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The world's ever-increasing energy needs have necessitated the search for 
renewable means to satisfy such energy needs. One of those means is small-scale 
hydropower, and in particular, the Archimedes screw turbine (AST), which has been 
viewed as one such future option. Initially designed for water lifting, ASTs use 
incoming water kinetic energy to generate electricity today. This review paper 
reports on the advances made today in the design of ASTs, emphasizing the 
geometrical parameters of pitch, diameter, number of blades, and inclination as 
design parameters affecting efficiency. Improvement was made by either conducting 
experiments or by optimizing the simulation. Flow variation, sediment deposition, 
material degradation, and other challenges may be overcome. Still, innovations in 
composite materials, coatings for corrosion protection, and AI design improvements 
should be considered to enhance their durability and efficiency. Economic and policy 
barriers discourage collateral investments, such as high upfront capital costs and 
competition from other renewables. Modern integration with solar and innovative 
grid systems opens more expansive opportunities for sustainable energy. Future 
research and development advancements will improve AS output viability for 
decentralized eco-friendly power generation in remote areas. 
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1. Introduction 
 

Regression analysis is a statistical method for estimating the relationship between variables that 
have a cause and an effect. Regression analysis is a potent method for comprehending (including 
forecasting and explaining) the causal influence on a population’s result [1]. Regression analysis's 
main goals are to quantify the relationship between variables, ascertain the effects of each additional 
independent variable, and forecast the dependent variable's value in relation to the independent 
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variables. The most widely used statistical analysis and modelling technique, such as in commercial 
and medical analysis, is regression analysis. This is due to the fact that regression analysis is user-
friendly and applicable to a wide range of real-world scenarios. The study yielded the statistical 
equation that describes the two relationships between the dependent and independent variables. 
Its multidimensional nature contributes significantly to its explanatory power. It is simply 
interpretable and comes in computer packages. In the applied sciences, economics, engineering, 
computer science, social sciences, and other domains, it is also widely employed [2].  

Many methods have been developed for performing regression analysis. The regression function 
in well-known techniques like linear, fuzzy, and ordinary least squares regression is described in 
terms of a limited number of unknown parameters that are estimated from the data. This makes 
these techniques parametric. Techniques known as "nonparametric regression" permit the 
regression function to fall inside a given set of functions, some of which may be infinite-dimensional. 

Nevertheless, regression models are highly sensitive to outliers. A data point that dramatically 
deviates from most other observations is referred to as an outlier. Variability in measurement may 
be indicative of an experimental error, and an outlier in regression analysis might cause significant 
difficulty. Actual world data and problems are also oversimplified by regression analysis models, as 
data are rarely linearly separable. A researcher, Lotfi A. Zadeh, is the first person to develop the 
model that can handle the vagueness phenomenon, such as the fuzzy model and overcome the 
outliers [3]. 

In 1964, Lotfi A. Zadeh, a student at the University of California, Berkeley, published the first 
article on fuzzy sets. The concept of grade membership, harsh criticism from the academic world, 
and government money waste are a few of the topics covered in the paper. Furthermore, Lotfi A. 
Zadeh kept expanding the groundwork for fuzzy set theory from 1965 until 1975. Fuzzy multistage 
decision making, fuzzy similarity relations, fuzzy constraints, and four linguistic hedges are all 
provided by the idea of fuzzy set theory. A broader interpretation of fuzzy logic is the notion of fuzzy 
sets. Fuzzy logic serves these two purposes by easing the burden that traditional mathematical 
methods have on constructing and analysing complicated systems and by showing how human 
thinking can make use of ideas and information that lack clear, demarcated limits. Examples include 
a tall person, a lamp that is lighter, and other objects [3]. 

Apart from that, in 1982, Hideo Tanaka became the first person to design fuzzy linear regression 
as a research method and statistical tool. He focused on applying fuzzy linear functions to regression 
analyses of nebulous phenomena in his study. Observation errors are typically attributed to 
variations in the regression model between the estimated and observed values. It was hypothesised 
that the ambiguity of the system structure was the cause of these system parameter variations. The 
information considered the input-output relationships, whose ambiguity the system's structure [4]. 

