

Semarak International Journal of Applied Sciences and Engineering Technology

Journal homepage:
<https://semarakilmu.my/index.php/sijaset/index>
ISSN: 3030-5314

Kosmos 954: Nuclear Risk from Space

Adib Afdhal Daud¹, Siti Amira Othman^{1,*}, Mohd Ilhan Maffis Zaidi¹, Muhammad Syahmi Khairul Azman¹, Nurain Natasha Badarozaman¹

¹ Department of Physics and Chemistry, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, 84600, Pagoh, Johor, Malaysia

ARTICLE INFO

ABSTRACT

Article history:

Received 11 July 2025

Received in revised form 14 August 2025

Accepted 20 September 2025

Available online 11 October 2025

The 1978 Kosmos 954 incident, involving the uncontrolled reentry of a Soviet nuclear-powered satellite over Canadian territory, underscored the environmental, public health, and diplomatic risks of using nuclear power in space exploration. The resulting radioactive contamination prompted extensive cleanup operations and high-level negotiations between Canada and the Soviet Union, ultimately influencing global policy and operational practices. In the decades since, space agencies have implemented stricter safety protocols, improved reactor disposal methods, and adopted controlled deorbiting techniques to minimize similar hazards. This case study highlights the importance of robust legal frameworks, proactive risk mitigation strategies, and sustained international collaboration to ensure responsible use of nuclear technologies in orbit. Future priorities for space exploration should include the development of safer energy alternatives, investment in advanced monitoring systems, and reinforcement of global agreements to safeguard both the environment and human health while enabling the continued pursuit of space exploration.

Keywords:

Geographic Information System; digital campus; map

1. Background of Location

Cosmos 954 was launched in the Soviet Union on 18 September 1977. The satellite was equipped with a nuclear-powered reactor to generate the necessary energy for its radar. By November, U.S. tracking radars had observed an unusual decay in its orbit [1]. The satellite was designed to operate in low Earth orbit and expected to follow a controlled path to ensure safe disposal of its nuclear reactor. However, due to unforeseen circumstances, Kosmos 954 re-entered Earth's atmosphere uncontrollably on January 24, 1978.

A Soviet nuclear-powered surveillance satellite, COSMOS 954, crashed in the Northwest Territories on January 24, 1978. Over a 124,000 square kilometer area in northern Canada, extending south from Great Slave Lake into northern Alberta and Saskatchewan, the crash dispersed a tremendous amount of radioactivity [2]. The event prompted an extensive cleanup operation, known

* Corresponding author.

E-mail address: siti.amira@uthm.edu.my

as Operation Morning Light, which was a joint effort between Canadian and U.S. This incident raised a serious concern regarding the safety of nuclear-powered satellites and the potential hazards associated with their uncontrolled re-entry. The Canadian government officially demanded compensation from the Soviet Union, citing the 1972 Space Liability Convention.

2. Method of Handling Nuclear Emergency

The Kosmos 954 crash was a major international incident that featured a massive cleanup effort to recover radioactive debris and minimize environmental contamination. The Soviet RORSAT (Radar Ocean Reconnaissance Satellite) launched on September 18, 1977, was designed to track naval movements using a nuclear reactor as a power supply. In contrast to other satellites, which are equipped with solar panels or batteries, Kosmos 954 was powered by a highly enriched uranium-235 reactor. Standard procedure for Soviet RORSAT satellites was to deposit the reactor core in a higher "graveyard orbit" at the end of its mission to prevent radioactive contamination upon re-entry. Due to a malfunction of onboard systems, however, Soviet engineers lost control of Kosmos 954 and were unable to perform the planned disposal maneuver. As a result, the satellite started an uncontrollable descent to Earth, with a high risk of nuclear contamination upon impact [3].

On January 24, 1978, Kosmos 954 re-entered the Earth's atmosphere and broke apart over northwestern Canada, depositing debris across an area nearly 600 kilometers (370 miles) long, covering the Northwest Territories, Alberta, and Saskatchewan. Since the reactor of the satellite had not been jettisoned safely into space, radioactive material was dispersed over the Canadian wilderness regions. The wreckage included uranium-235 and other radioactive isotopes, which posed a significant environmental and health risk. Although some of the pieces were incinerated on re-entry, others withstood the descent and fell in populated regions, prompting the Canadian government to express concern immediately. International space law then made nations that launched satellites responsible for damage they caused on reentry, so this was one of the first real-world tests of space liability treaties [4].

