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ARTICLE INFO ABSTRACT

Article history: This research aims to model the population dynamics of the Bonylip Barb Fish
Received 6 May 2025 (Osteochilus vittatus Valenciennes) and predator fish in Rawa Pening Lake using the
Received in revised form 18 July 2025 Lotka-Volterra predator-prey mathematical model. The purpose of this study is to
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understand the interaction between the Bonylip Barb Fish and predator fish, as well as
Available online 15 September 2025

to determine the equilibrium points and the stability of the populations of both
species. The methods used include constructing the mathematical model, determining
equilibrium points, linearizing the model, analyzing the stability of the equilibrium
points, and performing numerical simulations using Google Colab. The results show
that the predator-prey mathematical model is effective in describing the interaction
between the Bonylip Barb Fish and predator fish in Rawa Pening Lake. The equilibrium
points obtained are T; when both populations are extinct, T, when the predator
population is extinct, T; when the prey population is extinct, and T, when both
populations interact, showing system stability with damped oscillations. This means
that the populations of both species will oscillate around the equilibrium point, but
disturbances from equilibrium will decrease over time. This indicates that the
population system of the Bonylip Barb Fish and predator fish in Rawa Pening Lake has

Keywords: long-term stability. This research provides important contributions to the management
Bonylip barb fish; mathematical model; and conservation of the Rawa Pening Lake ecosystem by providing a better
predator-prey understanding of the population dynamics of the Bonylip Barb Fish in the lake.

1. Introduction

Bonylip Barb Fish (Osteochilus Vittatus Valenciennes) is one of the endemic fish species
originating from Rawa Pening [1]. Over time, it is known that the population of Bonylip Barb Fish
continues to decline every year. According to research conducted by Yanto, the results of surveys
conducted on fishermen in various places show that catching Bonylip Barb Fish is increasingly
difficult, so it can be concluded that the number of Bonylip Barb Fish has decreased by more than
ten percent [2]. According to information from the Semarang Regency Fisheries Service, the decline
in the population of Bonylip Barb Fish is caused by predation activities by predatory fish against
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Bonylip Barb Fish species [3]. The decline in the population of Bonylip Barb Fish raises concerns about
the potential scarcity and even extinction of Bonylip Barb Fish .

This decline has become a serious concern for interested parties, especially the Fisheries Service
and local communities, as it can have a major impact on ecosystem balance and the sustainability of
fisheries resources. One scientific approach that can be used to understand the population dynamics
of Bonylip Barb Fish is through the analysis of Predator-Prey models. This model helps identify the
complex relationship between predator fish and prey fish, and how ecological and environmental
factors can affect the population dynamics of both.

The Predator-Prey model based on the Lotka-Volterra model is one of the most popular models
in ecological mathematics [4]. According to Luckinbill [5] considered a prey - predator population
model and showed that prey and predator populations can live together for a long period of time
when the frequency of contact between the two is reduced [5].

Some previous research shows that there have been various studies analyzing the Predator-prey
model in aquatic ecosystems. The first research conducted by Resmi et al., [6] entitled “Optimal
Control of Water Hyacinth Population Growth with Grass Carp and Harvesting”. This research focuses
on optimal control of water hyacinth populations using grass carp and harvesting methods using the
Predator-Prey model with the Holling type Ill response function [6] . The second research conducted
by limiawan et al., [7] entitled “Analysis of Water Hyacinth Predator-Prey Model with Grass Carp and
Harvesting”. This research focuses on analyzing the population of water hyacinth with grass carp and
harvesting using the holling type Il function [7].

The third research conducted by Wijayanto et al., [8] entitled “The Predator-Prey Model On
Squids And Anchovies Fisheries In Jepara District, Central Java, Indonesia”. This study examines the
Predator-Prey model on anchovies and squid fisheries in Jepara. This study provides insight into the
Predator-Prey dynamics in the context of anchovy and squid fisheries [8]. The fourth research
conducted by Pratiwi et al., [9] entitled “Analysis of Predator-Prey Mathematical Models of Fisheries
in Polluted Aquatic Ecosystems”. This research focuses on analyzing the Predator-Prey mathematical
model in polluted aquatic ecosystems using the Lotka-Volterra model [9]. Finally, the fifth research
conducted by Zhuraedah et al., 2022 entitled “Predator - Prey Modeling Case Study: Spiny Starfish
(Acanthaster Planci) and Coral Reefs”. This research examines the Lotka Volterra Predator-Prey
model in the population of spiny starfish and coral reefs [10].

