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This paper presents a comprehensive study on the magnetohydrodynamic flow of an 
Eyring-Powell nanofluid over a stretchable surface, focusing on the significant effects of 
chemical reactions, Stefan blowing, and thermal radiation. The research employs 
advanced numerical techniques and similarity transformations to convert critical partial 
differential equations governing momentum, concentration, and temperature into a 
manageable system of non-linear ordinary differential equations. The outcomes of critical 
physical parameters are acquired by engaging the built-in bvp4c solver in the MATLAB 
computational software. The computational approach utilized in this study is validated 
through a comparison with existing literature, showcasing a high degree of agreement 
with previous results. This reinforces the reliability of the numerical methods employed 
and the relevance of the findings. The profiles of velocity, temperature, and concentration 
as well as the related physiological traits that are used in the study have been identified. 
The intricate relationship between the skin friction coefficient, Sherwood number, and 
Nusselt number, and their impact on mass and heat transfer characteristics, has been a 
subject of extensive research in various fields, including fluid dynamics, heat transfer, and 
chemical engineering. Key results indicate that an increase in the thermal radiation 
parameter leads to a notable rise in temperature distribution, enhancing heat transfer 
rates. Specifically, the study finds that the temperature increases significantly with higher 
thermophoresis and Brownian motion parameters, which facilitate better thermal energy 
transfer. Additionally, the concentration field shows a substantial decrease with an 
increased chemical reaction rate, highlighting the impact of reaction kinetics on mass 
transfer.The study reveals that the inclusion of Stefan blowing significantly influences fluid 
motion, leading to increased velocity profiles due to the introduction of additional 
momentum into the boundary layer. This effect is crucial for applications requiring 
efficient fluid transport.  
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1. Introduction 
 

The study of fluid flow over a stretching surface has been a topic of significant interest in the field 
of fluid dynamics, particularly due to its numerous applications in various industries, such as polymer 
processing, metal extrusion, and chemical engineering [1-5]. Haider et al., [6] examined the unsteady 
MHD nanofluid flow past a stretching surface when Stefan blowing or suction was present. Abbas 
and   Megahed [7] studied the impact of chemical reaction on hydromagnetic non-Newtonian fluid 
flow because of a slendering stretching sheet. They proposed a mathematical model and derived 
similarity solutions for the governing equations. In the presence of Stefan blowing or suction, Konai 
et al., [8] embarked the Casson nanofluid flow past a stretching surface. The analytical analysis 
conducted by Sankari et al., [9] on the double stratification of Casson nanofluid over an exponential 
stretching surface demonstrates a comprehensive exploration, specifically delving into the 
characteristics of non-Newtonian fluids and the behavior of nanofluids. Zeb et al., [10] investigated 
the impacts of both magnetic dipole and Arrhenius activation energy on the ferrofluid flow across a 
stretching surface. Ali et al., [11] investigated the combined effects of radiation, activation energy, 
and an electro-periodic magneto-hydrodynamics on the non-linear flow across a stretching sheet. 
Zhang et al., [12] explored the effects of Stefan’s blowing and thermal radiation on Jeffery nanofluid 
flow over a stretching sheet. 