Fuzzy models have many advantages in analysis and can be applied without making any 
assumptions. The data is still usable even if its error is not regularly distributed. It differs from a 
different regression analysis in terms of statistics. A fundamental mathematical framework for 
handling vagueness is offered by fuzzy logic. 

Fuzzy linear regression provides tools for studying the relationship between variables when 
certain assumptions of multiple linear regression fail. It also provides a fundamental mathematical 
and statistical framework for acknowledging the imprecision of data. In all statistical studies, 
researchers seek the most recent techniques for minimizing the statistical measurement error 
value [5,6]. A wide variety of fuzzy linear models can be used for approximating a linear dependence 
according to a set of observations in fuzzy regression analysis [7]. It can also aid in reducing the 
interference of unnecessary information, thereby improving the precision of the results [8]. 
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A fuzzy regression model is applied to evaluate the functional relationship between dependent 
and independent variables in a fuzzy environment. Fuzzy linear regression analysis is also an effective 
alternative to the generally utilized statistics-based regression techniques. Numerous forms of fuzzy 
regression models are presented in the literature, along with a diversity of estimation techniques for 
fuzzy model parameters [9]. Previous research has explored and developed a variety of applications 
of fuzzy linear regression and its advantages. A recent study has demonstrated that a fuzzy approach, 
including fuzzy linear regression, is an appropriate framework for lentil yield management compared 
to multiple linear regression, which is ineffective as some of its preconditions are not met, as in the 
data, where some variables were fuzzy numbers [10]. Furthermore, it clearly shows its ability to deal 
with the perceptual uncertainties involved in strength prediction issues by providing a standard 
equation to estimate output values. This leads to accurate predictions of the predicted cement 
strength values, thereby enhancing the design and providing a valuable modelling tool for the 
engineering field [11]. 
 
2. Methodology  
2.1 Materials 

 
Statistical analysis is adaptable and applicable to various fields, particularly the linear regression 

technique. Fuzzy linear regression is a form of regression analysis in which fuzzy numbers represent 
certain model elements. Fuzzy linear functions were proven to be a helpful technique for ambiguous 
occurrences in linear regression models. The statistical software Microsoft Excel, SPSS and MATLAB 
were used to analyse the data. 
 
2.2 Methods 
2.2.1 Multiple linear regression 
 

Linear regression is a statistical method for determining the value of a dependent variable in 
relation to the value of an independent variable. It is also known as a method utilised to establish the 
relationship between two variables. It is a technique for predicting a dependent variable based on 
one or more independent variables. Among all statistical methods, linear regression analysis is the 
most applied. 

The assumptions underpinning the multiple linear regression model are as follows [12]:  
 
i. The population mean of y within the level of the patient’s population was defined by the x’s 

following a linear and additive pattern. 
ii. The y observations were assumed to be statistically independent. 
iii. The standard deviation of y within x-strata was constant over all values of x. 
iv. The distribution of y within x-strata was normal. 

 
It is necessary to ensure that the multiple linear regression assumptions (i), (ii), (iii), and (iv) are 

satisfied before analysing the data. This study made three assumptions, which are constant variance, 
normality and multicollinearity [12]. If these assumptions meet, the results will be reliable. 

There are several predictor variables in multiple linear regression, including the first order with 
two predictor variables and the first order with more than two variables. The model of multiple linear 
regression can be expressed as follows [13]. 
 

