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The present study focuses on the development of a numerical framework for 
predicting the horizontal movement of a vertically plunging plate due to symmetry 
breaking in the flow, mimicking the flight of a flapping insect wing. The wing is 
represented as a thin, rigid rectangular plate plunging in a quiescent fluid. 
Numerical simulations are performed on the unconstrained plunging rectangular 
plate (i.e., free to propel along a direction orthogonal to the plunging direction) by 
utilizing a translating continuous-grid-block and multiple-relaxation time variant 
of the lattice Boltzmann method. The onset of asymmetry is identified by the 
critical values of non-dimensional amplitude (represented by Keulegan-Carpenter 

number, KC) and frequency (or Stokes number,  ) and thickness to chord ratio 

(δ). The flow asymmetry that leads to self-propulsion is assessed by formulating 
an eigenvalue problem using Floquet analysis. It is shown that conditions for which 
propulsion initiates can be identified in a time-effective manner using the 
developed Floquet framework rather than a rigorous binary search-based 

method. Our analysis shows that the transition boundary in KC-   space shifts to 

smaller KC for given   as δ is reduced, suggesting that breaking of symmetry is 

readily achieved for a plate with lower δ. Furthermore, we report four distinct 

trajectories of the plate that depend on the combination of KC and  . While the 

plate exhibits unidirectional propulsion for large  , oscillatory motion is observed 

when KC >2 and  <20. These kinematics are further differentiated using flow 

patterns associated with the plunging plate during propulsion and the phase-
portraits of the coefficient of horizontal thrust. By probing the effect of ground 
clearance (ς) on the propulsion of the plate, it is shown that the shed vortices from 
the plate reflect from the nearby wall and reduce the effective circulation around 
the plunging plate leading to a delay in onset of instability. Meanwhile, lack of this 
plate-wake interaction results in flow asymmetry being observed much earlier for 
a plate that is far away from the stationary wall. 
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1. Introduction 
 

Nature’s flyers (birds, bats, and insects) have evolved over the past 150 million years and possess 
an impressive biological flight where flapping of wings is utilized to not only generate lift but also 
forward thrust [1-4]. Unlike large manned vehicles, the biological flyers usually operate at a low 
Reynolds number (Re) that has adverse aerodynamic conditions (i.e., low lift-to-drag ratio). At large 
length scales, flapping becomes redundant as the lift can be easily generated by deriving forward 
motion through an engine via either propellers or high-velocity jets, as in conventional fixed-wing 
aircraft. Thus, the flying capability of insects at low speed has motivated researchers to develop micro 
air vehicles (MAVs) with a characteristic dimension of 15 cm or smaller and flight speed of 10m/s or 
lower [5,6,8]. When equipped with a payload, camera or sensor, these can be used to collect valuable 
information to perform tasks such as reconnaissance, surveillance and patrolling in restricted areas 
that may not be otherwise possible. Thus, they have rapidly evolved as trendy defence gadgets with 
conditions of stable hover, high maneuverability, vertical take-off/landing capability and quiet 
locomotion. Rapid advancements in material science, electronics and corresponding innovations and 
size reduction of power sources have further contributed to the commercialization of these MAVs 
[8].  

Knoller [9] and Betz [8] were the first ones to observe the phenomenon of thrust generation in 
birds. They investigate that vertically heaving airfoil creates an effective angle of attack which 
provides a normal force vector in the horizontal direction and is responsible for thrust generation, 
which was later tentatively demonstrated by Katzmayr [10]. The above study by Knoller [9] and Beta 
[8] on a rigid plunging wing that either flaps the wing in a fixed position with the oncoming flow or 
cruises through the flow was later supported by numerous experiments and computational 
examinations [11-16]. Going further, the present study has been conducted on a self-propelled rigid 
wing (the forward translation is produced only by a flapping motion and both are interdependent or 
linked) to mimic the action of a biological flyer. 

A portion of the vital findings of past studies on a self-propulsion wing [17-25] are summarized 
here. Vandenberghe et al., [23, 24] experimentally showed that the symmetry breaking of a periodic 
motion at a critical Reynolds number (Rec) leads to forward flapping flight.  Alben and Shelly [17] 
revealed that the imposed oscillations of a two-dimensional ellipse could lead to forward propulsion 
in two stages. First, the fluid flow loses symmetry due to the linear instability. Second, nonlinear fluid-
solid interactions between the body and previously shed vortices push the body into forward 
propulsion. It was also reported that Rec for the onset of such thrust is independent of the density 

ratio ( * / )
s f

  =  , where s
   is the density of the solid body and 

f
  is the fluid density. Lu and Liao 

[22] predicted the critical Reynolds number Rec of an elliptical foil by varying the flapping frequency 
and amplitude. Zhang et al., [25] studied the effect of varying the thickness-to-chord ratio (δ) 
between 1 and 100 for elliptical and rectangular flapping foils on the symmetry-breaking bifurcation. 
Arora et al., [18] studied the flow patterns, propulsion efficiency and power requirements associated 
with a heaving thin flat plate in a quiescent fluid. Deng and Caulfield [20] identified the onset of 
symmetry breaking around an elliptical foil by varying foil thickness to chord ratio (δ e D= , where 

