

Semarak Engineering Journal

Journal homepage: https://semarakilmu.my/index.php/sej/index ISSN: 3036-0145

Computation of Non-Linear Fourth-Order Partial Differential Equation Using a Modified Second Order Fully Implicit Differential Equation

Okey Oseloka Onyejekwe^{1,*}

1 Robnello Unit for Continuum Mechanics and Nonlinear Dynamics, Ishiagu Oshimili South Asaba, Delta State Nigeria

ARTICLE INFO ABSTRACT In the work reported herein, a second order accurate difference scheme is formulated Article history: Received 26 July 2025 and analyzed for fourth order nonlinear differential equations. Encouraging Received in revise 10 August 2025 conclusions are obtained for the error and accompanying error norms . Computed Accepted 18 September 2025 simulations are compared with those in literature and are found to not only Available online 3 October 2025 corroborate with theory and accuracy, but also justify the applicability of the scheme in more rigorous settings involving nonlinearity and higher order differential Keywords: equations. Fourth order differential equation, nonlinearity, second order difference scheme, errors and error norms

1. Introduction

Fourth order differential equations are very significant in real-world engineering problems. A firm understanding of the processes and theories which they represent demands simulations based on numerical solutions especially when the governing equations are nonlinear. Some examples in this field include the Euler-Bernoulli beam theory which is a fourth-order ordinary differential equation that predicts transverse deflection of a cantilevered beam subjected to uniform transverse loading and appropriate boundary conditions. Nandini [1] applied a B-spline collocation technique to determine the deflection of a geometrically nonlinear cantilevered beam. A similar work involving a mixed finite element implementation for a fourth order clamped anisotropic plate bending problem in distributed memory environments was applied to to a fourth order elliptic partial differential equation in the particular case of aniso/ortho/isotropic plate bending problems [2]. Other examples of note include Kuramoto-Sivashinsky equation; which is a nonlinear differential equation used for the study of many physical phenomena in engineering and physics of the continuum such as pattern formation, reaction-diffusion systems, phase-turbulence in the Belousov-Zhabotinsky reaction, combustion etc. Some of the studies related to these areas can be found in a few research [3-10,21].

E-mail address: robnello@rocketmail.com

*

https://doi.org/10.37934/sej.10.1.3548

^{*} Corresponding author.

The extended Fisher-Kolmogorov (EFK) equation is a time-dependent, transient, partial differential equation used for the study of physical and biological systems involving; phase transitions, bi-stability, tumor growth dynamics, disease spread, travelling waves, etc. The F-K has remained an active area for numerical work and can be found widely cited in scientific literature [11-20].

In this work a modified second order finite difference scheme is applied to arrive at the numerical solutions of the extended Fisher-Kolmogorov equation (EFK) represented as:

$$\frac{\partial u}{\partial t} + \gamma \frac{\partial^4 u}{\partial x^4} - \frac{\partial^2 u}{\partial x^2} + f(u) = 0, \quad x \in \Omega, \ t \in (0, T]$$
(1)

where $f(u) = u^3 - u$

with initial condition

$$u(x,0) = u_0(x), \qquad x \in [a,b]$$

$$\tag{2}$$

and boundary conditions

$$u(a,t) = z_0,$$
 $\frac{\partial^2 u}{\partial x^2}(a,t) = 0,$ $u(b,t) = 0,$ $\frac{\partial^2 u}{\partial x^2}(b,t) = 0,$ (3)

We note that when $\gamma=0$ in (1.1), we arrive at the standard Fisher-Kolmogorov (FK) equation. A stabilizing fourth-order derivative term added by van Saaloos [22] and van Saaloos [23] converted the standard (FK) equation to equation (1.1).

2. Mathematical formulation

We motivate the numerical discretization of equation (1)-(3) by converting the fourth order partial differential equation into a second order system of coupled differential equations. Following this procedure, we define; $m(x,t) = u_{xx}(x,t)$

hence, equations (1,1)-(1.3) become:

$$m(x,t) = u_{xx}(x,t) \tag{4}$$

$$u_t + \gamma m_{xx} - m + F(u) = 0 \tag{5}$$

with initial condition

$$u(x,0) = u_0 \qquad x \in [a,b] \tag{6}$$

And boundary conditions:

$$u(a,t)=g_0$$
 $u(b,t)=g_1$

$$m(a,t) = 0 \qquad u(b,t) = 0 \tag{7}$$

Without any loss of generality, we embark on the numerical solution by considering:

$$\frac{\partial u}{\partial t} = F_1\left(u\right) \frac{\partial u}{\partial x} + \frac{\partial}{\partial x} \left(F_2\left(u\right) \frac{\partial u}{\partial x}\right) + F_3\left(u\right) \tag{8}$$

