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Poor-quality mobile applications will disappoint users, resulting in their uninstallation 
of the applications. Due to mobile applications' event-driven and gesture-based 
nature, several researchers have proposed GUI testing as an alternative to system 
testing. Furthermore, since GUI testing calls for mimicking user actions on the 
application, automation is essential for replicating how humans interact with the GUI 
widgets. The observe-select-execute strategy is used in automated GUI testing tools to 
observe all GUI actions in their current state, select one, and execute it. In the observe-
select-execute strategy, few researchers have proposed a Q-Learning algorithm to 
guide the exploration of GUIs. However, the exploration solely looks at the least 
frequent action without considering the action's potential ability to detect failures. We 
propose a method that compares actions by their weight to improve GUIs exploration, 
leading to effectively detecting crashes and achieving a higher code coverage. This 
paper describes a comparative study of code complexity metrics to identify the 
potential action. The results statistically demonstrate that the code complexity metric 
can improve the exploration of GUIs based on the percentage of AUT code coverage 
collected. The combination of RFC and CYC metrics outperforms the other four metrics 
under comparison. 
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1. Introduction 
 

The growing demand for Android applications motivates developers to develop a wide range of 
applications that cater to customer needs [1]. Considering that billions of applications were 
developed and downloaded globally, testing should be necessary to ensure the application's quality. 
The competition among developers to frequently release their applications makes testing a lesser 
priority or ignored entirely to expedite the development process, making it more difficult to 
guarantee the quality of applications. Furthermore, testing Android applications is costly, time-
consuming, and challenging. Thus, researchers have suggested automation as one of the solutions to 
accelerate the process of testing [2]. 
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Mobile applications depend highly on their Graphical User Interfaces (GUI) due to their event-
driven nature and gesture-based interactions. As a result, GUI testing commonly replaces system 
testing in mobile application testing. GUIs involve selecting an event that exercises a GUI widget (i.e., 
test case), executing the selected event (i.e., test execution), and monitoring resulting changes to the 
software state (i.e., test oracle). In other words, GUI testing necessitates simulating user actions on 
applications, and automated GUI testing mimics human interaction with GUI widgets. One strategy 
in automated GUI testing tools is to use the observe-select-execute approach. It begins with the 
launch of the Application Under Test (AUT). It then observes the GUI actions on the AUT's current 
state, selects an action from the observed GUI actions, and executes the selected action. The 
strategy's primary goal is to choose an action that could lead to new and desired GUI states. 

Studies by Adamo et al., [3] and Yassin et al., [4] highlighted that random testing is commonly 
used in automated approaches for Android GUI testing. The main advantage of random testing is that 
no prior knowledge is required. However, random testing does not ensure that the application under 
test is systematically explored. It is more likely that previously chosen actions will be chosen again, 
resulting in lower code coverage and unrevealed failures. To overcome the limitation of the random 
technique, studies by Pan et al., [5], Adamo et al., [3], and Voung et al., [6] have proposed a Q-
Learning algorithm to guide the GUI exploration systematically. However, the approach solely favors 
the least frequent action and does not consider the potential ability of action to disclose failures. 

Code complexity has been employed by Zhuang [7], Gao et al., [8], and Gezici et al., [9] to measure 
the quality of mobile applications. Code complexity metrics have been widely used to predict the 
number of defects in the code, as complex code is more prone to bugs. Thus, employing code 
complexity to guide the selection of potential action in exploring Android applications can be 
beneficial to effectively revealing defects in automated GUI testing, particularly for those who 
employ the observe-select-execute strategy. 

This paper describes a comparative study of code complexity metrics for calculating an action’s 
weight to guide the GUI exploration of Android applications. This research aims to develop a testing 
tool that can automatically detect crashes in Android Applications. We named the tool Crash Droid 
[24]. It is based on the observe-select-execute strategy, which employs the Q-Learning algorithm to 
compare actions based on their potential abilities to uncover failures. 
 
1.1 Related Work 
 

Statista [11] has reported that 71.8% of mobile users prefer Android operating systems 
worldwide. The demand for Android applications drives developers to create more applications as 
quickly as possible. Nevertheless, testing's importance should be noted for quality assurance. Studies 
reported that many applications suffer poor user experience caused by insufficient testing before 
release [8,12]. The poor user experience would frustrate users. According to ww.buildfire.com, 71% 
of users stopped using applications within 90 days of downloading them due to dissatisfaction with 
the applications. Thus, Android application testing is critical to ensuring quality and user satisfaction. 
Since most interactions with a mobile app happen through its graphical user interface (GUI), GUI 
testing is essential to make sure users from becoming dissatisfied [13]. A well-designed GUI can 
ensure that the interaction between the user and the software is as smooth and easy as possible 
[14,15]. GUI testing ensures that functionality and business specifications are met and that no crashes 
occur when users use it. 