The Canadian and U.S. governments reacted to the crash by launching "Operation Morning Light," a large cleanup operation to locate and safely dispose of radioactive debris. The first phase of the operation was conducted from January to April 1978, and follow-up operations continued until October 1978. Search teams used aerial searches, Geiger counters, and radiation detectors to track down pieces of Kosmos 954. Because of the vast and remote nature of the impact zone, the cleanup operation was extremely challenging. Some of the debris had been fairly intact, but other fragments had dispersed across heavy forest, frozen lakes, and mountains. About 12 large chunks of radioactive debris were retrieved, including sections of the nuclear reactor of the satellite, which emitted exceedingly hazardous levels of radiation. Special teams worked to contain and extract contaminated materials for secure disposal facilities, but tiny quantities of debris were never regained in the wild.

Authorities also took steps in protecting public health and preventing radiation exposure. Warnings were issued to local communities and Aboriginal communities, advising them to avoid any unknown metal objects within the affected areas. Sections of some areas were closed temporarily due to radiation concerns, while environmental monitoring teams assessed the long-term impact of the contamination. Although it was believed that most of the radioactive material had been retrieved, the accident drew attention to the risks posed by nuclear-powered satellites and the potential for future satellite crashes [5].

Diplomatically, the incident made Canada-Soviet relations tense, as Canada demanded monetary compensation under the 1967 Outer Space Treaty and the 1972 Space Liability Convention, which both held nations responsible for any damage incurred by their space objects. The Soviet Union had

been reluctant to accept complete liability, but after years of negotiation, they ultimately agreed to pay \$3 million CAD in 1981 to finance the cleanup operation [6]. This was one of the first effective applications of international space liability laws and set a precedent for how space accidents would be dealt with in the future.

The Kosmos 954 crash served as a wake-up call to the global space community regarding the dangers of nuclear-powered satellites and the need for better safety considerations. The Soviet Union redesigned its RORSAT program as a result of the crash, and subsequent satellites ejected their nuclear reactors into higher, long-duration orbits before reentry, rendering future incidents unlikely. The event also highlighted the challenge of tracking and handling space debris, especially as space programs of several countries increased. The Kosmos 954 incident remains one of the most significant examples of radioactive contamination caused by space debris, demonstrating the potential hazards of unregulated nuclear capability in space missions [7].

3. Discussion

The crash of the Kosmos 954 satellite was caused by a malfunction in its nuclear-powered system, leading to the loss of orbit control and uncontrolled reentry into the atmosphere of Earth. The satellite was part of the Soviet RORSAT (Radar Ocean Reconnaissance Satellite) program, which was designed to track naval movement using a powerful nuclear reactor. Normally, these satellites would discard their reactor cores into a more distant "disposal orbit" at the end of their mission to prevent radioactive contamination on the planet. But with Kosmos 954, a failure of its onboard systems did not permit this to take place [8].

Due to this technological malfunction, Soviet engineers were unable to execute the planned disposal maneuver, and Kosmos 954 went into an uncontrolled fall towards the Earth. The satellite re-entered Earth's atmosphere on January 24, 1978, breaking apart over Canada's Northwest Territories. Its radioactive fallout spread over a radius of 600 km (370-mile), with regions of Alberta, Saskatchewan, and the Northwest Territories affected. The accident led to a large-scale cleanup operation, Operation Morning Light, to find and recover the radioactive material [9].

The root causes of the accident were likely design flaws, system malfunctions, and possible operator errors in the operation of the satellite's reactor ejection system. The accident raised serious questions about the safety of nuclear satellite power and potential hazards of radioactivity from space debris [10].

The Kosmos 954 crash was long-term, with implications extending to environmental security, foreign policy, and space policy. Radioactive debris from Kosmos 954 contaminated huge areas of Canada's Northwest Territories, Alberta, and Saskatchewan. Though the larger radioactive fragments were recovered in Operation Morning Light, minute fragments remained undetected and may pose long-term risks to wildlife and aboriginal communities. Radioactive isotopes such as uranium-235 might have caused long-term impacts on the environment by contaminating water and land, although prolonged research on recovery in the environment is limited. Exposure to radioactive material, however minute, has risks of radiation poisoning and increased cancer. No reports of radiation sickness ensued, but the possibility of long-term health impacts for anyone who could have been exposed to the wreckage remains an issue. The accident highlighted the dangers of nuclear-powered space travel on human populations. The accident established precedent in global space law since Canada demanded compensation under the 1972 Space Liability Convention. After several months of negotiations, the Soviet Union settled \$3 million CAD as compensation. The case was significant in holding nations responsible for the consequences of their space activities and in strengthening international liability treaties regarding satellite re-entry crashes [11].

