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1. Introduction

Fourth order differential equations are very significant in real-world engineering problems. A firm
understanding of the processes and theories which they represent demands simulations based on
numerical solutions especially when the governing equations are nonlinear. Some examples in this
field include the Euler-Bernoulli beam theory which is a fourth-order ordinary differential equation
that predicts transverse deflection of a cantilevered beam subjected to uniform transverse loading
and appropriate boundary conditions. Nandini [1] applied a B-spline collocation technique to
determine the deflection of a geometrically nonlinear cantilevered beam. A similar work involving a
mixed finite element implementation for a fourth order clamped anisotropic plate bending problem
in distributed memory environments was applied to to a fourth order elliptic partial differential
equation in the particular case of aniso/ortho/isotropic plate bending problems [2]. Other examples
of note include Kuramoto-Sivashinsky equation; which is a nonlinear differential equation used for
the study of many physical phenomena in engineering and physics of the continuum such as pattern
formation, reaction-diffusion systems, phase-turbulence in the Belousov-Zhabotinsky reaction,
combustion etc. Some of the studies related to these areas can be found in a few research [3-10,21].
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The extended Fisher-Kolmogorov (EFK) equation is a time-dependent, transient, partial
differential equation used for the study of physical and biological systems involving; phase
transitions, bi-stability, tumor growth dynamics, disease spread, travelling waves, etc. The F-K has
remained an active area for numerical work and can be found widely cited in scientific literature [11-
20].

In this work a modified second order finite difference scheme is applied to arrive at the numerical
solutions of the extended Fisher-Kolmogorov equation (EFK) represented as:

ou o'u ou

5 F_—+f(u) , xe€Q,1e(0,T] (1)

where f(u)=u’—u
with initial condition

u(x,0)=u,(x), x €[a,b] (2)
and boundary conditions

o*u o’u
u(a,t)=zo, g(a,t)=0, u(b,l‘)=0, y(b,t)=0, (3)
We note that when ¥ =0 in (1.1), we arrive at the standard Fisher-Kolmogorov (FK) equation.

A stabilizing fourth-order derivative term added by van Saaloos [22] and van Saaloos [23]
converted the standard (FK) equation to equation (1.1).

2. Mathematical formulation

We motivate the numerical discretization of equation (1)-(3) by converting the fourth order
partial differential equation into a second order system of coupled differential equations. Following
this procedure, we define; m(x,t)=u, (x,t)

hence, equations (1,1)-(1.3) become:

m(x,t)=uxx (x,t) (4)

ut+7mxx—m+F(u):0 (5)
with initial condition
u(x,O) =1u, X e [a,b] (6)

And boundary conditions :

u(a,t): 2 u(b,t) =g

m(a,t)z 0 u(b,t)z 0 (7)
Without any loss of generality, we embark on the numerical solution by considering:
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A Crank-Nicolson (CN) scheme-type application to equation (1.8), yields:
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Incorporate Newton-linearization to equation (2) to handle nonlinearity
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Apply Taylor series expansion to each term
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The following derivatives can be expressed as:
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This is accompanied by the following definitions:

Equation (3) can now be recast in the modified C-N scheme to read:
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(Au)f+1 = u(i,k+1)—u(i,k)
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We define

At At
r=——; rl=—
2Ax Ax

Factorization of equation (14) yields:
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r(E)f(u,ﬁ]—uf1)+r1[(Fz)f+;(”t+l— )= [<F> 1 ‘”f’“ﬂ*

Equation (15) can now be put in a typical tri-diagonal matrix form to read:
AkAuk+l +BkAuk+l +CkAuk+l

i+1

where

(27)

(29)

(30)

(31)

(32)

(33)
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3. Results and Discussions

Equations (1-3) are solved with the following initial and boundary conditions:

ic
u (x,O) =—sin(7zx), X e[—4,4] (34)
BC
u(—4,t)=u(4,t)=0, 7 (—4,t)=uxx (4,1‘):0 (35)

where f(u)=u’—u

Validation of the numerical results obtained herein is accomplished by comparing them with those
available in scientific literature. The problem domain is divided into M, =40, 80,160, with equal grid

space h, = Mi Since the exact solution is not known, it has been replaced by numerical values for
M. =160. We present graphs obtained for different values of y for ;
At=0.001, at t=0, 0.05, 0.1, 0.15, and 0.2 for M, =80 and y =0.0001, 0.01.
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Dependent variable

Fig. 1. Solution profiles for ¥ =.0001
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Dependent variable

Fig. 2. Solution profiles for ¥ =0.01

Figs (1-2) show a remarkable decay in the solution profiles as y increases. This observation confirms
literature results[24,25].

Dependent variable

Fig. 3. 3D Solution profiles for ¥ =0.0001
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Dependent variable

Time

Fig. 4. 3D Solution profiles ¥ =.001

Dependent variable

0.2

0.1
X 5 0.05

Time

Fig. 5. 3D Solution profiles for y =0.01

Further confirmation of this behavior can be found in the 3D graphs (Figs (3-5)) of the solution
for different values of y. A noticeable change occurs for y =0.01, thus confirming the stabilizing

nature of the fourth derivative in the EFK equation [24].
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Table 1

Errors and Norms of numerical solutions ¥ =.0001

Errors and Norms T=0.15, M=40 T=0.2, M=80
MAE (Mean Average Error) 1.26824765-02 6.93729071-03
RMS ( Root Mean Square Error) 1.44082419-02 7.75260508-03
L, Norm 8.51144948-02 4.86844676-03
L_Norm 1.20001897-02 3.40842515-03

Table 1 shows the decrease of errors and norms as the grid points increase and the solution evolves
with time.

We make further extensions on the validation of the above results by solving equations (1-3) for
Xe [—4,4] for the following initial and boundary conditions.

ic
u (x,O) =—10" exp(—x°), X e[—4,4] (36)
BC
u(—4,t)=u(4,6)=1, u, (-41)=u,(41)=0 (37)
u(—4,t)=u(4,t)=1, uxx(—4,t)=uxx(4,t):O (38)

Numerical solution for these set of initial and boundary conditions are implemented for

h =025, At =0.001 at t =0.25,1,1.75, 2.5, 4.5 fory =0.0001
Figs. (6-7) display the transient solution profiles
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Fig. 6. Solution profiles at different times
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Transient proliles of dependent variable
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Fig. 7. Transient solution profiles

As expected both of them note only agree with literature resuts [24], but also agree with the initial
and boundary conditions. Further confirmation of the numerical results are displayed in 3D profiles

shown in Figs.(8-9).

3D profile of dependent variable

Dependent variable

Time

Fig. 8. 3D Plot : Solutions approach1 as time increases
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3D profile of dependent variable

-0.2

Dependent variable

Fig. 9. 3D Plot : Solutions approach -1 as time increases

For the given initial and boundary conditions, the numerical solutions decay and approach 1 and -1
as time increases [24]. Indicating that the EFK equation approaches stability for these set of
conditions.

4. Conclusion

In the work reported herein a finite difference (FD) based numerical method is applied to produce
the numerical solutions of a nonlinear fourth-order partial differential equation. This technique
provides approximate solutions which were found to be very close to those available in scientific
literature [12,13,21,24,25]. Both the applicability and the accuracy of the method are confirmed by
tables and figures. A major advantage of this technique is its straightforward FD discretization as well
as the simplicity in coding resulting in representation of the discretized equations in a tri-diagonal
matrix form. These characteristics should enhance further application to more demanding scenarios
involving higher order and nonlinear partial differential equations
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