A Crank-Nicolson (CN) scheme-type application to equation (1.8), yields:

$$\left(\frac{\partial u}{\partial t}\right)_{i}^{k+\frac{1}{2}} = \frac{1}{2} \left[F_{1}(u) \frac{\partial u}{\partial x} + \frac{\partial}{\partial x} \left(F_{2}(u) \frac{\partial u}{\partial x} \right) + F_{3}(u) \right]_{i}^{k} + \frac{1}{2} \left[F_{1}(u) \frac{\partial u}{\partial x} + \frac{\partial}{\partial x} \left(F_{2}(u) \frac{\partial u}{\partial x} \right) + F_{3}(u) \right]_{i}^{k+1} \tag{9}$$

Incorporate Newton-linearization to equation (2) to handle nonlinearity

$$\left(\frac{\partial u}{\partial t}\right)_{i}^{k+\frac{1}{2}} = \frac{1}{2} \left[F_{1}(u) \frac{\partial u}{\partial x} + \frac{\partial}{\partial x} \left(F_{2}(u) \frac{\partial u}{\partial x} \right) + F_{3}(u) \right]_{i}^{k} + \frac{1}{2} \left[F_{1}(u) \frac{\partial u}{\partial x} + \frac{\partial}{\partial x} \left(F_{2}(u) \frac{\partial u}{\partial x} \right) + F_{3}(u) \right]_{i}^{k+1} = \frac{1}{2} \left[\left(F_{1}(u) \frac{\partial u}{\partial x} \right)_{i}^{k} + \left(F_{1}(u) \frac{\partial u}{\partial x} \right)_{i}^{k+1} \right] + \frac{1}{2} \left[\frac{\partial}{\partial x} \left(F_{2}(u) \frac{\partial u}{\partial x} \right)_{i}^{k} + \frac{\partial}{\partial x} \left(F_{2}(u) \frac{\partial u}{\partial x} \right)_{i}^{k+1} \right] + \frac{1}{2} \left[\left(F_{3}(u) \right)_{i}^{k} + \left(F_{3}(u) \right)_{i}^{k+1} \right] \right] \tag{10}$$

Apply Taylor series expansion to each term:

$$\left(F_{2}(u)\frac{\partial u}{\partial x}\right)_{i}^{k+1} \approx \left(F_{2}(u)\frac{\partial u}{\partial x}\right)_{i}^{k} + \frac{\partial}{\partial t}\left(F_{2}(u)\frac{\partial u}{\partial x}\right)_{i}^{k} \Delta t = \left(F_{2}(u)\frac{\partial u}{\partial x}\right)_{i}^{k} + \left[\left(F_{2}(u)\frac{\partial^{2} u}{\partial x \partial t}\right)_{i}^{k} + \left(\frac{\partial F_{2}(u)}{\partial t}\frac{\partial u}{\partial x}\right)_{i}^{k}\right] \Delta t \tag{11}$$

Let

$$(F_3(u))_i^{k+1} \approx (F_3(u))_i^k + \left(\frac{\partial F_3(u)}{\partial t}\right)_i^k \Delta t$$
 (12)

then

$$\left(\frac{\partial u}{\partial t}\right)_{i}^{k+\frac{1}{2}} = \left[\left(F_{1}\left(u\right)\frac{\partial u}{\partial x}\right)_{i}^{k} + \frac{\partial}{\partial x}\left(F_{2}\left(u\right)\frac{\partial u}{\partial x}\right)_{i}^{k} + \left(F_{3}\left(u\right)\right)_{i}^{k}\right] + \left(F_{3}\left(u\right)\right)_{i}^{k}\right]$$

$$\frac{\Delta t}{2} \left[\left(F_1(u) \frac{\partial^2 u}{\partial x \partial t} \right)_i^k + \left(\frac{\partial F_1(u)}{\partial t} \frac{\partial u}{\partial x} \right)_i^k + \left(\frac{\partial}{\partial x} \left(F_2(u) \frac{\partial^2 u}{\partial x \partial t} \right) + \frac{\partial F_2(u)}{\partial t} \frac{\partial u}{\partial x} \right)_i^k + \left(\frac{\partial F_3(u)}{\partial t} \right)_i^k \right]$$
(13)

$$\left(\frac{\partial F_{1}(u)}{\partial t}\right)_{i}^{k} = \left(\frac{\partial F_{1}(u)}{\partial u}\right)_{i}^{k} \left(\frac{\partial u}{\partial t}\right)_{i}^{k} = \left(\frac{\partial F_{1}(u)}{\partial u}\right)_{i}^{k} \left(\frac{\Delta u^{k+1}}{\Delta t}\right) \tag{14}$$

$$\left(\frac{\partial^2 u}{\partial x \partial t}\right)_i^k = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial t}\right)_i^k = \frac{\partial}{\partial x} \left(\frac{\Delta u^{k+1}}{\Delta t}\right) \tag{15}$$