D and e are chord length and thickness, respectively) in a viscous fluid subjected to a vertically forced 
oscillation Moreover, the flow field was assessed to be similar to the onset of asymmetry around a 
fixed cylinder. The nature of symmetry breaking was shown to depend on two non-dimensional 
parameters, namely Keulegan-Carpenter number (KC) and Stokes number (  ) defined as 
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2π
2

,
A

KC
D

fD



= =  

   
(1) 

 
where f  is the plunging frequency and   is the kinematic viscosity of the fluid [20]. In the case of a 

flow generated by a purely oscillating circular cylinder or elliptical foil, different patterns of 
asymmetry in KC −  space have been reported [20,26]. These patterns are qualitatively different 

on either side of the marked ‘freezing point’, a term first proposed by Elston et al., [26].  
The identification of conditions leading to a tendency to propel for a plate of low δ at an apparent 

steady speed is extremely appealing in the context of our understanding of the flight of birds and 
insects. However, it is challenging to hold or capture the subtle equilibrium required to lead to a 
quasi-periodicity in the flow once a symmetry-breaking bifurcation is established. In such cases, it is 
difficult to accurately quantify the critical values of kinematic parameters that govern the onset of 
asymmetry in the flow. Further, the self-propulsion of rigid, flat, and low thickness to chord ratio 

( )1 10   plates has received limited attention. In addition, the effect of ground clearance on the 

growth or decay of perturbations has not been addressed before. The earlier studies mainly focused 
on types of asymmetries produced by oscillating circular cylinders and elliptical foil as a function of 
KC, β, and δ. Furthermore, the different types of asymmetries related to a self-propelled rigid 
plunging plate of low thickness to chord ratio need to be addressed. It has been reported that the 
onset of asymmetry or instability is not achieved even after a few hundred plunging cycles in some 
instances [18]. This augments uncertainty over the propulsion scenarios leading to a significant 
increase in the computational cost and time elapsed in accurate quantification of the point of 
transition from pure plunging to forward locomotion.  

To address these limitations, we develop and present a framework to identify conditions under 
which symmetry breaking in the flow around a thin rigid rectangular plunging plate can be induced 
without having to rely on visual or trajectory-tracking techniques to isolate the eventual outcome. 
Going further, the present study has been conducted on a self-propelled rigid wing (the forward 
translation is produced only by a flapping motion and both are interdependent or linked) to mimic 
the action of a biological flyer. In the present investigation, the prediction of the onset of self-
propulsion is performed using Floquet analysis by utilizing the periodic base flow produced by the 
plunging plate. The transition boundary in KC -  space between two-dimensional symmetrical and 

asymmetrical flow produced by a horizontally unconstrained rectangular plate plunging in a 
quiescent fluid for low thickness to chord ratios ( 0.05 0.2δ  ) is determined. Further, the 
trajectory of the rigid plate for kinematic conditions on the asymmetry side and near the transition 
boundary is analyzed. Finally, the role of ground clearance in inducing flow asymmetry leading to the 
propulsion of a plunging rectangular plate is investigated. 
 
1.1 Problem Description  
 

We consider a rigid rectangular plate unconstrained (or free to propel) in the direction transverse 
to the imposed plunging motion. A schematic illustrating the plunging plate is shown in Figure 1.  For 
the non-dimensionalization of system parameters, chord D has been chosen as the length scale and 

flapping period T (where 
1

0T f −=   0f   is the plunging frequency) as the time scale. The vertical 

displacement of a rectangular plate is given by 
 

( ) ( )cos 2 oy t A f t=  (2) 
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The parameters expected to play a significant role in the propulsion of the plate and for 
conducting a parametric study are the flapping Reynolds number (Ref), KC,  , δ, and ground 

clearance ( ).   The flapping Reynolds number is defined as 

 

( ) / 2f oRe Af D KC  = =   (3) 

 

The density ratio is defined as 
*

s f  = , (where s   is the density of the solid body and f   is 

the fluid density).  is varied between 0.05 0.2δ   which is similar to that of a real insect wing 
[1,27,28]. The ground clearance /h D =  is expressed as the non-dimensional distance of the plate 

from the bottom boundary of the domain ( h ). Such ground effect has not been studied earlier and 
can reveal how the distance from the ground can affect the self-propulsion of the plate. This is also 
analogous to an insect or a bird taking off from the ground by flapping its wings. 

 

 
Fig. 1. Schematic representation of a self-propelled rigid plunging membrane 

 
A hydrodynamic force is exerted on the flat plate due to its interaction with the fluid. The forward 

locomotion along the direction orthogonal to the plunging motion is made possible due to the 
horizontal component of this force. As the plate is unconstrained along the x-direction, the horizontal 

position of the plate px   is updated by the numerical solution of Newton's second law of motion.  