Based on these five researchers, the author wants to build a Lotka Volterra predator-prey model
and then analyze the stability of the model and conduct numerical simulations to see the condition
of the two populations based on the stability point. The author assumes the model occurs in the
population of Bonylip Barb Fish and predator fish. Based on information, Bonylip Barb Fish is one of
the animals whose population is currently decreasing.

By analyzing the dynamics of the Predator-Prey model on the decline of the Bonylip Barb Fish
population in Lake Rawa Pening, it is expected to find deep insights into changes in interactions
between species and environmental factors that play an important role. This research will not only
provide a better scientific understanding of changes in the ecosystem and fish populations in the
lake, but can also help design appropriate and sustainable conservation policies.

2. Methodology
The type of research used is literature study and quantitative analysis. This research also uses a
guantitative approach through dynamic analysis of Predator-Prey mathematical models. The

variables used in this study are the population of Bonylip Barb Fish as prey (W) and the population of
Predator fish (P). The parameters used in this study include the intrinsic growth rate parameter for
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Bonylip Barb Fish (a), natural mortality of Bonylip Barb Fish (i), consumption rate of Predator fish
(B), interaction rate of Bonylip Barb Fish and Predators (68), natural mortality of Predator fish (y) and
competition between Predators (). The stages carried out in this study, namely: (1) determine the
problem that causes the population of Bonylip Barb Fish to decline, (2) determine the variables for
both species, (3) make assumptions for both species by adding parameters, (4) create a predator-
prey mathematical model, (5) determine and analyze the equilibrium point, (6) perform numerical
simulations using Google colab, (7) draw conclusions.

3. Results
3.1 Predator-Prey Model Construction

In this section, the predator-prey model is constructed based on the research variables and
parameters using the Lotka-Volterra predator-prey model.
a. Population growth of Bonylip Barb Fish (prey)
The population density of yellow perch is represented as W at time t. The prey population

grows logistically aW (1 - %) where a is the intrinsic growth rate of yellow perch, and assumes

the absence of predator fish and the existence of an environmental capacity limit K. The growth
rate of yellow perch decreases under two assumptions. The first assumption is that Bonylip Barb
Fish decline due to natural mortality u and the second assumption is that Bonylip Barb Fish
decline due to predation by predatory fish 5. So that the population growth rate of Bonylip Barb
Fish can be written as follows:

ow w

EzaW(l—?)—yW—,BWP )

b. Population growth of predatory fish (predator)

The population density of yellow perch is represented as P at time t. The growth rate of the
predator fish population follows that of the Bonylip Barb Fish population §. The growth rate of
predator fish will decrease under two assumptions. The first assumption is that predator fish will
decrease due to starvation causing natural mortality y and the second assumption is due to
competition between predators . So the growth rate of predator fish can be written as follows:

P
=7 = 0WP —yP — P’ )

c. Predator-prey Model Construction Results
Based on the assumptions described above, and referring to equations (1) and (2), the
interaction model between Bonylip Barb Fish and predatory fish is obtained as follows:
aw w
W: aW(l—?)—uW—[)’WP
(3)

aP—(SWP P — P2
ot ye—n

3.2 Determination of Equilibrium Point

The equilibrium point in the system of equations (3) can be obtained by making the right-hand
side of each equation equal to zero, then:

aW
(X—T—[J—ﬁp wWw=20
[6W —y —mP] P =0
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As a result, the following equilibrium points are obtained:

a. PointT; = (0,0). This equilibrium point indicates that in this condition there is no population of
Bonylip Barb Fish and predator fish or the point where both populations are extinct in Rawa
Pening lake.

b. Point T, = (K(aa_”)
becomes extinct, the Bonylip Barb Fish population will experience a significant increase. Without

Predator fish preying on the Bonylip Barb Fish, the Bonylip Barb Fish population can grow rapidly
due to the lack of predation pressure.