The Powell-Eyring fluid model, a widely employed rheological framework, captures the intricate 
dynamics of non-Newtonian fluids. The findings indicate that the fluid time scale is extremely 
sensitive to small variations in the zero-shear rate viscosity, while it exhibits moderate sensitivity to 
changes in the infinite shear rate viscosity. The ability to accurately predict the rheological behavior 
of fluids is crucial in numerous industrial and engineering applications, ranging from polymer 
processing to oil and gas extraction. By understanding the sensitivity of the model parameters, 
researchers can better assess the robustness and applicability of the Powell-Eyring fluid model in 
diverse scenarios [13-18]. Alsaedi et al., [19] investigated the impacts of both Joule heating and 
nonlinear mixed convection on the Powell- Eyring nanofluid flow across a stretching surface. Aljabali 
et al., [20] provided a comprehensive analysis of the steady two-dimensional flow of a Powell-Eyring 
fluid across a shrinking sheet. Allehiany et al., [21] investigated the impacts of both magnetic and 
natural convection on Cilia flow of Powell-Eyring nanofluid in a channel. In a slippery boundary wall, 
Akinola et al., [22] embarked the intricate interactions between electromagnetic viscous heating, 
thermal radiation, and temperature propagation of Powell- Eyring fluid. Ullah et al., [23] studied the 
steady, fluctuating, turbulence, amplitude and oscillatory behavior of skin friction, heat flux and mass 
flux along vertical heat exchanger plate. Recently, Challa et al., [24] examined the flow characteristics 
of Powell- Eyring nanofluid passing over an unsteady stretching surface subject to Stefan 
blowing/suction. 

The study of complex fluid flow and heat transfer processes has become increasingly important 
in various engineering and industrial applications, given their critical role in optimizing system 
performance, enhancing efficiency, and ensuring safety. One such area of interest is the investigation 
of magnetohydrodynamic radiative heat transfer in non-Newtonian Eyring–Powell fluid models [25-
28]. Daniel and Daniel [29] explored the effects of buoyancy and thermal radiation on 
Magnetohydrodynamic (MHD) flow over a stretching porous sheet using the homotopy analysis 
method. This exploration delved into the subtle nuances of how buoyancy and thermal radiation 
influence the intricate dynamics of MHD flow over-stretching porous surfaces undergoing stretching. 
Chamkha et al., [30] delved into a detailed exploration of the combined influences of thermal 
radiation and buoyancy on a hydromagnetic drift over an accelerating permeable surface, 
considering the existence of a heat source or sink. This investigation aimed to comprehensively 
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understand the magnetic fields, thermal radiation, and buoyancy forces in the presence of a porous 
surface. Senthilraja et al., [31] conducted an experimental investigation into the energy analysis of a 
solar-powered hydrogen generation system using CuO/water nanofluids. Talukdar et al., [32] 
described the incorporation of nanomaterials, such as MoS2 and SiO2, into base fluids has been shown 
to enhance the thermal conductivity and heat transfer capabilities of the resulting nanofluid. 
Moreover, the presence of velocity slip can significantly impact the flow characteristics and heat 
transfer performance, as it alters the velocity profile and boundary layer development. Jalili et al., 
[33] concentrated on analyzing the complex dynamics of non-linear radiative heat transfer coupled 
with a magnetic field in a porous medium. The study specifically investigated how these factors 
influence the drift behavior of non-Newtonian Casson fluids. In a binary reactive Powell- Eyring fluid, 
Salawu et al., [34] used a numerical scheme to assess the propagation of small particles and thermal 
radiation while accounting for the presence of thermophoresis, and Brownian motion. Azmi et al., 
[35] investigated how the slip velocity presence at the boundary affects the unsteady MHD free 
convection flow of blood Casson fluid in a porous medium within a vertical cylinder. Yahaya et al., 
[36] analyzed the flow of Al2O3-Cu/H2O over a rotating disk with a uniform shrinking rate and 
injection. Reyaz et al., [37] studied on fractional Caputo-Fabrizio Mxene Strontium Titanate hybrid 
nanofluid with Carboxymethyl Cellulose base flowing over a vertical uniform velocity Riga plate. Ullah 
et al., [38] investigated the impact of gravity modulation, Joule heating and porous medium effects 
on magnetized nanofluid flow along radiative stretching sheet. 