Y= +X +X +...+X + 
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Where: 
βo, β1,..., β j ; are constants 
Xi1,..., Xij  ; are unknown parameter/ independent variable 

 
i = 1,…, n                                                                                                                                                               (1) 

 
The equations in the table ANOVA represent the analysis of variance, in addition to mean square 

regression (MSR) and mean square error (MSE). MSE is a risk function whose value corresponds to 
the expected square error loss or quadratic loss. MSE estimates the mean square of "errors." Error is 
the difference between the estimator's implied value and the quantity being estimated. The 
difference is due to randomness or the estimator's failure to account for information that could lead 
to a more precise estimate. Table 1 provides an overview of the analysis of variance (ANOVA). The 
equations are as follows:  
 

Table 1 
ANOVA table formula 
Source of Variation                     SS                                         df                                      MS 

Regression SSR = b X'Y - (1/n)Y'JY                    p-1                          MSR = SSR / p-1 
Error SSE = (Y- Xb)' (Y- Xb)                n-p                         MSR = SSR / p-1 
Total SST = Y'Y -(1/n) Y'JY.                       n-1                         MSE = SSE /n-p 

 

2.2.2 Fuzzy linear regression  
 

To formulate a fuzzy linear regression model, the following were assumed to hold: 
1) The data can be represented by a fuzzy linear model: 

 

* = *  + … + *          (2) 

 

Where, Fuzzy parameter  

Variable of fuzzy parameter  

Equation of the fuzzy parameter  
 

 

 
                                                                               (3) 

 

2) The degree of the fitting of the estimated fuzzy linear model *=A* to the  

given data Ye = (  , ) was measured by the following index  , which maximizes h subject 

to  where: 
 

 =   

  

   (4)                                                                       

 

Which is h-level sets. This index  is illustrated in Figure 1. The degree of the fitting of the fuzzy 
linear model for all data Y1, …, YN is defined by min f [hf].  



Semarak Engineering Journal 

Volume 9, Issue 1 (2025) 76-86 

80 
 

 

Fig. 1. Degree of fitting of a given fuzzy data  

 
3) The vagueness of the fuzzy linear model is defined by: 

 

JJ =  + … +                                                                              (5) 

 

The problem was elucidated by acquiring fuzzy parameters A*, which minimized JJ subject to e 

 H for all e, where H was selected by the decision maker as the degree of fit of the fuzzy linear model. 

The e can be acquired by utilizing:  
 

e = 1 –  

                                                                                 (6) 
 

 

Tanaka [5] model estimated the fuzzy parameter , which are the solutions of the 
following linear programming problem: 

 

 
 

Subject to  and 
 

 

 

  

 

                        
(7) 

 

The best-fitting model for the given data may be obtained by solving the conventional linear 
programming problem in (7). The number of constraints, 2 N, was generally substantially greater than 
the number of variables, g. As a result, solving the dual problem of (7) was easier than solving the 
primal problem of (7). 
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The fuzzy linear regression model (FLRM) can be stated as: 
 

Y =  (  ,  ) +                                     (8) 

 
2.3 Methodology 
 

 
Fig. 2. Steps of analyzing the data using the fuzzy linear regression 
model 

 
Based on Figure 2 above, fuzzy linear regression was applied in this paper as a method to evaluate 

the data. There were six degrees of fitting H-values from 0.0 to 0.5 that were applied to analyze the 

center ( ) and width ( ) of each variable using the fuzzy linear regression method. The estimated 
parameter for simulation data will be extracted from the width and center of each variable. The next 
step was calculating the errors of each H-value using the standard statistical measurement errors, 
which are mean square error (MSE) and root mean square error (RMSE). The lowest value of error 
will be chosen as the best prediction model for the fuzzy linear regression model in the research. 

 
3. Results and Discussion 
 

The fuzzy linear regression machine model provided 124 rows of data as simulation data. This 

model was used to study and analyze six predictor variables, such as , , , , Microsoft 
Excel, SPSS and MATLAB were applied to obtain the results. The common measurement errors of the 
cross-validation technique, which are MSE (mean square error) and RMSE (root mean square error), 
will then be used to acquire the errors of multiple linear regression and fuzzy linear regression 
models. Multiple linear regression will be analyzed by the assessment for the significance of variables 
and ANOVA. The degree of fitting H-values, which are 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5, will be compared 

for the fuzzy linear regression model by calculating the center,  and width  of six variables for each 