The following derivatives can be expressed as:

$$\frac{\partial}{\partial x} \left(F_2(u) \frac{\partial u}{\partial x} \right)_{i}^{k} = \frac{\left(F_2(u) \frac{\partial u}{\partial x} \right)_{i+\frac{1}{2}}^{k} - \left(F_2(u) \frac{\partial u}{\partial x} \right)_{i-\frac{1}{2}}^{k}}{\Delta x}$$
(16)

$$\left(F_{2}\left(u\right)\frac{\partial\Delta u_{i}^{k+1}}{\partial x}\right)_{i}^{k} = \frac{\left(F_{2}\left(u\right)\frac{\partial\Delta u^{k+1}}{\partial x}\right)_{i+\frac{1}{2}}^{k} - \left(F_{2}\left(u\right)\frac{\partial\Delta u^{k+1}}{\partial x}\right)_{i-\frac{1}{2}}^{k}}{\Delta x} \tag{17}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial F_2(u)}{\partial u} \frac{\partial u}{\partial x} \Delta u_i^{k+1} \right)_i^k = \frac{\left(\frac{\partial F_2}{\partial u} \frac{\partial u}{\partial x} \Delta u_i^{k+1} \right)_{i+\frac{1}{2}}^k - \left(\frac{\partial F_2}{\partial u} \frac{\partial u}{\partial x} \Delta u_i^{k+1} \right)_{i-\frac{1}{2}}^k}{\Delta x} \tag{18}$$

This is accompanied by the following definitions:

Equation (3) can now be recast in the modified C-N scheme to read:

$$\left(\Delta u\right)_{i}^{k+1} = u\left(i, k+1\right) - u\left(i, k\right) \tag{19}$$

$$\left(\frac{\partial u}{\partial x}\right)_{i+\frac{1}{2}}^{k} = \frac{u(i+1,k) - u(i,k)}{\Delta x} \tag{20}$$

$$\left(\frac{\partial u}{\partial t}\right)_{i}^{k+\frac{1}{2}} = \frac{u(i,k+1) - u(i,k)}{\Delta x} = \frac{\left(\Delta u\right)_{i}^{k+1}}{\Delta t} \tag{21}$$

$$\left(\frac{\partial u}{\partial x}\right)_{i-\frac{1}{2}}^{k} = \frac{u(i,k) - u(i-1,k)}{\Delta x} \tag{22}$$

$$\left(\Delta u\right)_{i+\frac{1}{2}}^{k} = \frac{\Delta u\left(i+1,k+1\right) + \Delta u\left(i,k+1\right)}{2} \tag{23}$$

$$\left(\Delta u\right)_{i-\frac{1}{2}}^{k+1} = \frac{\Delta u(i,k+1) + \Delta u(i-1,k+1)}{2} \tag{24}$$

$$\frac{\Delta u_{i}^{k+1}}{\Delta t} = \left(F_{1}\left(u\right)\frac{\partial u}{\partial x}\right)_{i}^{k} + \left(\frac{\partial}{\partial x}\left(F_{2}\left(u\right)\frac{\partial u}{\partial x}\right)\right)_{i}^{k} + \left(F_{3}\left(u\right)\right)_{i}^{k} + \left(\frac{\partial}{\partial x}\left(\Delta u_{i}^{k+1}\right) + \frac{\partial F_{1}}{\partial u}\frac{\partial u}{\partial x}\Delta u^{k+1} + \frac{\partial}{\partial x}\left(F_{2}\frac{\partial}{\partial x}\left(\Delta u_{i}^{k+1}\right)\right)\right]_{i}^{k} + \frac{1}{2}\left[\frac{\partial}{\partial x}\left(\frac{\partial F_{2}}{\partial u}\frac{\partial u}{\partial x}\Delta u_{i}^{k+1}\right) + \frac{\partial F_{3}}{\partial u}\Delta u_{i}^{k+1}\right]_{i}^{k} \right]$$
(25)