GUI testing can be done automated or manually. A tester performs user operations on the target 
application and verifies correctly during manual testing. Manual testing is time-consuming, tedious, 
and prone to error. Additionally, manual testing does not allow 100% coverage and in-depth 
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execution. Conversely, in an automated approach, all test cases are executed automatically. Due to 
the time and effort required to develop GUI test cases in Android applications, which require a highly 
competitive environment and repeated testing on a variety of different devices, [14,15,12] and [13] 
have implemented their study using Automated GUI Testing. The most important feature of 
automated testing is to improve code coverage to detect crashes [6,16]. 

With automated testing, no human interaction is required during the process, and it could 
significantly reduce maintenance costs and testing time [12,17,18]. Previous researchers for GUI 
testing have introduced several approaches. Model-based approaches to testing Android apps are 
popular because they generate test cases based on a model that reflects the AUT's behavior ([12]). 
This approach can be made manually or automatically, but most researchers prefer to do it 
automatically because it saves time. [2] developed a tool named CrawlDroid to improve coverage of 
GUI Testing by widgets together based on their position in a state and giving each action that the 
group supports a priority value. Stoat, presented by [1], utilizes an application's behavior models to 
refine test generation iteratively in the direction of high coverage and diverse event sequences. 

While model-based testing has been used for Android GUI testing and has been shown to 
enhance code coverage and error detection, one of the approach's shortcomings is that it spends a 
significant amount of time exploring AUTs. Besides, it has shortcomings such as poor models and 
limited scalability; therefore, it does not provide considerable advantages over random strategies [5]. 
Due to the complexity of the GUI, random testing is a common approach for Android GUI testing [3, 
4]. The monkey tool, an Android framework's built-in random testing tool usually used in Random 
Testing. It can run a specified script at random to generate user or system events. Random testing 
does not require prior knowledge about the AUTs and is easy to set up. It generates random actions 
to investigate application behaviors and detect failures. This strategy, however, has the issue of 
generating random inputs to explore the potential action, which may result in meaningless actions 
and do not add to the potential of detecting failure. The activities, especially when triggered by 
system events using third-party app access, are impossible to explore during Monkey runs because 
Monkey always starts from the AUT rather than third-party apps. Moreover, there is no support for 
generating system events in the Monkey tool. According to [19], their study of Random Testing in 
WeChat found that 1.6% (7 out of 439) of unexplored activities are unexplored due to the 
requirement for inter-component communication (ICYC) between WeChat and another application. 

Compared to Random Testing, Q-learning-based exploration increases code coverage and fault 
detection. [6,3,20,21], and [5] used a Reinforcement Learning approach called Q- learning in their 
study to benefit from model-based and random testing. The Q-learning approach has five 
components: agent, environment, state, action, and reward. The agent acts independently in the 
environment to attain a goal. The agent interacts with the environment and learns by trial and error. 
The environment is a situation in which an agent is present or surrounded, while the state describes 
the current status of the environment. Meanwhile, the reward is used to evaluate actions in a 
particular state. In summary, the agent acts during each interaction, assigns rewards, and transits to 
a new state. 

The Q-learning-based method generates 10.30% higher coverage for the same actions than the 
random test execution [3]. [4] implemented DroidBotX, adopting a Q-learning approach using an 
Upper Confidence Bound (UCB) to improve coverage and crash detection. [20] introduce QBE, a fully 
automated black-box testing methodology that uses Q-Learning to explore GUI actions. They collect 
coverage with ELLA, a binary instrumentation tool. 

Although many researchers employed Q-learning in their studies, it still has some limitations. The 
limitation of Q-learning is that the exploration is only based on the least frequent action and does 
not explore how each action can identify potential value in disclosing the failures. The learning 
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process will take longer if it involves an extensive system. Hence, [10] proposed an approach that 
guides the GUIs exploration by considering every action's potential. 
 