Following the accident, stricter controls were imposed on the launching of nuclear-powered satellites. The Soviet Union modified its RORSAT program so that subsequent satellites would dispose of their reactors in safer orbits prior to re-entry into the atmosphere. Space agencies around the world also increased attempts at tracking and regulating space debris to prevent such accidents. The accident also provoked discussion regarding the development of alternative, non-nuclear energy sources for space missions. Kosmos 954 was an eye-opener to the international space community as it exposed the risks of nuclear-powered satellites and the need for better emergency response. Governments and space agencies have since upgraded monitoring and tracking equipment on space debris and enhanced procedures for responding to potential nuclear contamination from satellites malfunctioning in the future [12].

The Kosmos 954 disaster brought to light the risks associated with utilizing nuclear reactors in space, especially if the satellite's deorbiting system malfunctions. This incident made it evident that nuclear-powered spacecraft require better safety measures and backup procedures. The joint U.S.-Canada response to the disaster underscored the significance of global collaboration in resolving mishaps involving space. Operation Morning Light demonstrated the need for prompt action, specialized detection tools, and coordinated cleanup activities, and it served as a model for future nuclear accident responses. Following the Kosmos 954 incident, governments and space agencies around the world reexamined their regulations on nuclear-powered satellites. In order to stop such occurrences, stronger rules for the use of nuclear materials in space and better technologies for disposing of satellites were developed. The extensive spread of radioactive waste highlighted the possible long-term health and environmental hazards associated with nuclear mishaps in space. It emphasized how crucial it is to keep an eye on and control radioactive contamination brought on by space operations [13].

Enhancing the safety features and design of nuclear-powered satellites is one of the most important ways to stop tragedies like Kosmos 954. Failure-safe features, like an automatic ejection mechanism that can isolate the nuclear reactor from the main body in the case of a malfunction, should be included in future satellites. This would lessen the possibility of radioactive contamination on Earth by enabling the reactor to be relocated to a safe disposal orbit. To reduce the amount of radioactive material released in the case of an uncontrolled re-entry, advancements in shielding materials should also be investigated. Enhancing these technological features would increase nuclear-powered satellites' overall dependability and safety [14].

Investing in alternative energy sources for space missions is another crucial strategy to lessen dependency on nuclear reactors. As safer and more environmentally friendly power sources, research and development should concentrate on fuel cells, high-efficiency solar cells, and sophisticated battery storage systems. For satellites in low-Earth orbit (LEO), where solar power is a practical option, these alternative energy technologies can be especially helpful. Space agencies can drastically reduce the need for nuclear power in satellites and thereby lower the risks of radioactive contamination and uncontrolled reentry by giving priority to the development of compact and efficient energy systems.

The risks posed by nuclear-powered satellites require increased international cooperation and regulatory enforcement. Stricter guidelines for the launch, use, and disposal of satellites carrying radioactive materials should be incorporated into existing agreements, such as the Space Liability Convention of 1972. Before launching nuclear-powered satellites, space exploration nations ought to be obliged to submit comprehensive backup plans. To monitor space assets carrying radioactive materials and enable early failure detection and timely warnings to affected regions, a global satellite tracking system should also be developed [15]. These steps will guarantee increased responsibility and readiness for handling possible nuclear satellite mishaps.

4. Conclusions

An important case study highlighting the risks of using nuclear power in space exploration is the Kosmos 954 incident. Due to the satellite's unplanned reentry, a large geographic area became contaminated with radioactive material, necessitating lengthy cleanup operations and diplomatic discussions between Canada and the Soviet Union. This incident emphasises the need for strict safety protocols and ongoing technological development in space operations to avoid future occurrences of this kind. Lessons from Kosmos 954 have influenced policy changes over time, raising awareness and regulating nuclear-powered satellites. In order to reduce the risks to the environment and public health, space agencies have since implemented more efficient safety measures, such as improved reactor disposal plans and controlled deorbiting techniques. The incident has also highlighted the necessity of strong legal frameworks to encourage responsible space activities and the crucial role that international cooperation plays in addressing space-related hazards. The creation of safer energy sources and the application of thorough safety regulations ought to be the top priorities for space exploration going forward. Reducing the risks associated with nuclear-powered missions will require investing in cutting-edge technologies, strengthening monitoring systems, and enforcing international agreements. Humanity can continue to explore space while protecting the environment and its inhabitants from potential nuclear-related threats by promoting international cooperation and proactive planning.

