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This paper presents a comprehensive study on the magnetohydrodynamic flow of an
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i Eyring-Powell nanofluid over a stretchable surface, focusing on the significant effects of
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Received in revised form 6 May 2025 chemical reactions, Stefan blowing, and thermal radiation. The research employs
Accepted 6 July 2025 advanced numerical techniques and similarity transformations to convert critical partial
Available online 6 October 2025 differential equations governing momentum, concentration, and temperature into a
manageable system of non-linear ordinary differential equations. The outcomes of critical
physical parameters are acquired by engaging the built-in bvp4c solver in the MATLAB
computational software. The computational approach utilized in this study is validated
through a comparison with existing literature, showcasing a high degree of agreement
with previous results. This reinforces the reliability of the numerical methods employed
and the relevance of the findings. The profiles of velocity, temperature, and concentration
as well as the related physiological traits that are used in the study have been identified.
The intricate relationship between the skin friction coefficient, Sherwood number, and
Nusselt number, and their impact on mass and heat transfer characteristics, has been a
subject of extensive research in various fields, including fluid dynamics, heat transfer, and
chemical engineering. Key results indicate that an increase in the thermal radiation
parameter leads to a notable rise in temperature distribution, enhancing heat transfer
rates. Specifically, the study finds that the temperature increases significantly with higher
thermophoresis and Brownian motion parameters, which facilitate better thermal energy
transfer. Additionally, the concentration field shows a substantial decrease with an
increased chemical reaction rate, highlighting the impact of reaction kinetics on mass
transfer.The study reveals that the inclusion of Stefan blowing significantly influences fluid
motion, leading to increased velocity profiles due to the introduction of additional
momentum into the boundary layer. This effect is crucial for applications requiring
efficient fluid transport.
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1. Introduction

The study of fluid flow over a stretching surface has been a topic of significant interest in the field
of fluid dynamics, particularly due to its numerous applications in various industries, such as polymer
processing, metal extrusion, and chemical engineering [1-5]. Haider et al., [6] examined the unsteady
MHD nanofluid flow past a stretching surface when Stefan blowing or suction was present. Abbas
and Megahed [7] studied the impact of chemical reaction on hydromagnetic non-Newtonian fluid
flow because of a slendering stretching sheet. They proposed a mathematical model and derived
similarity solutions for the governing equations. In the presence of Stefan blowing or suction, Konai
et al., [8] embarked the Casson nanofluid flow past a stretching surface. The analytical analysis
conducted by Sankari et al., [9] on the double stratification of Casson nanofluid over an exponential
stretching surface demonstrates a comprehensive exploration, specifically delving into the
characteristics of non-Newtonian fluids and the behavior of nanofluids. Zeb et al., [10] investigated
the impacts of both magnetic dipole and Arrhenius activation energy on the ferrofluid flow across a
stretching surface. Ali et al., [11] investigated the combined effects of radiation, activation energy,
and an electro-periodic magneto-hydrodynamics on the non-linear flow across a stretching sheet.
Zhang et al., [12] explored the effects of Stefan’s blowing and thermal radiation on Jeffery nanofluid
flow over a stretching sheet.

The Powell-Eyring fluid model, a widely employed rheological framework, captures the intricate
dynamics of non-Newtonian fluids. The findings indicate that the fluid time scale is extremely
sensitive to small variations in the zero-shear rate viscosity, while it exhibits moderate sensitivity to
changes in the infinite shear rate viscosity. The ability to accurately predict the rheological behavior
of fluids is crucial in numerous industrial and engineering applications, ranging from polymer
processing to oil and gas extraction. By understanding the sensitivity of the model parameters,
researchers can better assess the robustness and applicability of the Powell-Eyring fluid model in
diverse scenarios [13-18]. Alsaedi et al., [19] investigated the impacts of both Joule heating and
nonlinear mixed convection on the Powell- Eyring nanofluid flow across a stretching surface. Aljabali
et al.,, [20] provided a comprehensive analysis of the steady two-dimensional flow of a Powell-Eyring
fluid across a shrinking sheet. Allehiany et al., [21] investigated the impacts of both magnetic and
natural convection on Cilia flow of Powell-Eyring nanofluid in a channel. In a slippery boundary wall,
Akinola et al., [22] embarked the intricate interactions between electromagnetic viscous heating,
thermal radiation, and temperature propagation of Powell- Eyring fluid. Ullah et al., [23] studied the
steady, fluctuating, turbulence, amplitude and oscillatory behavior of skin friction, heat flux and mass
flux along vertical heat exchanger plate. Recently, Challa et al., [24] examined the flow characteristics
of Powell- Eyring nanofluid passing over an unsteady stretching surface subject to Stefan
blowing/suction.