1.2 Code Complexity Metrics 
 

It is commonly acknowledged that the code's complexity influences the software developer's 
mental burden, which causes a greater number of human errors and subsequently introduces more 
faults to the code. Hence, many researchers have investigated the ability of code complexity metrics 
to predict the number of faults revealed during software testing and operation. Various code 
complexity metrics have been suggested to measure the complexity of mobile applications, such as 
Line of Codes (LOC), Depth of Inheritance Tree (DIT), Number of Children (NOC), Response for Class 
(RFC), Halstead Metrics (HM), Weighted Method for Class (WMC) and McCabe Cyclomatic Complexity 
(CYC). Each of these metrics has its place. For this paper, we have selected three popular metrics 
used in the previous studies of mobile applications, as shown in Table 1. 
 

Table 1 
Code complexity metrics used in mobile applications 
Researcher DIT NOC LCOM CBO RFC WMC LOC CYC 
[9] / / / / / /   
[8] / /   /    
[25]       /  
[28]      /   
[26]      /  / 
[27]      /  / 
[30]     / /   
[29]      /  / 

 
The three selected metrics are described as follows: 

 
1.2.1 McCabe Cyclomatic Complexity (CYC) 
 

CYC is one of the most widely used metrics for measuring the complexity of a code. It is a 
quantitative measure of paths through the source code that are linearly independent. If the program 
has a high complexity number, the probability of error is high, and detecting the error is hard. The 
Control Flow Graph is used to compute CYC (CFG). Given a CFG, the CYC metric is computed as E - N 
+ 2P, where E represents the number of edges, N represents the number of nodes, and P represents 
the number of modules in the program. An alternative calculation of CYC is based on a program's 
number of decision points. The decision points are if, for, for-each, while, do, and case statements in 
a program. 
 
1.2.2 Response for Class (RFC) 
 

RFC is the total number of methods that can potentially be executed in response to a message 
received by an object of a class. This is the total number of class methods, and all distinct methods 
are called directly within the class. If RFC increases, class design complexity increases and becomes 
hard to understand due to a large number of class methods. 
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1.2.3 Weighted Method per Class (WMC) 
 

WMC was introduced by [22] as the sum of the complexity of all methods declared in a class. 
Since the methods of the parent are inherited by the child, many methods in a class may have a 
potentially greater impact on the children of the class. The WMC metric can be combined with other 
metrics, such as CYC, to obtain information about class complexity. Consider a class C1, with method 
M1…Mn defined in a class. Let c1... cn be the complexity of the methods, then WMC is given as 
follows 
  
∑ 𝑐𝑖!
"#$                                                                                            (1) 

 
where ci is the complexity of the methods associated with the ith class. 
 
1.3 Q-Learning Algorithm 
 

Q-learning is a reinforcement learning policy that attempts to explore a strategy that maximizes 
total reward by determining the best action selection in the current state. According to Cheung et 
al., [23], an Android app can be designed using Markov Decision Process (MDP). MDP models 
decisions with probabilistic and deterministic rewards and penalties. MDP's main components are 
agents, states, rewards, a series of actions in every state, and an action-value function. At each stage 
of the process, the agent may choose an action available in the current state, resulting in the current 
state transitioning to the next state and offering a reward for the action.  
 
1.3.1 Reward function 
 

The reward function computes the reward value of an action that moves from one state to 
another. The function enables the agent to evaluate potential actions to identify crashes. Actions 
with high value have greater potential. The reward function R determines the value of the reward 

 
 

 

(2) 

 
where: 
rinit is the initial default reward. 
xa is the frequency with which the action has been carried out in the state. 
as’ is the number of actions in state s’ that were not in state s  

 
This study employs a different default reward than other studies. The initial value is computed 

based on the initial value of actions plus one instead of a constant value. The goal is to speed up crash 
detection by guiding action selection from the first execution. Later activities are rewarded based on 
the least frequently chosen actions during testing. The more frequently an action is completed, the 
less interesting it becomes to the agent. For this study, the reward function analyses actions with 
high reward values and more potential, and the frequency requirement prevents selecting an action 
repeatedly. 
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1.3.2 Q-value function  
 

The action-value function is used to compute the value of an action, that exists in a specific state 
of an AUT. It considers the value of the current reward earned for executing the action and the best 
future value linked with the action. This function is critical since it allows the tool to plan ahead of 
time when deciding which action to take in a certain condition, which will favor application 
exploration. The q-value function is defined as follows 

 

 (3) 
 
where:  
Q(s, a) = action's value of an in-state s 
R(s, a ,s’) = value of reward for performing action a in state s 
maxa∗∈As’Q(s 0 , a∗ ) = action a's maximum value in the state when action a is executed 
𝛾 = discount factor 

 
The discount factor determines the effect of future rewards in calculating the action-value 

function for action a and its value lies in the range of [0-1]. A value of 0 instructs the agent to consider 
only the current rewards when selecting an action, whereas a value approaching 1 indicates high 
importance being given to the action that leads to high rewards in future states. 
 