Acknowledgement

The authors would like to thank the Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia for the facilities provided that make the research possible

References

- [1] Rand, Lisa Ruth. "Falling cosmos: Nuclear reentry and the environmental history of earth orbit." *Environmental History* (2019).
- [2] Lackenbauer, P. Whitney, and Ryan Dean. "Applied science and practical cooperation: Operation Morning Light and the recovery of cosmos 954 in the Northwest Territories, 1978." In *Cold Science*, pp. 236-255. Routledge, 2019.
- [3] Health Canada. (2019, September 3). *Previous nuclear incidents and accidents: COSMOS 954*. Canada.ca.
- [4] Dart, C. (2022, November 14). In 1978, a Soviet satellite exploded over traditional Dené land. Its effects are still felt today. *CBC*.
- [5] Plainly Difficult. (2021, March 20). *A Brief History of: The Kosmos 954 Nuclear reactor Crash (Documentary)* [Video]. YouTube.
- [6] The National Security Archive. (n.d.). *The life and death of Cosmos 954*. George Washington University. Retrieved April 3, 2025, from <https://nsarchive2.gwu.edu/nukevault/ebb267/10.pdf>
- [7] Schwartz, Julia. "Emergency preparedness and response: compensating victims of a nuclear accident." *Journal of hazardous materials* 111, no. 1-3 (2004): 89-96. [doi: 10.1016/j.jhazmat.2004.02.030](https://doi.org/10.1016/j.jhazmat.2004.02.030).
- [8] Ohba, Takashi, Koichi Tanigawa, and Liudmila Liutsko. "Evacuation after a nuclear accident: Critical reviews of past nuclear accidents and proposal for future planning." *Environment international* 148 (2021): 106379. [doi: 10.1016/j.envint.2021.106379](https://doi.org/10.1016/j.envint.2021.106379).
- [9] Gale, Robert P., James O. Armitage, and Shahrukh K. Hashmi. "Emergency response to radiological and nuclear accidents and incidents." *British journal of haematology* 192, no. 6 (2021): 968-972. [doi: 10.1111/bjh.16138](https://doi.org/10.1111/bjh.16138).
- [10] Sweeck, L., J. Camps, R. Mikailova, and T. Almahayni. "Role of modelling in monitoring soil and food during different stages of a nuclear emergency." *Journal of Environmental Radioactivity* 225 (2020): 106444. [doi: 10.1016/j.jenvrad.2020.106444](https://doi.org/10.1016/j.jenvrad.2020.106444).
- [11] Japan's nuclear crisis. *Lancet Oncol*. 2011 May;12(5):409. doi: 10.1016/S1470-2045(11)70100-0.
- [12] Hulsmans, M., and P. De Gelder. "Probabilistic analysis of accident precursors in the nuclear industry." *Journal of hazardous materials* 111, no. 1-3 (2004): 81-87. [doi: 10.1016/j.jhazmat.2004.02.029](https://doi.org/10.1016/j.jhazmat.2004.02.029).
- [13] Kai, M. "ICRP recommendations for recovery." *Annals of the ICRP* 50, no. 1_suppl (2021): 8-14. [doi: 10.1177/01466453211006809](https://doi.org/10.1177/01466453211006809).

- [14] Grimston, Malcolm, William J. Nuttall, and Geoff Vaughan. "The siting of UK nuclear reactors." *Journal of Radiological Protection* 34, no. 2 (2014): R1. [doi: 10.1088/0952-4746/34/2/R1](https://doi.org/10.1088/0952-4746/34/2/R1)
- [15] Lafortune JF, Waller E. Nuclear emergencies and natural disasters. *J Emerg Manag*. 2019 Jul/Aug;17(4):257-269. [doi: 10.5055/jem.2019.0425](https://doi.org/10.5055/jem.2019.0425).