The study of complex fluid flow and heat transfer processes has become increasingly important
in various engineering and industrial applications, given their critical role in optimizing system
performance, enhancing efficiency, and ensuring safety. One such area of interest is the investigation
of magnetohydrodynamic radiative heat transfer in non-Newtonian Eyring—Powell fluid models [25-
28]. Daniel and Daniel [29] explored the effects of buoyancy and thermal radiation on
Magnetohydrodynamic (MHD) flow over a stretching porous sheet using the homotopy analysis
method. This exploration delved into the subtle nuances of how buoyancy and thermal radiation
influence the intricate dynamics of MHD flow over-stretching porous surfaces undergoing stretching.
Chamkha et al., [30] delved into a detailed exploration of the combined influences of thermal
radiation and buoyancy on a hydromagnetic drift over an accelerating permeable surface,
considering the existence of a heat source or sink. This investigation aimed to comprehensively



Semarak Engineering Journal
Volume 11, Issue 1 (2025) 1-21

understand the magnetic fields, thermal radiation, and buoyancy forces in the presence of a porous
surface. Senthilraja et al., [31] conducted an experimental investigation into the energy analysis of a
solar-powered hydrogen generation system using CuO/water nanofluids. Talukdar et al., [32]
described the incorporation of nanomaterials, such as MoS; and SiO,, into base fluids has been shown
to enhance the thermal conductivity and heat transfer capabilities of the resulting nanofluid.
Moreover, the presence of velocity slip can significantly impact the flow characteristics and heat
transfer performance, as it alters the velocity profile and boundary layer development. Jalili et al.,
[33] concentrated on analyzing the complex dynamics of non-linear radiative heat transfer coupled
with a magnetic field in a porous medium. The study specifically investigated how these factors
influence the drift behavior of non-Newtonian Casson fluids. In a binary reactive Powell- Eyring fluid,
Salawu et al., [34] used a numerical scheme to assess the propagation of small particles and thermal
radiation while accounting for the presence of thermophoresis, and Brownian motion. Azmi et al.,
[35] investigated how the slip velocity presence at the boundary affects the unsteady MHD free
convection flow of blood Casson fluid in a porous medium within a vertical cylinder. Yahaya et al.,
[36] analyzed the flow of Al,Os-Cu/H,O over a rotating disk with a uniform shrinking rate and
injection. Reyaz et al., [37] studied on fractional Caputo-Fabrizio Mxene Strontium Titanate hybrid
nanofluid with Carboxymethyl Cellulose base flowing over a vertical uniform velocity Riga plate. Ullah
et al., [38] investigated the impact of gravity modulation, Joule heating and porous medium effects
on magnetized nanofluid flow along radiative stretching sheet.