 
2

2

p
x

d x
F m

dt
=  

(4) 

 
Here m is the mass of the plate and  xF  is the instantaneous thrust exerted on it. The horizontal 

velocity component (u ) is updated using the following rule 
 

pdx
u

dt
=  

(5) 

 

The thrust coefficient  xC  is defined as 22 x fx F VC D=  , where 02V Af=   is the maximum plunging 

velocity. 
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In order to gain a comprehensive understanding of the dynamics related to the parameters of 
interest, it was considered necessary to select the range of design variables taking cognizance of 
previous research [17,20-25]. Therefore, the range of parameters has been chosen which is 
influenced by that of the smallest insect (e.g. Encarsia Formosa and Drosophila melanogaster) [1, 2] 
and given in Table 1. It should also be noted that the wings or fins of flying and swimming creatures 

have a density ratio 1 2~ 10 10 −  [22]. Hence in this work, the density ratio has been fixed at the 

mean value of 55. 
 

Table 1 
The scope of parameters (or configuration space) examined in this work for the parametric study 
of a rigid plunging plate 
Variable Minimum value Maximum value 

KC 1 8 
  1.7 95 

δ 0.05 0.2 
  2.0 10.0 

 
2. Methodology  
 

The present study encompasses two stages of numerical modeling: (a) flow solver, for calculation 
of the base flows around the plunging plate, (b) stability analysis, for the formulation of the 
eigenvalue problem. The base flow calculated through the flow solver is utilized for the stability 
analysis. The description of these approaches is given in the following sections. 
 
2.1 Fluid Solver 

 
The fluid solver utilizes the multi-relaxation time (MRT) version of the lattice Boltzmann method 

(LBM) to calculate the flow field and forces on the plunging plate. Details of the flow solver are given 
in Arora et al., [18,29] and only the key aspects are presented here. 

 
2.1.1 Multi-relaxation time LBM 
 

The conventional single-relaxation time (SRT) LBM poses numerical instability at low values of 
relaxation time and hence presents limitations in modeling of flows at high Reynolds numbers [30-
35]. Contrary to SRT, the MRT model exhibits better numerical stability even at high Reynolds 
numbers and has been quite successful in curtailing the spurious oscillations registered in force 
measurement [34,35]. In this method, the distribution function f (as defined in the SRT model) in the 
discrete velocity space B is mapped onto the moment space K by using a transformation matrix M 

[18], i.e., f̂ Mf=  , where f̂   is a column matrix consisting of hydrodynamic moments of the velocity 

distribution function (each row vector) that represent macroscopic variables, such as density, kinetic 
energy and its square, and the momentum flux viscous stress tensor in a two-dimensional space. The 

collision process is performed in the K space given as *
ˆ ˆ ˆ ˆ[ ]eqf f S f f= − − , where *f̂   is the post-collision 

distribution and S is the diagonal relaxation time matrix 
 

1 2 3 4 5 6 7 8 9[ , , , , , , , , ]S diag s s s s s s s s s=  (6) 
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Where 1 4 6 0s s s= = =  (relaxation time for the conserved quantities, i.e., mass and momentum 

flux). Thus, each relaxation time can be individually adjusted for different physical quantities in MRT 
which leads to its higher numerical stability than the BGK version. The MRT model reduces to the 

BGK model if all the diagonal terms are equal, i.e.,  1s = τ  where τ  is the single-relaxation time. 

 
2.1.2 Moving boundary treatment 
 

For a moving boundary [18,29,35,36] a set of boundary nodes at the midpoints of the links 
connecting the fluid and solid nodes are used to represent the solid surface (shown in Figure 2). 

The distribution functions reflected from the solid surface back to the fluid nodes can be written 
as 

 

2

6
( , ) ( , )f f bf t t f t w

c
   + = + e ux x  

(7) 

 
The last term in Eq. (7) reflects the transfer of momentum between the fluid and the moving solid 

boundary [30]. Here  = −e e   and  bu  is the velocity of the boundary node which is assumed to be 

situated precisely halfway along with the link between solid and fluid nodes.  
 

 
1

2
b f t

 
= +  +  − 

 
u U ω x e X  

(8) 

 
Here U   is the velocity of translation, ω  is the angular velocity and X  is the position-vector of the 

center of mass of the solid.  
 