H-value.  is the center of the fuzzy parameter, while  is the fuzziness of the parameter (width). 
The center and the width will then be used to calculate the MSE and RMSE. The error of multiple 
linear regression and degree of fitting H-values will be analyzed to obtain the smallest error value of 
MSE and RMSE, then the model will be the best value of this simulation data. 
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3.1 Analysis of Multiple Linear Regression 
3.1.1 Assessment for significance of individual predictor variable 
 

Multiple linear regression is a prevalent statistical model referred to as the basic linear regression. 
This model is used to examine and assess six predictor variables. According to Table 2, statistically 
significant variables have significance values less than 0.05. The three assumptions, such as constant 
variance, normality and multicollinearity fulfilled by the test and analysis. 
 

Table 2 
Parameter estimation of a multiple linear regression model 
Variables Beta (β) Sig. Value 

(Constant) 10.701 0.005 

 3.740 0.402 

 1.872 0.636 

 0.135 0.342 

 1.006 0.847 

 3.364 0.411 

 8.660 0.242 

*Significance at 0.05 

 
The following are the predicted outcomes of a model for multiple linear regression on simulation 

data: 
 
Ŷ = 10.701 – 3.740 A1 + 1.872 A2 + 0.135 A3 + 1.006 A4 + 3.364 A5 + 8.660 A6 
     

3.1.2 Analysis of Variance (ANOVA) 
 

The purpose of analysis of variance (ANOVA) is to assess significant values and obtain information 
about the mean within a regression model. The value 306.257 is the mean square error term. With a 
P-value for the F test statistic less than 0.05, the null hypothesis is strongly refuted. The results of the 
ANOVA for multiple linear regression are displayed in Table 3. 
 

Table 3 
ANOVA for multiple linear regression 
Source Sum of squares df Mean square F-value P-value 

Regression 1270.905 10 1276.091 0.773 0.005 
Residual 34607.704 113 306.257   
Total 47367.980 123    

 
3.2 Analysis of Fuzzy Linear Regression 
 

Fuzzy linear regression (FLR) was used for predicting manufacturing income. This model was 

compared by six degrees of fitting H-values simultaneously. The center, and width,  of six 
variables for each H-value have been portrayed in Tables 4 to 8 below.   
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Table 4 
H-value of 0 
Variables Center ( ) Width ) 

 1.078 0 

 1.078 0 

 180.850 18.403 

 126.003 0 

 -1.803 0 

 -187.292 0 

 
The estimated model parameter for simulation data is stated as below:  

 
Ŷ = (1.078, 0) A1 + (1.078, 0) A2 + (180.850, 18.403) A3 + (126.003, 0) A4 + (-1.803, 0) A5 + (-187.292, 
0) A6  
 

Table 5 
H-value of 0.1 
Variables Center ( ) Width ) 

 942.098 0 

 1.108 0 

 178.834 19.529 

 126.182 0 

 -1.769 0 

 -176.339 0 

 
The estimated model parameter for simulation data is indicated as follows:  

 
Ŷ = (942.098, 0) A1 + (1.108, 0) A2 + (178.834, 19.529) A3 + (126.182, 0) A4 + (-1.769, 0) A5 + (-176.339, 
0) A6 
 

Table 6 
H-value of 0.2 

Variables Center ( ) Width ) 

 806.618 0 

 1.137 0 

 176.816 20.936 

 126.361 0 

 -1.736 0 

 -165.388 0 

 
The estimated model parameter for simulation data is stated as follows:  

 
Ŷ = (806.618, 0) A1 + (1.137, 0) A2 + (176.816, 20.936) A3 + (126.361, 0) A4 + (-1.736, 0) A5 + (-165.388, 
0) A6 
 
 
 



Semarak Engineering Journal 

Volume 9, Issue 1 (2025) 76-86 

84 
 

Table 7 
H-value of 0.3 
Variables Center ( ) Width ) 