In many industrial and technical processes, the understanding of mass and heat transfer in
chemical reactions is crucial. These processes are widely used in many industrial applications,
including the food processing, ceramic or glassware manufacturing, and polymer production [39-43].
Manjunatha et al., [44] looked at the importance of convective heat transfer and Stefan blowing in
nanofluid flow across a curved stretching sheet with chemical reaction. Zeeshan et al., [45] examined
the energy analysis of non-Newtonian nanofluid flow over parabola of revolution on the horizontal
surface with catalytic chemical reaction. Hussain et al., [46] investigated the properties of dynamic
wedges by exploring the chemically reacting flow through a heated porous wedge using the Powell-
Eyring fluid model. Majeed et al, [47] investigated the melting heat and mass transport
characteristics on the stagnation point flow of Powell-Eyring nanofluid over a stretchable surface
because melting is so important in many processes, such as Permafrost melting, magma solidification,
and thawing of frozen grounds, are all examples of soil melting and freezing around the heat
exchanger coils of a ground-based pump. Majeed et al., [48] examined the influence of magnetized
Casson nanofluid flow and heat transport phenomena towards a boundary layer flow over a
nonlinear stretchable surface. Rehman et al., [49] discussed the significance of nanoparticle diffusion
and chemical reaction in the context of Powell-Eyring hybrid nanofluid flow over an expanding
surface. The present research investigates the theoretical conclusions about the claims of anomalous
heat transfer enhancement associated with nanofluids. The study by Shah et al., [S0] emphasized the
crucial role of Ohmic dissipation and chemical reactions in the Powell-Eyring nanofluid flow across a
stretching cylinder. Ullah et al.,, [51] examined the heat and mass transportation of magneto
nanofluid movement along a heated sheet with exponential temperature-dependent density,
entropy optimization, thermal buoyancy, activation energy, and chemical reaction aspects. Ullah et
al., [52] investigated the effects of activation energy and chemical reactions on the boundary layer
flow around a wedge that is moving in a nanofluid. Ullah et al., [53] studied the physical significance
of heat generation and chemical reaction on Carreau nanofluid with convective heat conditions.
Hussain et al., [54] analyzed the sensitivity of the movement of motile gyrotactic microorganisms to
variation in Schmidt number, chemical reaction parameter, and Brownian motion parameter.
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Considering the aforementioned discussion and practical uses of non-Newtonian nanofluid, it is
noteworthy that no research has yet examined the Powell-Eyring nanofluid flow past a stretching
surface when Stefan blowing or suction was present. The principal objective of this ongoing inquiry
can be concisely stated as:

e To investigate the utilization of chemical reaction in the magnetized flow of Powell-Eyring
nanofluid through an overextended sheet.

e The study delves into the thermal conduction of nanofluids, considering the impacts of
thermal radiation alongside the characteristics of Brownian motion and thermophoresis parameter.

e The concentration equation undergoes modifications through the utilization of chemical
reaction relations.

e The problem is represented by highly non-linear equations, and numerical simulations are
effectively conducted using the bvp4c by MATLAB software.

2. Mathematical Formulation

. Nanoparticle

Boundary Layer

Fig. 1. Interpretation of flow geometry.

Consider the unsteady hydromagnetic flow of electrically conducting Powell-Eyring nanofluid
over a stretching surface. On the surface, a magnetic field B is applied perpendicularly. The

schematic diagram presented in Figure 1 depicts a complex network of interconnected elements,
each playing a vital role in the overall functionality of the system. We may represent the dynamics
of this system using a variety of techniques if we assume that a sheet starts stretching along the x-

% _ where the y-axis is perpendicular to the surface. We

axis at time ¢ = Qwith velocity U(x,2)=
1—at

consider the impacts of Stefan blowing or suction and Lewis number. Brownian motion, chemical
reactions, thermophoresis, and thermal radiations are closely intertwined phenomena that play a
crucial role in various scientific and industrial applications. The Powell-Eyring nanofluid [13,19]
rheological model is given by
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T= —p[-l—rl.j , here I isidentity vector, D is pressure, and the extra stress tensor

3
0
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The governing boundary layer equations under these presumptions can be written as [8,14,24]
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The boundary conditions for the present analysis are [8,24]

D aCT T .,C=C, aty=0
1-C, oy (5)

u—>0T->7,C—>C, aty—>wo

u=U(x,t),v=—

Here the velocity components are denoted by u and v, respectively, in the x- and y-axis directions,
k, (Z)zk(l—oct)_1 is a chemical reaction parameter, k is constant, ¢ denotes time, « is positive
constant, a >0 be any constant, x is dynamic viscosity, v is kinematic viscosity, 8 and L are fluid
material constants, o is electrical conductivity, (pc, ), is heat capacity of the fluid, (pc,), is heat
capacity of the nanoparticle material, x is thermal conductivity, D, is coefficient of Brownian
diffusion, C is concentration, D, is coefficient of thermophoresis diffusion, p is density of the fluid,

r

* 4
- _(iij T s radiative heat flux, o is Stefan-Boltzmann constant, T* = 47°T 3T (Higher
x

order terms are neglected), T is temperature, T, is surface temperature, C, is surface nanoparticle
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concentration, y is Rosseland mean absorption coefficient, 7, C_ are the temperature and
nanoparticle concentration distant from the exterior.