2. Methodology 
2.1 The Tool: Crash Droid  
 

We used Crash Droid [11] as the tool for the comparative study. Figure 1 depicts the tool's 
overview.  
 

 
Fig. 1. Overview diagram of Crash Droid 
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The observe-select-execute strategy is used by the tool when interacting with an AUT. All possible 
GUI actions on the current state of the AUT are observed, one action is chosen based on its potential 
for crash detection, and the chosen action is then executed on the AUT. In order to maximize 
coverage and locate crashes, the application further explores the GUI using the Q-Learning algorithm. 
Crash Droid operates on the Windows platform. It is created using numerous programming 
languages, such as Java, Batch script, and Visual Basic.Net (VB.Net). There are two phases to the tool. 
The first is called pre-testing, where Crash Droid calculates each action taken from the user interface 
file beforehand. The tool adopts the Q-Learning and the Jaccard Distance algorithms in the second 
step to test the AUT.  

 
2.1.1 Case study 
 

The idea of the Q-Learning algorithm is illustrated using an example of an Android application. 
The Android application is represented in the perspective of states and actions. Figure 2 depicts the 
Android application's eight states (a to g) and seven actions (a0, a1, b0, b1, b2, c0, c1). a0 and a1 are 
two possible actions for state a, whereas states d, e, f, g, and h have no possible actions that result 
in actions to end the state. The direction of the arrow shows how execution moves from the current 
state to the new state. Crash Droid determines action weights as the initial value instead of using a 
constant number. The tool uses the code complexity metric to calculate the action weight. The action 
weight is then added by 1 to determine the initial Q-value. Assume that Table 2 shows the initial Q-
value of AUT depicted in Figure 2. 

We illustrate the Crash Droid testing phase using the information from Figure 2 and Table 2. The 
testing phase starts with episode 0, where the agent is in state a. The available actions for state a are 
a0 and a1. The agent runs a0 because it has a higher Q-value. State a now transit to state b. Since b 
has not yet been terminated, the reward function is used to obtain the reward for a0, and a new Q-
value for a0 is obtained using the Q-value function. Between three actions: b0, b1, and b2, in state b, 
the agent executes b1 since it has the highest Q-value. Now, state b transitions to state e. The Q-
value and reward value for b1 are now 0 because state e has terminated. The agent continues this 
process until the termination action that closes the AUT is carried out. The reward and Q-value for 
each action after each episode are detailed in Table 3. 

 

 
Fig. 2. Example of AUT in 
perspective of states and 
actions 
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Table 2 
Actions initial value 
Actions Initial Q-Value 
a0 2.00 
a1 1.12 
b0 1.35 
b1 1.35 
b2 1.15 
c0 1.44 
c1 1.38 

 
Table 3 
Rewards and Q-Values on each episode 
    Episode 0 Episode 1 Episode 2 Episode 3 
Action Reward Q-value Reward Q-Value Reward Q-Value Reward Q-Value 
a0 3 3.40 1.50 2.18 1.00 1.44 0.75 0.75 
a1 - 1.12 - 1.12 - 1.12 2.00 2.22 
b0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
b1 - 1.35 0.00 0.00 0.00 0.00 0.00 0.00 
b2 - 1.15 - 1.15 0.00 0.00 0.00 0.00 
c0 - 1.44 - 1.44 - 1.44 0.00 0.00 
c1 - 1.38 - 1.38 - 1.38 - 1.38 

 
2.2 The Action Weight Calculation 
 

For this experiment, we use the metrics discussed in the previous section (i.e., RFC, CYC, WMC), 
together with two calculated code metrics. The two calculated code metrics are derived from a 
combination of two metrics which are RFC and CYC; and WMC and CYC.  
 