 671.138 0 

 1.167 0 

 174.799 22.746 

 126.539 0 

 -1.702 0 

 -154.437 0 

 
The estimated model parameter for simulation data is stated as follows:  

 
Ŷ = (671.138, 0) A1 + (1.167, 0) A2 + (174.799, 22.746) A3 + (126.539, 0) A4 + (-1.702, 0) A5 + (-154.437, 
0) A6 
 

Table 8 
H-value of 0.4 
Variables Center ( ) Width ) 

 535.659 0 

 1.196 0 

 172.781 25.159 

 126.718 0 

 -1.668 0 

 -143.485 0 

 
The estimated model parameter for simulation data is indicated as follows:  

 
Ŷ = (535.659, 0) A1 + (1.196, 0) A2 + (172.781, 25.159) A3 + (126.718, 0) A4 + (-1.668, 0) A5 + (-143.485, 
0) A6 
 

Table 9 
H-value of 0.5 

Variables Center ( ) Width ) 

 400.179 0 

 1.226 0 

 170.764 28.536 

 126.897 0 

 -1.634 0 

 -132.533 0 

 
The estimated model parameter for simulation data is indicated as below:  

 
Ŷ = (400.179, 0) A1 + (1.226, 0) A2 + (170.764, 28.536) A3 + (126.897, 0) A4 + (-1.634, 0) A5 + (-132.533, 
0) A6 
 

Fuzzy linear regression model analyses performance using two statistical measurement errors, 
including MSE and RMSE. The performance of the two methods will also be assessed using the degree 
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of fit (H-value) in Table 9. The lowest error values determine the best model in both multiple and 
fuzzy linear regression. 

 
Table 10 
MSE and RMSE value 
Model H MSE RMSE 

MLR - 306.257 17.500 
FLR 0.0 9.993 3.161 
 0.1 78.861 8.869 
 0.2 78.651 8.869 
 0.3 68.125 8.254 
 0.4 57.600 7.589 
 0.5 47.07 6.860 

 

Based on Table 10 above, H-value of 0.0 has the lowest measurement error, which are mean 
square error value of 9.993 and a root mean square error value of 3.161 compared to the multiple 
linear regression model. The value of the fuzzy parameter is very low, and has a value even though 
the value is 0. The obtained values in fuzzy parameters are shown in Table 3, which includes six 

predictor variables. The fuzzy mean value of the simulation data can be explained by  with the 
highest fuzzy parameter = 180.850. 
 
4. Conclusion 
 

The purpose of this study is to determine the best prediction model with the lowest measurement 
error between fuzzy linear regression and multiple linear regression models. The results of the fuzzy 
parameter show that an H-value of 0.0 is a good prediction model for simulation data in the fuzzy 
linear regression model, as it has the lowest measurement error among another model. Table 9 
displays the summary evaluation of multiple linear regression and fuzzy linear regression with mean 
square error and root mean square error. The mean square error for H-value of 0.0 was 9.993, and 
the root mean square error was 3.161. Fuzzy linear regression can be found in various domains in 
future applications, particularly for inaccurate data. Although only fuzzy linear regression is 
presented in this paper, another model can be applied by the same approach. 

In future studies, other researchers can compare other models with the fuzzy linear regression 
model to prove that it is the most accurate model with the least measurement errors. The 
researchers can also add more variables and rows of data in the data analysis.  
 
Acknowledgement 
This research was supported by the Ministry of Higher Education (MOHE) through the Fundamental 
Research Grant Scheme (FRGS/1/2021/STG06/UTHM/03/1). 
 
References 
[1] Fahrmeir, Ludwig, Thomas Kneib, Stefan Lang, and Brian D. Marx. "Regression models." In Regression: Models, 

methods and applications, pp. 23-84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. 
https://doi.org/10.1007/978-3-662-63882-8_2 

[2] Iqbal, Muhammad Ahmad. "Application of regression techniques with their advantages and 
disadvantages." Elektron Mag 4 (2021): 11-17. 