On simplifying Eq. (3), we get

or, or or_ _«x T (pc),|, oCoT D (arj
— 4t u—+v—= -+ D, —
or ox 0y (pc,), " (pc,),| Oy EAAE

U [ I j(@u JZ 1 165°T° 8T
+ 1+ — | + >
(pc,),\ BLu)\oy) (pc,)), 3x oy

The skin friction coefficient (C . ) , and the rate of mass and heat transfer ( Sh_, Nu, )can be described

as

(6)

C. = T Nu, = xq,, Sh = XY,

N =gy o M 7
f pU2 (TW_TOO) X DB(CW—COO) ( )

The surface mass and heat fluxes, shear stress near the wall are

ofs] o] oS el
R V) e =7 I 73 | =) BT v

Now, we present the similarity variable » and the dimensionless functions g, @, and ¢ as

(8)

y=0

TI-T, -C, 3 a
T,-T, P = W—Cm’n_y v(l-at)

av

y=x mg(ﬂ)a 0(n) =

(9)

where y stands for stream function and is represented by the relationship that follows

y=—t (10)

substituting Egs. (9) and (10) into Egs. (2), (6), and (4), we obtain the nonlinear ordinary differential
equations:

[(1+k0)—k0A(g ") }g"’+g"g A(g gzﬂj (g')z—Mg‘:O (11)
1 4 " 2 A ’ ' Y 12

» (1+3R jé’ +(1+k, ) Ec(g") —5776’ +90' +NbO'¢ +NtO'> =0 (12)
r
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¢5"—LeP{(gn—gj¢'+F¢}L%0":O (13)

The corresponding boundary conditions are

g'(n)=1, g(n)zi—‘;cﬂ(n), 0 =1,¢(m=1at n=0

(14)
9'(m =0, 0(n)=0,4(17) =0 as n—> o
a D, (C -C
Where Le =—2(Lewis number) where o, = K (thermal diffusivity), Nb = (pe,), D5 (C, ~C2)
B (pcp)f (pcp)fu
D.(T -T
(Brownian motion), Nz:(’oc”)” r(@, w)(thermophoresis parameter), A=(ax/1—at)3/2vxL2
(pcp)/‘TocU
. He, 1 . . o
( fluid parameter), Pr = (Prandtl number), k, = ——( Eyring- Powell fluid parameter), 4 =—
K LLu a
B} (1-at T3
(unsteadiness parameter), M:M (magnetic field parameter), Rd = 40 I, (radiation
pa K

parameter), Ec = (ax/1_at)2/[cp (7T, —Tm):l (Eckert number), T" = E (chemical reaction parameter),

a
C,-C, ) )
SOZT(Stefan blowing parameter) where §, <0and S, > Ocorrespond to suction and

w

blowing, respectively.

On simplifying Eq. (7), we get

C

y Re " = (1+k0)g"(0)—%kOA[g"(O)T, Nu,Re "’ =-0'0), Sh,Re > =-¢'(0) (15)

where Reynolds number is denoted by Re = %

v

3. Solution Procedure

In our MATLAB computational approach, we utilize the bvp4c algorithm to solve
dimensionless non-linear differential equations (11-13) alongside their corresponding boundary
constraint (14). This involves employing the bvp4c solver within the MATLAB environment to derive
numerical solutions for the ordinary differential equations. We first transform the dimensionless non-
linear ODEs into a first-order initial boundary value problem to streamline this process. By using
MATLAB's built-in bvp4c solver, we can achieve high accuracy in their numerical solutions. This is
crucial for obtaining reliable results that reflect the physical phenomena being studied, such as the
effects of thermal radiation, chemical reactions, and Stefan blowing on the flow of Eyring-Powell
nanofluid. The numerical approach provides the flexibility to easily vary model parameters and
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observe their effects on the system's behaviour. This capability is essential for understanding the
sensitivity of the model and its applicability in various scenarios. The ensuing procedure delineates
the necessary steps for obtaining the numerical solution.

g:hl’ g':}b, g":h3, 0:h4, 9':}1 N ¢:h6’ ¢':h/7 (16)
1 hn 2
hy'= {—h3h1+A(h2+3—]+(h2) +Mh2} (17)
(1 ko)~ koA (B )| 2