 
Fig. 2.  The layout [37] of the regularly spaced lattices and the 
solid boundary (solid blue). The filled and hollow circles signify 
solid and fluid nodes individually. The solid squares denote the 
boundary nodes 

 
In this technique, the lattice nodes are handled in the same fashion on either side of the boundary 

surface, i.e. the fluid fills the whole domain [30]. This change is utilized for reflecting the two incoming 
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post-collision distributions ( , )f t x  and ( , )f t t x + e  from the fluid and solid sides at each boundary 

node, relating to the velocities  e  and e  along the links connecting 
f

x  and 
f

t


+ x e .  The two 

reflected distributions are updated by  
 

( ) ( ) 2

3
, , 2f f bf t t t f t t w

c
      + =  + x e x e e u+ +  

  (9) 

  

( ) ( ) 2

3
, , 2f f bf t t f t w

c
   + = − x x e u  

(10) 

 
This methodology ensures that mass is conserved at the boundary nodes and additionally 

prevents the need for creating and destroying fluid because of the movement of the solid objects. 
 
2.2 Floquet Analysis 
 

In this section, the formulation of the problem and the equations that govern the evolution of 
the disturbance are described. The numerical methods which are used for the formulation of the 
eigenvalue problem for the determination of critical state are outlined as well. In order to study the 
stability of the two-dimensional time-periodic base flow, a temporal Floquet stability analysis is used. 

The base flow is assumed to be time-periodic with period T such that ( ) ( )0 0, , , ,x y t T x y t+ =u u .  

The non-dimensional form of the governing equations that describe the flow of an incompressible 
Newtonian fluid are,  

 
0 =u  (11) 

  

21

f

p
t


+  = − + 



u
u u u

Re
 

(12) 

 
where u is the velocity and p  is the pressure.  In two dimensions, the continuity and the momentum 

Eq. (11) and (12) are transformed to vorticity (ω ) transport and stream function (ψ ) form, given as 

 
2ψ= -ω  (13) 

  

2

f

ω ψ ω ψ ω 1
+ - = ω

t y x x y Re

    


    
 

(14) 

 

To determine the flow stability at an arbitrary phase (i.e., 
0t ), the flow is decomposed into the 

base state or base flow ( )ω,ψ , and an unsteady or perturbed part ( )ω',ψ'  by  

 

( ) ( ) ( )o o oω x,y,t =ω x,y,t + εω' x,y,t  (15) 

  

( ) ( ) ( )o o oψ x,y,t =ψ x,y,t + εψ' x,y,t  (16) 
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where   is a small parameter. Substituting into Eq. (13) and (14), subtracting the equations for the 
base flow and dropping higher-order terms, the following linearized perturbation equations can be 
obtained for the perturbed vorticity and stream function 
 

2

f

ψ' ω ψ ω' ψ' ω 1
- - = ω'

y x x y x y Re

ω' ψ ω'
+ +

t y x

  

     

     


  
 

(17) 

  
2ψ = -ω   (18) 

 
In this work, we represent the perturbed vorticity and stream function in terms of normal modes 
 

( )ˆ o-σ(t-t )
o oω (x,y,t ) =ω x,y,t e  (19) 

  

( )ˆ o-σ(t-t )
o oψ (x,y,t ) =ψ x,y,t e  (20) 

 

Where  ( )ˆ
0ω x,y,t and   ( )ˆ

0ψ x,y,t are T-periodic Floquet eigenvectors evaluated at arbitrary phase  

0t  and σ is the Floquet exponent. The Floquet multiplier µ is associated to the Floquet exponent σ by 
-σTμ = e . Generally, the exponents, the multipliers and the eigenfunctions can either be real or exist 

as complex-conjugate pairs. The instability is characterized by the multiplier leaving the unit circle 

(i.e., 1μ > ) or equivalently when the real part of a Floquet exponent becomes negative. 

 
Substituting (19) and (20) into (17) and (18), an eigenvalue problem with the growth rate being 

the eigenvalue can be formulated as 
 

ˆ ˆˆ ˆ
ˆ ˆ

2 2

2 2

ψ ω ψ ω ψ ω 1
- - - + ω

y x y x x y x y Re x y

 


       
= +
         

  
 
 

 
(21) 

  

ˆˆ
2 2

2 2
ω+ + ψ= 0

x y 

  
 
 

 
(22) 

 
For a structured and uniformly spaced grid, the discretized form of Eq. (21) and (22) can be 

written in a condensed matrix form as 
 

ˆ ˆ1 0

ˆ ˆ0 0
11 12

21 22

ω ωa a
σ =

a aψ ψ

      
         

      
 

(23) 

 

where coefficients 11a , 12a , 21a  and 22a are functions of the flow parameters governing the base flow. 

The coefficients of these linear equations are determined by computing the base flow whose stability 
is to be established. The eigenvalue problem represented by Eq.  (23) yields a generalized matrix 
eigenvalue problem of the form 
 

=Jx Mx  (24) 
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where x is an eigenvector that contains the unknown values of vorticity ̂  and stream function ̂ . It 

can be seen from Eq. (23) that the mass matrix M  is singular, symmetrical and real, while the Jacobian 
matrix J  is asymmetrical and real. Eq. (24) is solved by inverting the eigenvalue problem to a form 
that does away with the singularity of the mass matrix. Thus, the system is written as 
 

=Bx x  (25) 
 

where 1−=B J M  and 1η= / σ . 