[3] Zadeh, Lotfi Asker. "Fuzzy sets." Information and control 8, no. 3 (1965): 338-353. https://doi.org/10.1016/S0019-
9958(65)90241-X 

[4] Mundt, Philipp. "The formation of input–output architecture: Evidence from the European Union." Journal of 
Economic Behavior & Organization 183 (2021): 89-104. https://doi.org/10.1016/j.jebo.2020.12.031 

https://doi.org/10.1007/978-3-662-63882-8_2
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/j.jebo.2020.12.031


Semarak Engineering Journal 

Volume 9, Issue 1 (2025) 76-86 

86 
 

[5] Asai, H. T. S. U. K., S. Tanaka, and K. Uegima. "Linear regression analysis with fuzzy model." IEEE Trans. Systems 
Man Cybern 12 (1982): 903-907. https://doi.org/10.1109/TSMC.1982.4308925 

[6] Zolfaghari, Zahra Sadat, Mohebbat Mohebbi, and Marzieh Najariyan. "Application of fuzzy linear regression method 
for sensory evaluation of fried donut." Applied Soft Computing 22 (2014): 417-423. 
https://doi.org/10.1016/j.asoc.2014.03.010 

[7] Škrabánek, P., and J. Marek. "Models used in fuzzy linear regression." In Proceedings of the 17th Conference on 
Applied Mathematics—APLIMAT, pp. 955-964. 2018. 

[8] Kang, Hao, Ting Ai, Qiuyan Tian, and Qiaoling Zhang. "The Advantage of Fuzzy Regression Analysis and the 
Establishment of Uml Model." In 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and 
Automation Control Conference (IMCEC), pp. 2218-2220. IEEE, 2018. https://doi.org/10.1109/IMCEC.2018.8469757 

[9] Pérez, Lisset Denoda, Gladys Casas Cardoso, J. L. Martínez, Laureano Rodríguez Corvea, and Emilio González 
Rodríguez. "Fuzzy Linear Regression Models: A Medical Application." Departamento de Computación, Centro de 
Estudios de Informática. Facultad Matemática, Física y Computación, Universidad, All content following this page 
was uploaded by Lisset Denoda on 9 (2015). 

[10] Sorkheh, Karim, Ahmad Kazemifard, and Shakiba Rajabpoor. "A comparative study of fuzzy linear regression and 
multiple linear regression inagricultural studies: a case study of lentil yield management." Turkish Journal of 
Agriculture and Forestry 42, no. 6 (2018): 402-411. https://doi.org/10.3906/tar-1709-57 

[11] Gkountakou, Fani, and Basil Papadopoulos. "The use of fuzzy linear regression and ANFIS methods to predict the 
compressive strength of cement." Symmetry 12, no. 8 (2020): 1295. https://doi.org/10.3390/sym12081295 

[12] Wallisch, Christine, Paul Bach, Lorena Hafermann, Nadja Klein, Willi Sauerbrei, Ewout W. Steyerberg, Georg Heinze, 
Geraldine Rauch, and Topic Group 2 of the STRATOS Initiative. "Review of guidance papers on regression modeling 
in statistical series of medical journals." PloS one 17, no. 1 (2022): e0262918. 
https://doi.org/10.1371/journal.pone.0262918 

[13] Shafi, Muhammad Ammar, Mohd Saifullah Rusiman, Shuhaida Ismail, and Muhamad Ghazali Kamardan. "A hybrid 
of multiple linear regression clustering model with support vector machine for colorectal cancer tumor size 
prediction." International Journal of Advanced Computer Science and Applications 10, no. 4 (2019). 
https://doi.org/10.14569/IJACSA.2019.0100439 

https://doi.org/10.1109/TSMC.1982.4308925
https://doi.org/10.1016/j.asoc.2014.03.010
https://doi.org/10.1109/IMCEC.2018.8469757
https://doi.org/10.3906/tar-1709-57
https://doi.org/10.3390/sym12081295
https://doi.org/10.1371/journal.pone.0262918
https://doi.org/10.14569/IJACSA.2019.0100439