$$\frac{\Delta u_{i}^{k+1}}{\Delta t} = \left[\frac{u_{i+1}^{k} - u_{i-1}^{k}}{2\Delta x} \right] \left(F_{1}(u) \right)_{i}^{k} + \left(F_{3} + \frac{1}{2} \frac{\partial F_{3}}{\partial u} \Delta u_{i}^{k+1} \right)_{i}^{k} + \frac{1}{2} \left[\left(\frac{\Delta u_{i+1}^{k+1} - \Delta u_{i-1}^{k+1}}{2\Delta x} \right) \left(F_{1}(u) \right)_{i}^{k} + \left[\frac{u_{i+1}^{k} u_{i-1}^{k}}{2\Delta} \right] \frac{\partial F_{1}}{\partial u} \Delta u_{i}^{k+1} \right] + \frac{F_{2}(u)_{i+\frac{1}{2}}^{k} \left(u_{i+1}^{k} - u_{i}^{k} \right) - F_{2}(u)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k} \right)}{\Delta x^{2}} + \frac{F_{2}(u)_{i+\frac{1}{2}}^{k} \left(\Delta u_{i+1}^{k+1} - \Delta u_{i}^{k+1} \right) - F_{2}(u)_{i-\frac{1}{2}}^{k} \left(\Delta u_{i}^{k+1} - \Delta u_{i-1}^{k+1} \right)}{\Delta x^{2}} + \frac{\left(\frac{\partial F_{2}}{\partial u} \right)_{i+\frac{1}{2}}^{k} \left(u_{i+1}^{k} - u_{i}^{k} \right) \left(\Delta u_{i+1}^{k+1} + \Delta u_{i}^{k+1} \right)}{\Delta x^{2}} - \frac{1}{4} \frac{\left(\frac{\partial F_{2}}{\partial u} \right)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k} \right) \left(\Delta u_{i}^{k+1} + \Delta u_{i-1}^{k+1} \right)}{\Delta x^{2}} - \frac{1}{4} \frac{\left(\frac{\partial F_{2}}{\partial u} \right)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k} \right) \left(\Delta u_{i}^{k+1} + \Delta u_{i-1}^{k+1} \right)}{\Delta x^{2}} \right] + \frac{1}{4} \frac{\left(\frac{\partial F_{2}}{\partial u} \right)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k} \right) \left(\Delta u_{i}^{k+1} + \Delta u_{i-1}^{k+1} \right)}{\Delta x^{2}} - \frac{1}{4} \frac{\left(\frac{\partial F_{2}}{\partial u} \right)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k} \right) \left(\Delta u_{i}^{k+1} + \Delta u_{i-1}^{k+1} \right)}{\Delta x^{2}} - \frac{1}{4} \frac{\left(\frac{\partial F_{2}}{\partial u} \right)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k} \right) \left(\Delta u_{i}^{k+1} + \Delta u_{i-1}^{k+1} \right)}{\Delta x^{2}} - \frac{1}{4} \frac{\left(\frac{\partial F_{2}}{\partial u} \right)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k} \right) \left(\Delta u_{i}^{k+1} + \Delta u_{i-1}^{k+1} \right)}{\Delta x^{2}} - \frac{1}{4} \frac{\left(\frac{\partial F_{2}}{\partial u} \right)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k} \right) \left(\Delta u_{i}^{k+1} + \Delta u_{i-1}^{k+1} \right)}{\Delta x^{2}} - \frac{1}{4} \frac{\left(\frac{\partial F_{2}}{\partial u} \right)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k} \right) \left(\frac{\partial F_{2}}{\partial u} \right)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k} \right) \left(\frac{\partial F_{2}}{\partial u} \right)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k} \right) \left(\frac{\partial F_{2}}{\partial u} \right)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k} \right) \left(\frac{\partial F_{2}}{\partial u} \right)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k} \right) \left(\frac{\partial F_{2}}{\partial u} \right)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k} \right) \left(\frac{\partial F_{2}}{\partial u} \right)_{i-\frac{1}$$

We define

$$r = \frac{\Delta t}{2\Delta x}$$
; $r1 = \frac{\Delta t}{\Delta x^2}$

Factorization of equation (14) yields:

$$\left[\frac{r}{2}(F_{1}(u))_{i}^{k} - \frac{r1}{2}F_{2}(u)_{i-\frac{1}{2}}^{k} + \frac{r1}{4}\left(\frac{\partial F_{2}(u)}{\partial u}\right)_{i-\frac{1}{2}}^{k}(u_{i}^{k} - u_{i-1}^{k})\right] \Delta u_{i-1}^{k+1} + \left[1 - \frac{r}{2}\left(\frac{\partial F_{1}(u)}{\partial u}\right)_{i}^{k}\left(u_{i+1}^{k} - u_{i-1}^{k}\right) + \frac{r1}{2}\left(F_{2}(u)_{i+\frac{1}{2}}^{k} + F_{2}(u)_{i-\frac{1}{2}}^{k}\right) - \frac{1}{2}\left(\frac{\partial F_{2}}{\partial u}\right)_{i+\frac{1}{2}}^{k}\left(u_{i+1}^{k} - u_{i}^{k}\right)\right] \Delta u_{i}^{k+1} + \left[\frac{1}{2}\left(\frac{\partial F_{2}(u)}{\partial u}\right)_{i-\frac{1}{2}}^{k}\left(u_{i}^{k} - u_{i-1}^{k}\right) - \frac{\Delta t}{2}\left(\frac{\partial F_{3}(u)}{\partial u}\right)_{i}^{k}\right] \Delta u_{i}^{k+1} - \left[\frac{r}{2}\left(F_{1}(u)\right)_{i}^{k} + \frac{r_{1}}{2}F_{2}(u)_{i+\frac{1}{2}}^{k} + \frac{r1}{4}\left(\frac{\partial F_{2}(u)}{\partial u}\right)_{i+\frac{1}{2}}^{k}\left(u_{i+1}^{k} - u_{i}^{k}\right)\right] \Delta u_{i+1}^{k+1} = r\left(F_{1}\right)_{i}^{k}\left(u_{i+1}^{k} - u_{i-1}^{k}\right) + r1\left[\left(F_{2}\right)_{i+\frac{1}{2}}^{k}\left(u_{i+1}^{k} - u_{i}\right) - r1\left[\left(F_{2}\right)_{i-\frac{1}{2}}^{k}\left(u_{i}^{k} - u_{i-1}^{k}\right)\right]\right] + \Delta t\left(F_{3}\right)_{i}^{k} \tag{27}$$