The size of the Jacobian and mass matrices depends on the number of perturbed parts ( )ω ,ψ  . 

For implementing and forming the discretized problem into the eigenvalue problem of the type given 
by (25), the vector storage of the perturbed space of the solution is required. A variable is introduced 
that stores the global count of all grid points that are spanned in the discretized domain. The global 
counts are assigned sequentially, starting from one side of the boundary and traversing every point. 
This variable maps the compass notation of the grid to the vector storage location. In this way, the 
Jacobian matrix with defined locations for the constituting elements in the matrix is obtained by a 
pre-defined global count of the respective grid point. The method of assigning the Jacobian matrix 
for the grid points is depicted in Figure 3 and Table 2. To formulate the eigenvalue problem given by 
(25), the partial differential equations are discretized on a uniform grid using the finite-difference 
method. Fourth-order central differences are used for all the interior nodes, while forward or 
backward differences of second-order accuracy are used at the boundaries. The Krylov subspace 
method is used for calculating the critical eigenvalues and respective eigenvectors of B . 

 

 
Fig. 3. Typical grid spacing diagram and the nomenclature for the 
distances used 
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Table 2  
Global count representation of the points on the grid for a fourth order 
discretization of terms in Eq. (21) and (22) 
Gridpoint Global count Storage location for ω̂  Storage location for ψ̂  

i,j m 2m-1 2m 
i-1,j m1 2m1-1 2m1 
i,j-1 m2 2m2-1 2m2 
i+1,j m3 2m3-1 2m3 
i,j+1 m4 2m4-1 2m4 

i-2,j m5 2m5-1 2m5 
i,j-2 m6 2m6-1 2m6 

i+2,j m7 2m7-1 2m7 
i,j+2 m8 2m8-1 2m8 

 
2.3 Computational Domain 

 
The layout of the computational domain is shown in Figure 4. The size of the computational 

domain was 20D×20D, where D is the length (or chord) of the plunging plate. The edges of the plate 
were positioned 9.5D from both the left and right faces of the domain. No-slip boundary condition 
(zero fluid velocity) was enforced on the top and bottom boundaries of the domain. The fluid was 
taken to be stagnant initially. Outflow boundary conditions were imposed on both the far-faces 
(upstream and downstream) of the domain as given by Aidun et al., [38].   

 

 
Fig. 4. Layout of the computational domain with imposed boundary conditions 
separated into various zones (by blue dash-dot lines) assigned to each processor 

 
To take advantage of the use of LBM, the solver was parallelized using a message passing interface 

(MPI) in which the domain along the x-direction was sliced into n sub-zones, where n is the number 
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of processors. In this manner, every processor was allocated a sub-domain with ( )20 20n D D  

physical size. 
Simulations for a symmetric elliptical airfoil at various KC and   were performed to validate the 

fluid solver. The translational boundary that allowed horizontal motion was compared against 

published results [20]. The density ratio ρ* and δ of the elliptical membrane were taken as 10 and 0.1, 
respectively, as reported in their work [20]. The outcomes obtained (shown in Figure 5) show an 
excellent agreement of the present numerical model with those of Deng and Caulfield [20]. 
Moreover, the symmetrical and asymmetrical flow patterns are represented by the left and right 
areas of the curved line in Figure 5. 

 

 
Fig. 5. The geometry of an elliptical foil with (δ=0.1) and comparison 

of the location of transition boundaries in KC-   space between the 
two-dimensional symmetrical and asymmetrical flow of the present 
study with Deng and Caulfied [20] 

 
3. Results and Discussion 

 
In this section, results obtained for various KC,  and δ through numerical simulations and 

Floquet analysis for an unconstrained plunging thin two-dimensional rectangular plate are presented 
and discussed.   

 
3.1 Symmetric Flow 
 

While the focus of this work is to predict the onset of propulsion of plunging plate in quiescent 
fluid, it is equally important to look at a symmetric flow scenario as well. We consider the dynamics 
of the rectangular plate plunging for KC = 3.8 and   = 1.7 as shown in Figure 6. The simulation was 

conducted for 60 plunging cycles at the end of which no instability or instigation of propulsion was 
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noticed. For these conditions, the upstroke begins (as shown in Figure 6(a)) with vortices forming at 
both the edges and develop until the midstroke (as shown in Figure 6(b)). As the plate reaches the 
beginning of the downstroke, the vortices formed during the upstroke on either edge are quickly 
dissipated and a new inverse pair of vortices is formed (as shown in Figure 6(c)). The vortices 
experience viscous dissipation and maintain symmetry during each stroke. As a result, there is no 
plate-wake interaction and the asymmetry that could have pushed the plate into forwarding motion 
is not realized. A similar formation and dissipation of vortices occurs during the downstroke. The 
state was found to be stable to an initial perturbation, in the form of a small momentum, which also 
failed to grow even after the plate finished the previously mentioned plunging strokes.  