,0). This equilibrium point means that if the Predator fish population

c. Point T; = (O,—%). This equilibrium point is negative, so it does not meet the population

requirement. Where the population must be positive.
. __ (K(am+By—un) SKa-S6Ku-—ay

d. Point T4 - ( SKB+ar ' SKB+am
where the interaction between Bonylip Barb Fish and predatory fish, along with environmental
factors such as birth rate, natural mortality, and inter-species interactions, regulates the

population of both in the long run.

). This equilibrium point reflects a dynamic equilibrium

3.3 Analysis of Equilibrium Point Stability

The predator-prey model in the system of equations (3) is a system of non-linear differential
equations, so to determine the stability of the system, a linearization process is required. The
linearization process is done using the Jacobian matrix as follows:

a
a—2=W —u—pP —-BW
j= [ gV oEP g 4)
6P oW —y—2Prn

By substituting the equilibrium points into the jacobian matrix, the eigenvalue of the

determinant of the jacobian matrix is obtained, so that :
a. Stability analysis of point T; = (0,0).
The jacobian matrix of the equilibrium point of extinction of the population of Bonylip Barb Fish
and Predator fish T; = (0,0) is
a— 0
jay=("g" 2) (5)

Furthermore, the characteristic equation of the Jacobian matrix J(T;)with det(J(T;) — AI) = 0

can be formed, namely:

(@a—p-D(=y-1=0
The eigenvalues of the matrix J(T;) are 4, = a —pu and A, = —y. This shows that the
equilibrium point Wy, P; will be stableif « —u > 0andy > 0.
b. Stability analysis of point T, = (K(aT_“), O)
The jacobian matrix of the extinction equilibrium point of the Bonylip Barb Fish and Predator
fish population T, = (K(a_”),O) is

a

BKu — affK

_ a
J(Tz) = 0 aKs — Kéu — ay (6)
a
Furthermore, the characteristic equation of the jacobian matrix J(T,) with det(J(T,) — AI) = 0
can be formed, namely:
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aKé — Kéu — a
(—a+u—/1)< aﬂ y—/l)zo
The eigenvalues of the matrix J(T,) are A, = —a + 1 and 4, = “K5—1;5u—ay. This shows that
the equilibrium point W, P, will be stable u < a and 2X8=X=2¥

a

c. Stability analysis of point T; = (O, - Z)

s
The jacobian matrix of the extinction equilibrium point of Bonylip Barb Fish and Predator fish

population T3 = (O, —%) is

a+'8?y—,u 0
= ™)

Furthermore, the characteristic equation of the jacobian matrix J(T3) with det(J(T5;) — AI) = 0
can be formed, namely:

<a+%—,u—/1)(y—l)=0
By

Vs

The eigenvalues of matrix J(T;) are4; = a +

'%y<,uandy<0.

K(am+pBy—um) SKa—S8Ku—ay
SKB+an ' SKB+am )

The jacobian matrix of the extinction equilibrium point of Bonylip Barb Fish and Predator fish

K(am+By—um) 6Ka—5Ku—ay)iS

— uand A, = y. This shows that the equilibrium
point W3, P will be stable if a +

d. Stability analysis of point T, = (

population T, = (

SKB+an ' SKB+am
a(—an — By —um)  KB(—an — By + um)
IT, = 0Kp + ar 0Kp + an )
4 S(Kad — Kéu —ay) mn(—Kad + Kéu + ay)
KBS + an KBS + an
The above matrix can be written as
a a
ITi(gnr ) =0 9
With
I a(—an — By — pm)
1 SKpB + am
o = Kp(zam = By + um)
12 SKB + an
§(Kad — Kéu — ay)
a1 = KBS + an

n(—Kad + KSu + ay)
G2z = KBS + an
Furthermore, the characteristic equation of the jacobian matrix J(T,) with det(J(T,) — AI) = 0
can be formed, namely:
A2 = (ag1+a)A + (a1152 — A12G21) = 0
Because the above form is a quadratic characteristic equation in this case the ABC formula is
needed to solve it, so the eigenvalues of the matrix J J(T,) are obtained
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_ (ay;+az;) — \/(a11+a22)2 —4(ay11a2; — a42021)

A =
! 2
1 = (ay1+as;) + \/(a11+a22)2 — 4(ay1a2; — a1202;)
, =
2

This shows that the equilibrium point W,, P, will be stable if trace(J) < 0 and Det(J) < 0.