Equation (15) can now be put in a typical tri-diagonal matrix form to read:

$$A_i^k \Delta u_{i-1}^{k+1} + B_i^k \Delta u_i^{k+1} + C_i^k \Delta u_{i+1}^{k+1} \tag{29}$$

where

$$A_{i}^{k} = \frac{1}{2} \left(F_{1}(u) \right)_{i}^{k} - \frac{r1}{2} F_{2}(u)_{i-\frac{1}{2}}^{k} + \frac{r1}{4} \left(\frac{\partial F_{2}}{\partial u} \right)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k} \right)$$

$$(30)$$

$$B_{i}^{k} = 1 - \frac{1}{2} \left(\frac{\partial F_{1}}{\partial u} \right)_{i}^{k} \left(u_{i+1}^{k} - u_{i-1}^{k} \right) + \frac{r1}{2} \left(F_{2} \left(u \right)_{i+1}^{k} - F_{2} \left(u \right)_{i-1}^{k} \right) - \frac{1}{2} \left(\frac{\partial F_{2}}{\partial u} \right)_{i+\frac{1}{2}}^{k} \left(u_{i+1}^{k} - u_{i}^{k} \right) + \frac{1}{2} \left(\frac{\partial F_{2}}{\partial u} \right)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k} \right) - \frac{\Delta t}{2} \left(\frac{\partial F_{3}}{\partial u} \right)_{i}^{k}$$

$$(31)$$

$$C_{i}^{k} = -\left[\frac{r1}{2}\left(F_{1}(u)\right)_{i}^{k} + \frac{r_{1}}{2}F_{2}\left(u\right)_{i+\frac{1}{2}}^{k} + \frac{r1}{4}\left(\frac{\partial F_{2}}{\partial u}\right)_{i+\frac{1}{2}}^{k}\left(u_{i+1}^{k} - u_{i}^{k}\right)\right]$$
(32)

$$D_{i}^{k} = r(F_{1})_{i}^{k} \left(u_{i+1}^{k} - u_{i-1}^{k}\right) + r \left[\left(F_{2}\right)_{i+\frac{1}{2}}^{k} \left(u_{i+\frac{1}{2}}^{k} - u_{i}^{k}\right) - \left(F_{2}\right)_{i-\frac{1}{2}}^{k} \left(u_{i}^{k} - u_{i-1}^{k}\right)\right] + \Delta t(F_{3})_{i}^{k}$$

$$(33)$$

3. Results and Discussions

Equations (1-3) are solved with the following initial and boundary conditions:

$$IC$$

$$u(x,0) = -\sin(\pi x), \qquad x \in [-4,4]$$
(34)

BC

$$u(-4,t) = u(4,t) = 0, \quad u_{xx}(-4,t) = u_{xx}(4,t) = 0$$
 (35)

where $f(u) = u^3 - u$

Validation of the numerical results obtained herein is accomplished by comparing them with those available in scientific literature. The problem domain is divided into $M_i=40,\,80,160$, with equal grid space $h_i=\frac{8}{M_i}$. Since the exact solution is not known, it has been replaced by numerical values for $M_i=160$. We present graphs obtained for different values of γ for ; $\Delta t=0.001,\,\,at\,\,t=0,\,0.05,\,0.1,\,0.15,\,\,and\,\,0.2$ for $M_i=80$ and $\gamma=0.0001,\,\,0.01.$