 

 
Fig. 6. Contours of non-dimensional vorticity field produced due to the plunging motion of the rectangular 
plate at KC = 3.8 and   = 1.7. The accompanying figure on the right illustrates the instantaneous position 

and the direction of motion during one stroke. Blue and red colors demonstrate clockwise and 
anticlockwise rotations, respectively (between -0.30 (blue) and +0.30 (red)) 

 
3.2 Symmetry Breaking 
 

Results of numerical simulations performed when the plate attains self-propelled motion for 

various values of δ ( )0.05 0.2δ  are presented here. We also identify a transition boundary that 

separates symmetrical and asymmetrical flow patterns and allows horizontal motion in KC-   space. 

After conducting a series of simulations with a large number of KC and   pairs, the transition region 

was identified between symmetrical and asymmetric flow associated with the plunging rigid plate in 
KC-   space for three different δ. The transition region between the curves is narrower when   is 

small and KC is large. On the other hand, this region becomes significantly wider for large    and 

small KC.  
The general form of the empirical relations that have been obtained after regression fitting for 

critical Stokes number ( c ) and Reynolds number (Refc)  for δ = 0.05, 0.1 and 0.2 for  1 8KC   are, 

 
1-a

c 0= a KC  (26) 

  

1-bc
f c 0

KC
Re = = b KC

2π

 
 
 

 
(27) 

 
Here a0, a1, b0, and b1 are the coefficients, whose values depend on   and are given in Table 3. 

Such reduced-order relationships are expected to be of great utility for designers using the same 
kinematic concept for flapping wing flyers. 
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Table 3 
Values of a0, a1, b0, and b1 for varying δ corresponding to the Eq. (26) and (27) 
δ a0 a1 b0 b1 

0.05 93.9 1.67 14.5 0.67 
0.1 93.1 1.63 14.8 0.63 
0.2 202.55 1.88 32.24 0.88 

 
3.3 Floquet Analysis  

 
Figure 7 shows the curves of marginal stability for 0.1δ =  in KC-   and KC-Ref   space. These curves 

separate symmetrical and asymmetrical flow patterns (for a horizontally unconstrained plunging 
plate) under and over the curve, respectively. These curves provide valuable information on the onset 
of propulsion of the plunging plate for a particular value of KC and given values of   and Ref.  

 

 
Fig. 7. Variation of flow transition boundaries characterizing conditions for horizontal 
motion in KC-   and KC-Ref space for δ =0.1. The inset displays the variation of Floquet 

multiplier with KC for   =60 

 
The curve is steeper for low KC and high   ( 40  ) and hence a small variation in KC leads to a 

large change in c . The two-dimensional Floquet multiplier ( )  for 60 =  as a function of KC is 

shown in the inset. The Floquet analysis results show that the Floquet multipliers occur in complex-

conjugate pairs for 1.2KC   and have a magnitude less than one ( )1  , while for 1.5KC   the first 

Floquet multiplier crosses the unit circle with a single real value and magnitude greater than one 
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( )1  . These results show that the critical value of KC for the onset of asymmetry or instability is 

in the range of 1.2-1.5. This is further confirmed by direct numerical simulations of the plunging plate 
as shown in Figure 8. The non-dimensionalized coordinate (X) of the center of mass of the self-
propelled plunging plate as a function of time (t/T) for 60=  and 1.2KC =  shows that the 

displacement of the plate on either side of the initial position is negligible. This provides further 
verification that the plunging plate is in stable equilibrium for 1.2KC = . However, instability is clearly 
exhibited at 1.5KC = , where the coordinate of the center of mass of the plate appears to oscillate 
with time. 

 

 
Fig. 8. A comparison of the non-dimensionalized trajectory 
coordinate (X) of the centre of mass of the self-propelled plunging 
plate as a function of plunging cycles (t/T) for KC= 1.2 and KC= 1.5 

 
In addition, the vorticity contours of the periodic base flow calculated for the preliminary plunging 

cycles with 0.1δ =  and 60=  at 1.2KC = and 1.5KC =  are shown in Figure 9(a) and 9(c), 

respectively. These flow patterns are shown for at t/T=5, at the instant when the plunging plate was 
at its maximum displacement in the y-direction. Figures 9(b) and 9(d) show the vorticity contours of 
a Floquet eigenfunction calculated from the base flows. The Floquet eigenfunction in Figure 9(b) 
shows symmetry about a line passing through the center of the plate. On the other hand, and as 
shown in Figure 9(d), this symmetry breaks for 60= and 1.5KC =  due to the Floquet multiplier 

crossing the unit circle. Observing the base flows shown in Figures 9(a) and 9(c), it is clearly not 
visually possible to identify whether each system is stable or not. However, the calculation of the 
Floquet eigenfunction and Floquet multiplier makes it possible to comment on the stability 
characteristics of the time-varying base flow. Therefore, our work demonstrates the prediction of 
instability (or onset of propulsion) using data from preliminary plunging cycles itself. 
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(a) (b) 

  
(c) (d) 

Fig. 9. The non-dimensionalized vorticity contours in the range -0.40 
(blue) and +0.40 (red) for 60 = for δ =0.1. (a) Base flow at KC=1.2. 

