNAs (lncRNAs), which are less actively translated 
were minimally affected by miRNA loss [84]. 

Furthermore, a previous study proposed that animal miRNAs primarily regulate the expression of 
functional target genes at the protein level [85]. Therefore, additional analysis such as Western 
blotting could be employed to assess changes in SMAD7 protein levels, providing further validation 
of whether the observed changes in mRNA expression are reflected at the translational level. 
 
4. Conclusions 
 

In conclusion, all objectives of this study were successfully achieved. Oral administration of 
300 mg/kg Moringa extract for 12 consecutive days significantly reduced miR-21-5p expression in 
BALB/c mice (p < 0.05). TargetScan predicted 303 potential target genes, among which SMAD7 was 
selected for RT-PCR analysis due to its strong predicted interaction with miR-21-5p and its relevance 
to disease pathways. The downregulation of miR-21-5p was associated with an upregulation of 
SMAD7 mRNA expression, supporting the possibility that SMAD7 is a direct target of miR-21-5p. For 
future studies, techniques such as Western blotting could be employed to assess SMAD7 protein 
levels. Additionally, qRT-PCR is recommended for future miRNA and target gene expression analysis 
due to its high sensitivity, specificity and efficiency. 
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