In many industrial and technical processes, the understanding of mass and heat transfer in 
chemical reactions is crucial. These processes are widely used in many industrial applications, 
including the food processing, ceramic or glassware manufacturing, and polymer production [39-43]. 
Manjunatha et al., [44] looked at the importance of convective heat transfer and Stefan blowing in 
nanofluid flow across a curved stretching sheet with chemical reaction. Zeeshan et al., [45] examined 
the energy analysis of non-Newtonian nanofluid flow over parabola of revolution on the horizontal 
surface with catalytic chemical reaction. Hussain et al., [46] investigated the properties of dynamic 
wedges by exploring the chemically reacting flow through a heated porous wedge using the Powell- 
Eyring fluid model. Majeed et al., [47] investigated the melting heat and mass transport 
characteristics on the stagnation point flow of Powell–Eyring nanofluid over a stretchable surface 
because melting is so important in many processes, such as Permafrost melting, magma solidification, 
and thawing of frozen grounds, are all examples of soil melting and freezing around the heat 
exchanger coils of a ground-based pump. Majeed et al., [48] examined the influence of magnetized 
Casson nanofluid flow and heat transport phenomena towards a boundary layer flow over a 
nonlinear stretchable surface. Rehman et al., [49] discussed the significance of nanoparticle diffusion 
and chemical reaction in the context of Powell-Eyring hybrid nanofluid flow over an expanding 
surface. The present research investigates the theoretical conclusions about the claims of anomalous 
heat transfer enhancement associated with nanofluids. The study by Shah et al., [50] emphasized the 
crucial role of Ohmic dissipation and chemical reactions in the Powell-Eyring nanofluid flow across a 
stretching cylinder. Ullah et al., [51] examined the heat and mass transportation of magneto 
nanofluid movement along a heated sheet with exponential temperature-dependent density, 
entropy optimization, thermal buoyancy, activation energy, and chemical reaction aspects. Ullah et 
al., [52] investigated the effects of activation energy and chemical reactions on the boundary layer 
flow around a wedge that is moving in a nanofluid. Ullah et al., [53] studied the physical significance 
of heat generation and chemical reaction on Carreau nanofluid with convective heat conditions. 
Hussain et al., [54] analyzed the sensitivity of the movement of motile gyrotactic microorganisms to 
variation in Schmidt number, chemical reaction parameter, and Brownian motion parameter. 
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Considering the aforementioned discussion and practical uses of non-Newtonian nanofluid, it is 
noteworthy that no research has yet examined the Powell-Eyring nanofluid flow past a stretching 
surface when Stefan blowing or suction was present. The principal objective of this ongoing inquiry 
can be concisely stated as: 

• To investigate the utilization of chemical reaction in the magnetized flow of Powell-Eyring 
nanofluid through an overextended sheet. 

• The study delves into the thermal conduction of nanofluids, considering the impacts of 
thermal radiation alongside the characteristics of Brownian motion and thermophoresis parameter. 

• The concentration equation undergoes modifications through the utilization of chemical 
reaction relations. 

• The problem is represented by highly non-linear equations, and numerical simulations are 
effectively conducted using the bvp4c by MATLAB software. 
 
2. Mathematical Formulation 
 

 
Fig. 1. Interpretation of flow geometry. 

 
Consider the unsteady hydromagnetic flow of electrically conducting Powell-Eyring nanofluid 

over a stretching surface. On the surface, a magnetic field  is applied perpendicularly. The 
schematic diagram presented in Figure 1 depicts a complex network of interconnected elements, 
each playing a vital role in the overall functionality of the system. We may represent the dynamics 
of this system using a variety of techniques if we assume that a sheet starts stretching along the x-
axis at time with velocity  where the y-axis is perpendicular to the surface. We 

consider the impacts of Stefan blowing or suction and Lewis number. Brownian motion, chemical 
reactions, thermophoresis, and thermal radiations are closely intertwined phenomena that play a 
crucial role in various scientific and industrial applications. The Powell-Eyring nanofluid [13,19] 
rheological model is given by  
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  , here  is identity vector,  is pressure, and the extra stress tensor 

  ,  

  in which  where  

  The governing boundary layer equations under these presumptions can be written as [8,14,24] 

                (1) 

           (2)  

      (3)

        (4) 

The boundary conditions for the present analysis are [8,24] 

        (5) 
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capacity of the nanoparticle material,  is thermal conductivity,  is coefficient of Brownian 
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concentration,  is Rosseland mean absorption coefficient, , are the temperature and 
nanoparticle concentration distant from the exterior.  