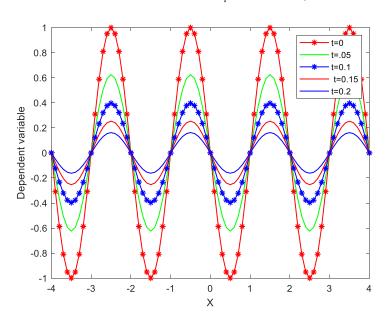


Fig. 1. Solution profiles for $\gamma = .0001$

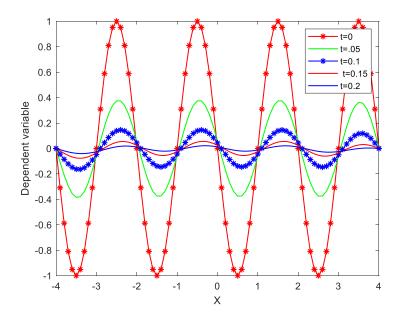


Fig. 2. Solution profiles for $\gamma = 0.01$

Figs (1-2) show a remarkable decay in the solution profiles as γ increases. This observation confirms literature results [24,25].

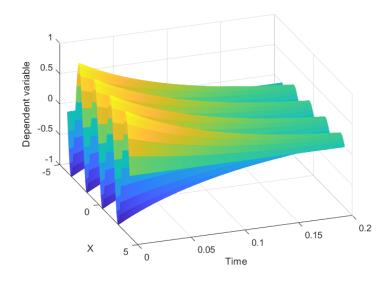


Fig. 3. 3D Solution profiles for $\gamma=0.0001$

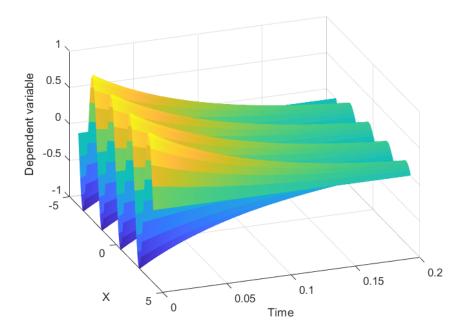


Fig. 4. 3D Solution profiles $\gamma = .001$

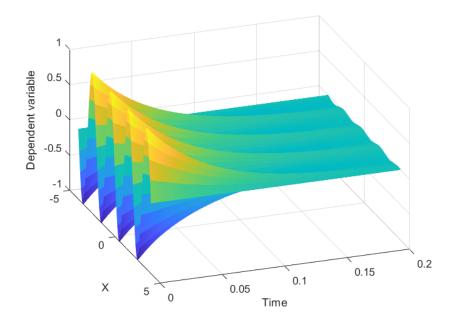


Fig. 5. 3D Solution profiles for $\gamma = 0.01$

Further confirmation of this behavior can be found in the 3D graphs (Figs (3-5)) of the solution for different values of γ . A noticeable change occurs for $\gamma=0.01$, thus confirming the stabilizing nature of the fourth derivative in the EFK equation [24].

Table 1 Errors and Norms of numerical solutions $\gamma = .0001$

T = 0.15, M=40	T=0.2, M=80	
1.26824765-02	6.93729071-03	
1.44082419-02	7.75260508-03	
8.51144948-02	4.86844676-03	
1.20001897-02	3.40842515-03	
	1.26824765-02 1.44082419-02 8.51144948-02	1.26824765-02 6.93729071-03 1.44082419-02 7.75260508-03 8.51144948-02 4.86844676-03

Table 1 shows the decrease of errors and norms as the grid points increase and the solution evolves with time.

We make further extensions on the validation of the above results by solving equations (1-3) for $x \in [-4,4]$ for the following initial and boundary conditions.

IC

$$u(x,0) = -10^{-3} \exp(-x^3), \qquad x \in [-4,4]$$
 (36)

BC

$$u(-4,t) = u(4,t) = 1, \quad u_{xx}(-4,t) = u_{xx}(4,t) = 0$$
 (37)

$$u(-4,t) = u(4,t) = 1, \quad u_{xx}(-4,t) = u_{xx}(4,t) = 0$$
 (38)

Numerical solution for these set of initial and boundary conditions are implemented for

$$h = 0.025$$
, $\Delta t = 0.001$ at $t = 0.25, 1, 1.75, 2.5, 4.5$ for $\gamma = 0.0001$

Figs. (6-7) display the transient solution profiles

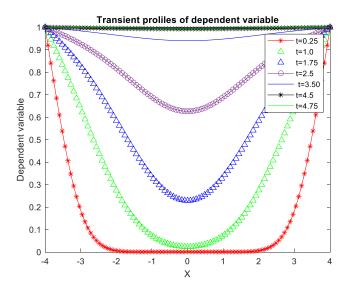


Fig. 6. Solution profiles at different times

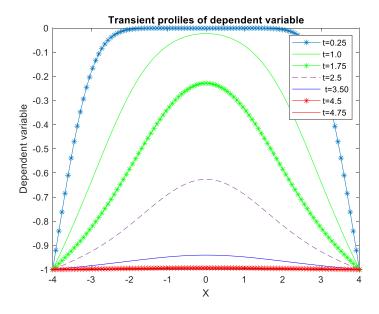


Fig. 7. Transient solution profiles

As expected both of them note only agree with literature results [24], but also agree with the initial and boundary conditions. Further confirmation of the numerical results are displayed in 3D profiles shown in Figs. (8-9).