(b) Eigenvector at KC=1.2. (c) Base flow at KC=1.5. (d) Eigenvector at 
KC=1.5 

 
3.4 Horizontal Movement in the Transition Regime  

 
In this section, we describe different scenarios pertaining to a thin plunging plate (δ=0.05) in the 

transition regime and about to achieve propulsion. These movements are shown in Figure 10(a) 
corresponding to cases marked as (1) KC=1.2 and  =83.3, (2) KC=1.8 and  =41.7, (3) KC=2.4 and 

=20.8 and (4) KC=4.2 and  =8.3 in Figure 10(b). The insets of Figure 10(a) show the non-

dimensionalized trajectory coordinate (X) as a function of plunging cycles for the four scenarios that 
have been chosen due to the very distinct horizontal movements of the plates in these cases. For (1) 
and (2), the plate propels continuously in the negative X-direction. However, the plate in (1) leads (2) 
in propulsion, while in (3) it moves back and forth about the initial position with an amplitude that 
increases with time. In (4), the plate oscillates with a lower but fixed amplitude. The reasons for the 
different horizontal movements of the plunging plate, as described in these four cases can be 
understood by scrutiny of flow patterns and force histories.  Figure 11 shows the wake structures for 

the four cases. The time-varying thrust coefficient ( xC ) and phase portraits of these thrust 

coefficients are also shown in Figures 12(a) and 12(b), respectively. As can be observed for case (1) 
in Figure 11, the anti-clockwise rotation TEV attached to the plate at the mid-instant of the 
downstroke is able to navigate and make a strong vortex dipole at the trailing edge due to the 
combined influence of low plunging amplitude and high plunging frequency. These opposite rotation 
vortices at the trailing edge create a pressure imbalance along the chordwise direction. This pressure 
differential reflects in the form of a relatively large thrust in (1), as is indicated in the force coefficient 
shown in Figure 12(a). Thus, a higher thrust results in an earlier initiation of propulsion. For the other 
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cases (i.e., (2), (3) and (4)), the anti-clockwise rotation TEV is detached before the middle of the 
downstroke, making a weak vortex dipole at the trailing edge. The vortex dipole street at the trailing 
edge generates a reaction force in the opposite direction, manifesting as thrust [16,36].  

 

 
(a) 

 

(b) 

Fig. 10. (a) Variation in the non-dimensional trajectory coordinate (X) for δ=0.05 of center of mass at (1) 
KC=1.2 and  =83.3, (2) KC=1.8 and  =41.7, (3) KC=2.4 and  =20.8 and (4) KC=4.2 and  =8.3 with 

plunging cycles. (b) Location of transition boundary as a function of KC-   with cases marked as (1), (2), 

(3) and (4) 
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Fig. 11. Wake patterns associated with plunging flat plate for cases (1), (2), (3) and (4). The right column 
((a,b,c)) shows the instantaneous positions during the cycle. Red and blue colors indicate anti-
clockwise and clockwise rotation respectively. The white arrows show the direction of the horizontal 
movement of the plate 

 
It is clear from Figure 11 that the vortex dipole street at the trailing edge is longest for (1) and 

gradually decreases down to (4). Due to these reasons, the magnitude of the thrust coefficient also 
decreases from (1) to (3) but unexpectedly increases in (4) as shown in Figure 12(a). In order to 

explain this, the phase portrait showing the variation of xdC dt  against xC  for all four cases has been 

shown in Figure 12(b). It can be observed that the magnitude of xdC dt  progressively decreases from 

(1) to (4). Hence, despite the higher value of 
xC  in (4), the plate oscillates around its mean position 

due to the largest timescale of periodicity of 
xC . This behavior of forces due to wing-wake interaction 

decides the horizontal movement of the plunging plate.   
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Fig. 12. (a) Time variation of horizontal thrust for cases (1), (2), (3), and (4). 
(b) Phase portraits plotting the time rate of change dCx/dt of the horizontal 
thrust against Cx for the same cases (i.e. (1), (2), (3), and (4)) 

 

 

 

 

(a) (b) 
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3.5 Effect of Ground Clearance (ς) on Symmetry Breaking 
 

The effect of ground clearance (ς) on the propulsion of the plunging rigid rectangular plate for 
0.05δ =  with 1.8KC =  and 41.7 = is shown in Figure 13. There is a small difference and a phase lag 

is observed between the propulsion at ς =10 and ς =6, while propulsion appears to be lagging behind 
significantly for ς =2 and occurs in the opposite direction. This lag in propulsion is further investigated 

by examination of the circulation (Γ ) around the plate at 30t T = . This choice was motivated by the 

fact that the rigid plate did not exhibit horizontal locomotion in any of the three scenarios at this 
instant of time.    