On simplifying Eq. (3), we get 

      (6) 

The skin friction coefficient , and the rate of mass and heat transfer can be described 
as  

        (7) 

The surface mass and heat fluxes, shear stress near the wall are 

    (8) 

Now, we present the similarity variable  and the dimensionless functions , , and  as 

       (9) 

where  stands for stream function and is represented by the relationship that follows 

           (10) 

substituting Eqs. (9) and (10) into Eqs. (2), (6), and (4), we obtain the nonlinear ordinary differential 
equations: 
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                                                                                                  (13) 

The corresponding boundary conditions are 

                                                                                       (14) 

Where (Lewis number) where (thermal diffusivity),  

(Brownian motion), (thermophoresis parameter),        

( fluid parameter),  (Prandtl number), ( Eyring- Powell fluid parameter), 

(unsteadiness parameter),  (magnetic field parameter),   (radiation 

parameter),  (Eckert number),  (chemical reaction parameter), 

(Stefan blowing parameter) where and correspond to suction and 

blowing, respectively. 

On simplifying Eq. (7), we get 

                                (15) 

where Reynolds number is denoted by . 

3. Solution Procedure 
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observe their effects on the system's behaviour. This capability is essential for understanding the 
sensitivity of the model and its applicability in various scenarios. The ensuing procedure delineates 
the necessary steps for obtaining the numerical solution. 

 

     (16) 

     (17) 

    (18) 

        (19) 

Boundary conditions are 

       (20) 

 
4. Results and Discussions 
 

Chemical reaction and radiation are taken into consideration while analyzing the Stefan 
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increases, as Figure 8 illustrates. This is due to fact that the retarding forces (called Lorentz forces) 
generated by the applied magnetic field act as resistive drag forces opposite to the flow direction, 
which results a decrease in velocity. 

 

 

Fig. 2. Visual presentations of distribution with various  values. 

 

Fig. 3. Visual presentations of distribution with various  values. 
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Fig. 4. Visual presentations of distribution with various  values. 

 

 

Fig. 5. Visual presentations of distribution with various  values. 
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Fig. 6. Visual presentations of distribution with various  values. 

 

Fig. 7. Visual presentations of distribution with various  values. 
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Fig. 8. Visual presentations of distribution with various  values. 

 
Figure 9, Figure 10, and Figure 11 illustrate how a minor increase in the Stefan blowing 

parameter,  raises the velocity while progressively raising the temperature and concentration. This 
happens because increased blowing effects propel fluid motion and marginally increase velocity by 
introducing more momentum into the boundary layer. A slow increase in temperature and 
concentration results from the improved mass transport close to the surface, which also lowers 
thermal and solutal boundary layer resistance. As seen in Figure 12, and Figure 13, the temperature 
progressively rises as the thermophoresis  and the Brownian motion parameter  increase. The 
random movement of nanoparticles is enhanced by Brownian motion, which accelerates thermal 
energy transfer and raises the temperature. By moving nanoparticles from hotter to cooler areas, 
thermophoresis also lowers heat dissipation and raises the temperature inside the boundary layer. 
As the Brownian motion strengthens, this leads to effective movement of nanoparticles from the 
walls to the fluid. Because of this reason, the dimensionless temperature increases with an increase 
in . It may be noted that the parameters  and  characterize the strengths of Brownian motion 
and thermophoresis effects. The larger values of  and , the larger the strength of the 
corresponding effects. Thus  and can take any value in the range of ; . A rise in the 
radiation parameter as Figure 14 illustrates,  causes the temperature field to increase. For figure 
depicting the effects of thermal radiation, explain how increased radiation enhances the fluid's ability 
to absorb and release thermal energy, resulting in a higher temperature distribution. This relationship 
underscores the importance of thermal radiation in heat transfer processes. Figure 15 shows that a 
large drop in the concentration field occurs when the chemical reaction parameter  is increased. 
When addressing the concentration field, provide insights into how the chemical reaction 
parameter  impacts species concentration. An increase in  leads to a rapid consumption of 
species, resulting in a significant drop in concentration within the boundary layer. This can be 
explained by the faster reaction rates that deplete the available species. Figure 16 demonstrates that 
a large drop in the concentration field occurs when the Lewis number  is increased.  
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Fig. 9. Visual presentations of distribution with various  values. 