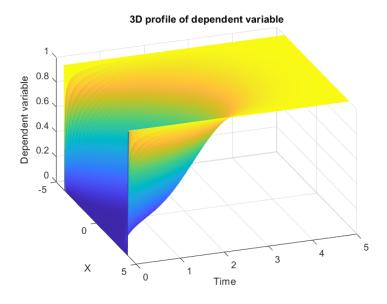


Fig. 8. 3D Plot: Solutions approach1 as time increases

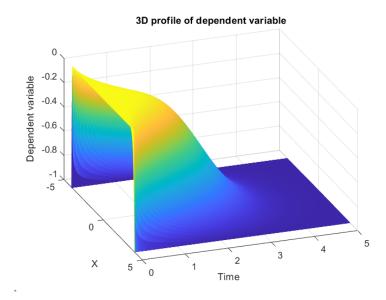


Fig. 9. 3D Plot: Solutions approach -1 as time increases

For the given initial and boundary conditions, the numerical solutions decay and approach 1 and -1 as time increases [24]. Indicating that the EFK equation approaches stability for these set of conditions.

4. Conclusion

In the work reported herein a finite difference (FD) based numerical method is applied to produce the numerical solutions of a nonlinear fourth-order partial differential equation. This technique provides approximate solutions which were found to be very close to those available in scientific literature [12,13,21,24,25]. Both the applicability and the accuracy of the method are confirmed by tables and figures. A major advantage of this technique is its straightforward FD discretization as well as the simplicity in coding resulting in representation of the discretized equations in a tri-diagonal matrix form. These characteristics should enhance further application to more demanding scenarios involving higher order and nonlinear partial differential equations

References

- [1] Nandini, A.P., 2012 Mixed Galerkin Finite Element Methods for Fourth Order Partial Differential Equation. Submitted in fulfilment for the award of the degree of Doctor of Philosophy, Faculty of Science and Humanities, Anna University Chennai 600 025.
- [2] Kulshreshtha, Kshitij, Neela Nataraj, and Michael Jung. "Performance of a parallel mixed finite element implementation for fourth order clamped anisotropic plate bending problems in distributed memory environments." *Applied mathematics and computation* 155, no. 3 (2004): 753-777. https://doi.org/10.1016/S0096-3003(03)00816-6
- [3] Easif, Fadhil H., Saad A. Manaa, and Majeed A. Yousif. "The Homotopy Perturbation Method for Solving the Kuramoto–Sivashinsky Equation." *IOSR Journal of Engineering* 3 (2013): 22-27. https://doi.org/10.9790/3021-031232327
- [4] Acan, Omer, and Yildiray Keskin. "Approximate solution of Kuramoto-Sivashinsky equation using reduced differential transform method." *arXiv preprint arXiv:1407.7029* (2014). https://doi.org/10.1063/1.4912680
- [5] Muhammet, K., Aydin, S., Mehmet A.K., " A new analytical solution of Kuramoto-Savinsky using homotopy-analysis method.", *Appld. Math, Info. Sci.* 7 (2013) 267-271. https://doi.org/10.12785/amis/070133
- [6] Jiang, Xiaoxuan, Xuehua Yang, Haixiang Zhang, and Qingqing Tian. "An Implicit Difference Scheme for the Fourth-Order Nonlinear Evolution Equation with Multi-Term Riemann–Liouvile Fractional Integral Kernels." *Fractal and Fractional* 6, no. 8 (2022): 443. https://doi.org/10.3390/fractalfract6080443