Pr

4
1+—R
(3‘1j

A
he' = [_(1+k0)Ec(h3)2+577h5—h1h5—th5h7—Nl‘h52} (18)

A Nt
h7'=LePrK577—hljh7+Fh6}——hs' (19)
Boundary conditions are
_ _(So _ _ _
hy=1, h = e hy, hy =1, hy =1 at n=0
(20)

4. Results and Discussions

Chemical reaction and radiation are taken into consideration while analyzing the Stefan
blowing effect in an Eyring-Powell nanofluid via stretching sheet. Numerical techniques and similarity
transformations are used to define and solve the governing equations. The findings are displayed in
tables and graphs that show how important factors affect the profiles of temperature, velocity, and
concentration. The influence of unsteady parameter A4 on the temperature, concentration and
velocity fields is shown in Figure 2, Figure 3, and Figure 4. When discussing the temperature profile
shown in the figures, explain how the unsteady parameter A4 influences heat transport. As 4
increases, the temperature profile rises significantly due to enhanced thermal energy accumulation,
which can be attributed to the unsteady effects that improve heat transfer rates. Similarly,
unsteadiness increases mass diffusion, which raises nanoparticle dispersion and causes
concentration to rise dramatically. These impacts demonstrate how uneven flow alters the dynamics
of heat and mass movement. Figure 5 illustrates when the velocity distribution partially decreases
when the fluid parameter A increases. For the velocity distribution figure, it is important to describe
how the fluid parameter A affects fluid resistance. Higher values of A lead to increased resistance,
resulting in a decrease in overall flow velocity. This relationship can be explained by the non-
Newtonian behaviour of the Eyring-Powell fluid, which becomes more pronounced as A increases.
As the Eyring-Powell fluid parameter k, increases in Figure 6, and Figure 7, the non-Newtonian
effects are lessened, which causes a progressive increase in velocity. At the same time, when £, rises,

the temperature profile significantly drops, suggesting better thermal dissipation and less heat
transfer resistance. The velocity field significantly decreases when the magnetic field parameter M
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increases, as Figure 8 illustrates. This is due to fact that the retarding forces (called Lorentz forces)
generated by the applied magnetic field act as resistive drag forces opposite to the flow direction,
which results a decrease in velocity.

1.2 L L L L] L)

0.8

0.4

0.2

Fig. 3. Visual presentations of H(n)distribution with various A4 values.
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Fig. 5. Visual presentations of g'(n)distribution with various A values.
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Visual presentations of H(U)distribution with various k, values.
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Fig. 8. Visual presentations of g'(n)distribution with various M values.

Figure 9, Figure 10, and Figure 11 illustrate how a minor increase in the Stefan blowing
parameter, S, raises the velocity while progressively raising the temperature and concentration. This
happens because increased blowing effects propel fluid motion and marginally increase velocity by
introducing more momentum into the boundary layer. A slow increase in temperature and
concentration results from the improved mass transport close to the surface, which also lowers
thermal and solutal boundary layer resistance. As seen in Figure 12, and Figure 13, the temperature
progressively rises as the thermophoresis Nt and the Brownian motion parameter Nb increase. The
random movement of nanoparticles is enhanced by Brownian motion, which accelerates thermal
energy transfer and raises the temperature. By moving nanoparticles from hotter to cooler areas,
thermophoresis also lowers heat dissipation and raises the temperature inside the boundary layer.
As the Brownian motion strengthens, this leads to effective movement of nanoparticles from the
walls to the fluid. Because of this reason, the dimensionless temperature @increases with anincrease
in Nb. It may be noted that the parameters Nb and Nt characterize the strengths of Brownian motion
and thermophoresis effects. The larger values of Nb and Nt, the larger the strength of the
corresponding effects. Thus Nb and Ntcan take any value in the range of 0< Nb; Nt<1.Arisein the
radiation parameter as Figure 14 illustrates, R, causes the temperature field to increase. For figure
depicting the effects of thermal radiation, explain how increased radiation enhances the fluid's ability
to absorb and release thermal energy, resulting in a higher temperature distribution. This relationship
underscores the importance of thermal radiation in heat transfer processes. Figure 15 shows that a
large drop in the concentration field occurs when the chemical reaction parameter I' is increased.
When addressing the concentration field, provide insights into how the chemical reaction
parameter I" impacts species concentration. An increase in I' leads to a rapid consumption of
species, resulting in a significant drop in concentration within the boundary layer. This can be
explained by the faster reaction rates that deplete the available species. Figure 16 demonstrates that
a large drop in the concentration field occurs when the Lewis number Le is increased.