 

Fig. 10. Visual presentations of distribution with various  values. 
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Fig. 11. Visual presentations of distribution with various  values. 

 

 

Fig. 12. Visual presentations of distribution with various  values. 
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Fig. 13. Visual presentations of distribution with various  values. 

 

 

 

Fig. 14. Visual presentations of distribution with various  values. 
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Fig. 15. Visual presentations of distribution with various  values. 

 

Fig. 16. Visual presentations of distribution with various  values. 
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modestly increasing velocity. Likewise, the Powell–Eyring fluid parameter  indicates a general 
improvement in thermal and solutal transport by strengthening the velocity gradient and slightly 
raising temperature and concentration levels. The flow is impacted by resistive forces, which may be 
caused by magnetic field effects, as indicated by the negative values of . Additionally, the 
comparison in Table 2 validates the computational technique by demonstrating great agreement 
between the current numerical results and earlier research. 

 

Table 1 
Represents the values of ,  and  

with , , , , ,  
and  

       

0.1    -1.074137 -0.381340 -1.149444 

0.3    -1.025079 -0.269335 -0.962300 

0.5 0.1   -0.990639 -0.196971 -0.832775 

 0.3   -0.920273 -0.196721 -0.845914 

 0.5 0.1  -0.863036 -0.195706 -0.856717 

  0.3  -0.970605 -0.061349 -0.712591 

  0.5 0.1 -0.987402 -0.056825 -0.713197 

   0.3 -0.919419 -0.143782 -0.808638 

   0.5 -0.987402 -0.056825 -0.713197 

 
 
Table 2 
Numerical data of for and  

        Hayat et al., [14] Present 
values 

0.0 0.1 0.1 -1.0832 -1.0839 
0.1   -1.1324 -1.1321 
0.2   -1.1802 -1.1799 

 
5. Conclusions 
 

This study delves into the behaviour of Eyring- Powell nanofluid flowing over an extending 
surface, examining the heat transference rate, and mass transference via physical experimentation 
and numerical simulations. The heat transfer rate also displays notable variability in response to 
alterations in the thermal radiation parameter. Numerical results are derived using the bvp4c by 
MATLAB software to solve the ordinary differential system, yielding significant insights, including: 

• For greater ,  indicates a diminishing tendency, but for , the reverse trend is 
observed. 

• Stefan blowing parameter  indicates a qualitative similarity between temperature and 
concentration profiles. 

0k

0.5Ref xC
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• Concentration declines as  rises. 

• Higher Lewis numbers  indicate a dominance of thermal diffusivity over mass diffusivity, 
resulting in faster heat transfer but slower concentration adjustments. This finding 
underscores the importance of controlling the Lewis number  to balance thermal and mass 
transfer in practical applications. 

• The thermophoresis  and Brownian motion  parameters behave identically in the 
temperature field. 

• Skin friction decreases for fluid parameter  and boosts up for the Stefan blowing 

parameter . 
This work contributes novel insights into the interplay between thermal and mass transfer  

phenomena in non-Newtonian fluids, extending beyond previous studies by incorporating the effects 
of Stefan blowing and thermal radiation in a unified framework. The findings pave the way for future 
research into the application of Eyring-Powell nanofluids in advanced engineering systems, offering 
potential improvements in efficiency and performance across various sectors. 
 
Future scope 
 
 The work can be modified by adding the impact of motile microorganisms, different 
nanoparticles, activation energy, and shaped change. 
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