- [7] Kurulay, Muhammet, Aydin Secer, and Mehmet Ali Akinlar. "A new approximate analytical solution of Kuramoto-Sivashinsky equation using homotopy analysis method." *Applied Mathematics & Information Sciences* 7, no. 1 (2013): 267-271. https://doi.org/10.12785/amis/070133
- [8] Hashim, Ishak. "Adomian decomposition method for solving BVPs for fourth-order integro-differential equations." *Journal of Computational and Applied Mathematics* 193, no. 2 (2006): 658-664. https://doi.org/10.1016/j.cam.2005.05.034
- [9] Biazar, Jafar, and H. Ghazvini. "He's variational iteration method for fourth-order parabolic equations." *Computers & Mathematics with Applications* 54, no. 7-8 (2007): 1047-1054. https://doi.org/10.1016/j.camwa.2006.12.049
- [10] Moore, Peter, and Marina Rangelova. "A posteriori error estimation for *hp*-adaptivity for fourth-order equations." *Mathematics of computation* 79, no. 270 (2010): 677-705. https://doi.org/10.1090/S0025-5718-09-02290-X
- [11] Kadri, Tlili, and Khaled Omrani. "A second-order accurate difference scheme for an extended Fisher–Kolmogorov equation." *Computers & Mathematics with Applications* 61, no. 2 (2011): 451-459. https://doi.org/10.1016/j.camwa.2010.11.022
- [12] Jiang, X, Xuenhua Tang, Haixiang Zhang, Qingqing Tian, "An implicit difference scheme for fourth order nonlinear evolution equation with multi-term using Runge-type method" 6 (2022) 443. https://doi.org/10.3390/fractalfract6080443
- [13] Hussain, Kassim, Fudzian Ismail, Norazak Senu, 2016, "Solving directly special fourth-order ordinary differential equation Orthogonal cubic spline collocation for the xtended Fisher-Kolmogorov equation.", *Jnl. Comput. And Appld. Math.* 306 (2016) 179-199. https://doi.org/10.1016/j.cam.2016.04.002
- [14] Hashim, Ishak. "Adomian decomposition method for solving BVPs for fourth-order integro-differential equations." *Journal of Computational and Applied Mathematics* 193, no. 2 (2006): 658-664. https://doi.org/10.1016/j.cam.2005.05.034
- [15] Zhang, Yuan, Lei Zhang, and Sigong Zhang. "Exact series solutions of composite beams with rotationally restrained boundary conditions: static analysis." *Archive of Applied Mechanics* 92, no. 12 (2022): 3999-4015. https://doi.org/10.1007/s00419-022-02277-0
- [16] Sun, Qihang, Bingquan Ji, and Luming Zhang. "A convex splitting BDF2 method with variable time-steps for the extended Fisher–Kolmogorov equation." *Computers & Mathematics with Applications* 114 (2022): 73-82. https://doi.org/10.1016/j.camwa.2022.03.017
- [17] Amirudin, A. A., Mohammad, S.A. S., Mohamma H.N.H., "Comparative study of collocation method and Gdalerkin method for solving nonlinear partial differential equation.", *Int.Jnl. Adv. Trends in Comput. Sci. and Engnr.*, 8 (2019) 1-15. https://doi.org/10.30534/ijatcse/2019/0181.52019
- [18] Moaaz, Osama, Poom Kumam, and Omar Bazighifan. "On the oscillatory behavior of a class of fourth-order nonlinear differential equation." *Symmetry* 12, no. 4 (2020): 524. https://doi.org/10.3390/sym12040524
- [19] Agarwal, Ravi, Omar Bazighifan Maria Alesandra Regusa 2021 "Nonlinear neutral delay differential equation Stationary solutions of fourth order oscillation of solutions." Entropy(Basel) 23 (2021) 129. https://doi.org/10.3390/e23020129
- [20] Sun, Qihang, Jindi Wang, and Luming Zhang. "A new third-order energy stable technique and error estimate for the extended Fisher–Kolmogorov equation." *Computers & Mathematics with Applications* 142 (2023): 198-207. https://doi.org/10.1016/j.camwa.2023.04.008
- [21] Onyejekwe, Okey Oseloka. "A Green element method for fourth order ordinary differential equations." *Advances in Engineering Software* 35, no. 8-9 (2004): 517-525. https://doi.org/10.1016/j.advengsoft.2004.05.005
- [22] Van Saarloos, Wim. "Dynamical velocity selection: marginal stability." *Physical review letters* 58, no. 24 (1987): 2571. https://doi.org/10.1103/PhysRevLett.58.2571
- [23] Van Saarloos, Wim. "Front propagation into unstable states: marginal stability as a dynamical mechanism for velocity selection." *Physical Review A* 37, no. 1 (1988): 211. https://doi.org/10.1103/PhysRevA.37.211
- [24] Thottoli, Shafeeq Rahman, Mohammad Tamsir, Mutum Zico Meetei, and Ahmed H. Msmali. "Numerical investigation of nonlinear extended Fisher-Kolmogorov equation via quintic trigonometric B-spline collocation technique." *AIMS Mathematics* 9, no. 7 (2024): 17339-17358. https://doi.org/10.3934/math.2024843
- [25] Onyejekwe, Okey Oseloka. "A direct implementation of a modified boundary integral formulation for the extended Fisher-Kolmogorov equation." *Journal of Applied Mathematics and Physics* 3, no. 10 (2015): 1262. https://doi.org/10.4236/jamp.2015.310155