12
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Fig. 10. Visual presentations of Q(U)distribution with various S, values.
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Fig. 12. Visual presentations of Q(U)distribution with various Nt values.
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Fig. 14. Visual presentations of Q(U)distribution with various R, values.
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Fig. 16. Visual presentations of ¢(77)distribution with various Le values.

The findings in Tables 1 and 2 demonstrate how important factors affect the gradients in
temperature, concentration, and velocity. The falling temperature and concentration gradients show
that increasing the Stefan blowing parameter S, promotes heat and mass transmission while

16



Semarak Engineering Journal
Volume 11, Issue 1 (2025) 1-21

modestly increasing velocity. Likewise, the Powell-Eyring fluid parameter £, indicates a general
improvement in thermal and solutal transport by strengthening the velocity gradient and slightly
raising temperature and concentration levels. The flow is impacted by resistive forces, which may be
caused by magnetic field effects, as indicated by the negative values of Cf Rexo'S. Additionally, the

comparison in Table 2 validates the computational technique by demonstrating great agreement
between the current numerical results and earlier research.

Table 1

Represents the values of C/' Rexo's, Nu, Rex_o'5 and Sh_ Rex_o'5
with M =0.2,Pr=21, Nb=0.1,Le=1.5, Nt=0.1, R, =0.1,T=05
and Ec=0.1

S kA A4 C,Re* NuRe ™ ShRe ™

0.1 -1.074137 -0.381340 -1.149444
0.3 -1.025079 -0.269335 -0.962300
05 0.1 -0.990639 -0.196971 -0.832775
0.3 -0.920273 -0.196721 -0.845914
05 0.1 -0.863036 -0.195706 -0.856717
0.3 -0.970605 -0.061349 -0.712591
0.5 0.1 -0.987402 -0.056825 -0.713197
0.3 -0.919419 -0.143782 -0.808638
0.5 -0.987402 -0.056825 -0.713197
Table 2
Numerical data of Cf Rexo'sfor ky, M ,and A
k, M A Hayat et al., [14] Present
values
0.0 0.1 0.1 -1.0832 -1.0839
0.1 -1.1324 -1.1321
0.2 -1.1802 -1.1799

5. Conclusions

This study delves into the behaviour of Eyring- Powell nanofluid flowing over an extending
surface, examining the heat transference rate, and mass transference via physical experimentation
and numerical simulations. The heat transfer rate also displays notable variability in response to
alterations in the thermal radiation parameter. Numerical results are derived using the bvp4c by
MATLAB software to solve the ordinary differential system, yielding significant insights, including:

e For greater (A), g'(7) indicates a diminishing tendency, but for (k, ), the reverse trend is

observed.

e Stefan blowing parameter (SO) indicates a qualitative similarity between temperature and

concentration profiles.

17
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Concentration ¢(7)declines as I rises.

Higher Lewis numbers Le indicate a dominance of thermal diffusivity over mass diffusivity,
resulting in faster heat transfer but slower concentration adjustments. This finding
underscores the importance of controlling the Lewis number Le to balance thermal and mass
transfer in practical applications.

The thermophoresis (N¢) and Brownian motion (Nb) parameters behave identically in the
temperature field.

Skin friction decreases for fluid parameter (A) and boosts up for the Stefan blowing

parameter (SO).
This work contributes novel insights into the interplay between thermal and mass transfer

phenomena in non-Newtonian fluids, extending beyond previous studies by incorporating the effects
of Stefan blowing and thermal radiation in a unified framework. The findings pave the way for future
research into the application of Eyring-Powell nanofluids in advanced engineering systems, offering
potential improvements in efficiency and performance across various sectors.

Future scope

The work can be modified by adding the impact of motile microorganisms, different

nanoparticles, activation energy, and shaped change.
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