The magnitude of velocity induced by the vortex dipole associated with the plate is given as 
  

2
dipole

Γ
U

ξ
=  

(28) 

 
where ξ is the separation between the vortex centers of the dipole [7]. This induced value of velocity 
symbolizes the downwash and characterizes the magnitude of the thrust produced by the plunging 
motion of the plate. Γ  has been determined by integrating the vorticity over a rectangular box of size 
4D × 3D  considered around the plate as shown in Figure 14(a). 

The circulation calculated for the three cases (i.e., ς =2, ς =6 and ς =10) is shown in Figure 14(b). 
It can be observed that the circulation increases on increasing the ground clearance. Figure 14(b) also 
shows that the circulation around the plunging plate is maximum for ς = 10 and minimum for ς = 2. 
This indicates that the plate farthest from the ground leads in propulsion rather than the plate 
nearest to it. Therefore, one may correlate this with biological flight and expect that insects and birds 
perched on an elevated structure (e.g., tree branches) can propel more quickly than insects and birds 
resting on the ground. 

 

 
Fig. 13. The non-dimensional trajectory coordinate (X) of 
the center of mass of self-propelled plunging plate as a 
function of flapping cycles for δ=0.05 at KC=1.8 and 

=41.7 with different ground clearances 
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(a) (g) 

Fig. 14. (a) A schematic representation of rectangular boxes ( 4D × 3D ) around the plate for 
calculating the circulation. (b) The variation of non-dimensional circulation (|Γ|) as a function of 
ground clearance (ς) with δ=0.05 at KC=1.8 and  =41.7 at t/T=30, when the instantaneous position 

at maximum displacement during the upstroke 
 
4. Conclusions 
 

This present work was directed towards the formulation and development of a linear stability 
analysis framework to numerically examine the self-propulsion of a rigid plunging plate in a quiescent 

fluid for different thickness to chord ratios δ ( )0.05 δ 0.2  . To mimic a plunging rectangular rigid 

plate in a quiescent fluid, a fluid solver based on a multi-relaxation time version of the lattice 
Boltzmann method was used.  

The stability of the periodic base flow around the plunging plate was analyzed through a time-
saving Floquet analysis. In this regard, a two-dimensional discrete stability analysis framework (based 
upon the finite-difference method) was developed. Before the Floquet analysis, extensive work 
involved the study of a self-propelled rigid rectangular plate. A parametric investigation was 
performed to distinguish the influence of the Keulegan-Carpenter number (KC), Stokes number (  ) 

and thickness-to-chord ratio (δ) on the onset of the population of the rectangular plate. It is vital to 
note that we have focused on parameter choices which are very close to the transition 
boundary, where our two-dimensional evaluation is most relevant. The KC -   curves indicated that 

the transition boundary shifted towards smaller KC for given   as δ was reduced, suggesting that 

breaking of symmetry was motivated for a plate with a lower thickness to chord ratio. The Floquet 
analysis of the periodic base flow generated by the plunging plate in KC -  space shows that the 

critical Floquet multiplier (μc) exists in complex conjugate pairs on the left of the transition boundary, 
while it becomes real on the right. This indicates symmetrical and asymmetrical flow patterns on the 
left and right sides of the transition boundary, respectively. The Floquet analysis was thus helpful in 
predicting, within a few initial strokes itself, whether a plunging plate will propel or not, greatly 
reducing computational cost and time in making an accurate prediction. As presented, if the 
magnitude of the Floquet multipliers is less than unity and the eigenvectors have a symmetry then 
there is no translation. On the other hand, the flow asymmetry transpired when the Floquet 
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multiplier exceeds unity, accompanied by the breaking down of corresponding eigenvector 
symmetry.  

It was revealed that the plate shows four distinct trajectories on the asymmetry side and in the 
proximity of the transition boundary in KC-  space. These distinct movements were further 

differentiated from each other through the flow patterns associated with the plunging plate during 
propulsion. The non-dimensional coordinate of the center of mass (as a function of plunging cycles 
(t/T)) was shown to decrease from its mean value on moving towards the higher KC and lower   

zone. The thrust coefficient (
xC ) and its frequency ( xdC dt ) were further utilized to understand 

these four different trajectories of the plate. It was revealed that a higher frequency of thrust 
coefficient instigated continuous linear movement in one direction, while the oscillating movement 
about a mean position is due to a lower frequency of the force coefficient. Finally, the ground 
clearance (ς) effect clearly shows that the plate which was farthest from the ground leads in 
propulsion as compared to a plate in its proximity. It is anticipated that this analysis will provide 
guidance for the onset of propulsion that can be attained for a given KC and   will be of significance 

in the design of systems with similar concepts.  
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