3.4 Numerical Simulation

Numerical simulations are applied to check for consistency with the analytical results that have
been obtained. This simulation is run using Google Colab, which will display a visualization of the
dynamics of the Predator-Prey model between the Bonylip Barb Fish and Predator fish populations.
Some parameters are referenced based on journal references. Parameter values will be adjusted
following the equilibrium points presented in table 1 as follows.

Table 1
Parameter value
Parameter Simulation 1 Simulation 2 Simulation 3 Reference
a 0.01 4.0 3.5 Assumption
K 70 70 70 llmiawan et al., [7]
vl 1.78 1.78 1.78 Kumarawati
B 0.02 0.02 0.95 Assumption
6 0.01 0.08 0.4 Assumption
y 0.70 0.70 0.70 KS:‘;‘;’:::’[Z?
Tt 0.05 0.01 0.012 Assumption

a. First Simulation

Based on the assumptions of the value (K) = 70, the value (p) = 1.78, the value (y) = 0.70, the
value (a) = 0.01, the value (B) = 0.02, the value (rt) = 0.05 and the value (8) = 0.01. the graph of the
population dynamics of Bonylip Barb Fish and Predator fish over time from the equilibrium point
T, will be displayed as follows:

41



Semarak International Journal of Agriculture, Forestry and Fisheries
Volume 5, Issue 1 (2025) 36-45

Simulation of System Dynamics for Equilibrium Point T1

0.10 —— Bonylip Barb (W)
—— Predatory Fish (P)

4
o
=3

Population

o

o

5
L

0.02

0.00 A

Times

Fig. 1. Simulation of dynamic system for equilibrium point T

Based on the eigenvalues obtained for the equilibrium point T; with coordinates (W; ,P;) = (0,0)
two eigenvalues are A; = @ — u atau A, = —y. If using the parameters from table 1, namely (a) =
0.01, the value of p=1.78 and the value of y = 0.70, the results of the two eigenvalues are as follows:

M=a—-pu=001-178=-177
1, =—y =—0.70

Since both eigenvalues (1, = —1.77 dan A, = —0.70) are negative, it can be concluded that the
equilibrium point T; is Asymptotically Stable. This shows that the population of Bonylip Barb Fish and
Predator fish will remain at the equilibrium point T; or return to the equilibrium point T; if there is a
small disturbance in the ecosystem.

b. Second Simulation

Based on the assumptions of the value of (K) = 70, the value of (u) = 1.78, the value of (y) =0.70,
the value of (a) = 4.0, the value of (B) = 0.02, the value of (i) = 0.01 and the value of (§) = 0.08, the
graph of the population dynamics of Bonylip Barb Fish and Predator fish over time from equilibrium

T, will be displayed. Predator over time from the equilibrium point T, will be displayed as follows:

Simulation of System Dynamics for Equilibrium Point T2

—— Bonylip Barb (W)
N —— Predatory Fish (P)

o]
o
L

~
o
L

v o
o o
L L

Population
8

N w
o o
L L

T T T T T T
0 20 40 60 80 100
Times

Fig. 2. Simulation of dynamic system for equilibrium point T,
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Based on the eigenvalues obtained for the equilibrium point T, with coordinates (W,,0) =

_ _ _ S—Kou— .
(K(aa u)'O) two eigenvalues are obtained, namely 1, = —a + u atau A; = =% if ysing

a
the parameters from table 1, namely (a) = 4.0, value (8) = 0.08, value (K) = 70, value (1) = 1.78 and
value (y) = 0.70, then the results of the two eigenvalues are as follows:
M=—a+u=-40+178=-2.22
aKé — Kéu — ay
, =

B (4.0)(7(%(0.08) —(70)(0.08)(1.78) — (4.0)(0.70)
B (4.0)

= 2,408
Since both eigenvalues 4; = —2.22 are negative and 1, = 2.408 is positive, it can be concluded
that the equilibrium point T, is a Saddle point. The equilibrium between these two populations is
unstable. The Bonylip Barb Fish population will tend to move away from this equilibrium point with
little disturbance from Predators, indicating long term instability. A Predator fish population starting
from zero shows no significant change, but a potential increase in Predators would cause a large
change in the Bonylip Barb Fish population.

c. Third Simulation

Based on the assumptions of the value (K) = 70, the value (u) = 1.78, the value (y) = 0.70, the value
(a) =3.5, the value (B) = 0.95, the value (rt) = 0.012 and the value (8) = 0.4, the graph of the population
dynamics of Bonylip Barb Fish and Predator fish over time from the equilibrium point T, will be

displayed as follows:

Simulation of System Dynamics for Equilibrium Point T4

e
o
v

—— Bonylip Barb (W)
—— Predatory Fish (P)

Population
[y = [y
o =] o
o w o

e
~
v

[
~
[S]

|

0 20 40 60 80 100
Times

g
o
o

Fig. 3. Simulation of dynamic system for equilibrium point T,

Based on the eigenvalues obtained for equilibrium point T, with coordinates (W,,P,) =
(K(mt+ﬁy—;u't) SKa—6Ku—ay
SKB+an ' SKB+am

1 = (a11+a22)—/(a11+a22)2—4(a11a22—012021)
| =
2
then the result of the two eigenvalues is as follows:

(a;1tazy) + \/(a11+a22)2 —4(a;1a3, — a42021)
A’l) A’Z = 2

By substituting the matrix elements into the eigenvalues above, the eigenvalues are obtained as
follows:

), two eigenvalues are obtained, namely

(aq1+az2)+/(a11+az2)%2—4(a1a22—a12021)
atau A, = 11+az2)+/(ays 222 11022012021
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A1 = —0.05815 — 1.0831i
A, = —0.05815 + 1.0831i

Because both eigenvalues A1; = —0.05815 — 1.0831i and 4; = —0.05815 + 1.0831i are
negative. This shows that the equilibrium point T, is stable. The presence of the imaginary
component £1.0831i indicates that the population will oscillate. However, this oscillation will be
dampened due to the negative component.

Simulations show that the population system of Bonylip Barb Fish and Predator fish has a stable
equilibrium point with damped oscillations. The populations of both species oscillate around the
equilibrium point, and the disturbance from the equilibrium will decrease over time, indicating the
long-term stability of the system.

4. Conclusions

The dynamics of the Predator-prey relationship model showed that the interaction between
Predator fish and Bonylip Barb Fish played a significant role in the decline of the Bonylip Barb Fish
population. Predation by Predator fish is the main factor causing this decline. The construction of the
mathematical model used in this study is a modified Lotka-Volterra Predator-prey model on the
decline in the Bonylip Barb Fish population in Lake Rawa Pening as follows:

w =aW <1 W) w wp
ac ¢ k) H B
op = 6WP P P2

ot ye—m

Based on the model, four stability points are obtained, namely T; (0,0) when both populations
Ka—p) , 0) when the Predator Fish population is extinct, T (0, - % ) when the Wader

are extinct, T, (
K(an+pBy—un) SKa—-S6Ku—ay
SKB+am ' SKB+am

stability point T;does not meet the population requirement, because the population cannot be
negative.

Analysis of the dynamics of the Predator-prey model provides important insights into effective
conservation strategies. There are three simulations that can describe the interaction of the two
populations according to the equilibrium point obtained. In the first simulation when the equilibrium

Fish population is extinct and T, ( )when the two populations interact. The

point T, (0,0) the eigenvalues obtained from the parameter assumption results ared; = —1.77 dan
A, = —=0.70. In the second simulation when the equilibrium point T, (K(aa_“),O)obtained
eigenvalues from the results of parameter assumptions 4; = —2.22dan 4, = 2.408. In the third

K(am+pBy—um) SKa—-S6Ku—ay
SKB+am ' SKB+am

parameter results are 4; = —0.05815 — 1.0831i and 4; = —0.05815 + 1.0831i

simulation when the equilibrium point T, ( ) obtained eigenvalues from the
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