The action weight calculation based on the five metrics is explained as follows: 
 
2.2.1 The action weight using RFC Metric 

 
The RFC metric counts the number of different methods calls in each action in AUT. If a method 

is invoked many times, only the first time is counted. Using the RFC metric, the weight for action, 
WRFCA, is calculated by dividing the number of methods called by the code in each action, NRFC, by 
the greatest number of methods called by each action in the AUT, MRFC. WRFCA is calculated as 
follows 

 
WRFCA = NRFC ÷ MRFC              (4) 
 
where 
NRFC = RFC complexity of the code in each action 
MRFC = the largest RFC complexity of the code among actions in the AUT 
 
2.2.2 The action weight using CYC Metric 
 

The Cyclomatic Complexity (CYC) metric measures the number of linearly independent pathways 
a code can traverse. With the CYC metric, the weight of action is determined by dividing the 
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complexity of the code in each action, NCYC, by the largest complexity of actions in the AUT, MCYC. 
WCYCA is calculated as follows 

 
WCYCA = NCYC ÷ MCYC 
 
where 
NCYC = CYC complexity of the code in each action 
MCYC = the largest CYC complexity of the code among actions in the AUT 
 
2.2.3 The action weight using WMC Metric 
 

The WMC metric calculates all methods in each action. The weight for each action based on the 
WMC metric, WWMCA, is found by dividing the number of methods called by the code in each action, 
NWMC, by the total number of methods called by all actions in the AUT, MWMC. WWMCA is 
calculated as follows 

 
WWMCA = NWMC ÷ MWMC             (6) 
 
where 
NWMC = WMC complexity of the code in each action 
MWMC = the largest WMC complexity of the code among actions in the AUT 
 
2.2.4 The Calculated Metrics 
 

For the calculated metrics, we sum the two metrics’ weights metric. The weight for a combination 
of WMC and CYC is as follows 

 
WWMCYC = WWMCA + WCYCA             (7) 
 
where 
WWMCA  = The weight of WMC 
WCYCA    = The weight of CYC 
 
The weight for the combination of RFC and CYC metrics is as follows 
WRFCYCA = WRFCA + WCYCA            (8) 
 
where 
WRFCA = The weight of RFC 
WCYCA = The weight of CYC 
 
3. Result 
 

The significance of the code complexity metric has been investigated to improve the GUI’s 
exploration of the Q-Learning algorithm by comparing the code coverage percentages achieved by 
the compared metrics. The experiment used five code complexity metrics and five Android 
applications. The code coverage percentage of subject applications for each code complexity metric 
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was collected and analyzed to determine the most appropriate code complexity metric to identify 
potential actions for detecting crashes in Android applications for automated GUI testing. 

 
3.1 Subject Applications 
 

The applications for each subject are chosen based on two considerations: "Are the selected 
subject applications representative of the type of applications for each tool?" and "Does an 
independent source develop them?" The first consideration is to ensure that the subject applications 
are drawn from a domain representing each tool's intention. Since the second consideration is to 
avoid bias from vested interest, the applications are selected from the open-source community. Five 
subject applications from various categories were chosen for this experiment based on the above 
considerations. 

The Tomdroid, Droidshows, SimpleDo, Loaned, and Moneybalance were chosen to be the subject 
applications of this experiment. The app Loaned helps users monitor their belongings, while 
SimpleDo organizes tasks application.  Tomdroid is an application for taking notes, while Droidshows 
is a TV series browser and tracker, and Moneybalance keeps track of group-shared spending. The 
subject apps' characteristics such as name, version, code blocks, methods, and classes are shown in 
Table 4. Apps range from 4,959 to 22,169 code blocks, with 116 to 744 methods and 31 to 168 classes. 
We obtain code coverage information from the coverage report produced by the Jacoco plugin. 
 

Table 4 
Applications used in the experiment and their details 
Application Name Version # Lines # Methods # Classes # Blocks 
Tomdroid 0.72 5011 744 168 22169 
Droidshows 6.5 3714 516 89 16224 
Simpledo 1.2.0 943 116 31 5355 
Loaned 1.0.2 2034 344 73 9781 
Moneybalance 1 1677 300 55 4959 

 
3.2 Experimental Setup 
 

The experiment is carried out using emulators for Android Pixel 2 Pie 9.0 - API 28 running on 
Windows 10 20H2 with 8 GB of RAM. We tested each code complexity metric for every subject 
application for 120 minutes (2 hours). In order to minimize the impact that randomness had on the 
results, the experiment was repeated ten times on each subject application for each metric of code 
complexity. 
 
3.3 Code Coverage 
 

Code coverage is used to determine the exploration of AUT. High code coverage shows that the 
metric can cover a significant portion of the AUT. The effectiveness of Q-learning is studied using 
various code complexity metrics. The code complexity metrics value for each action in states 
influences the decision of which action to execute. Thus, the experiment was conducted to obtain 
the coverage results regarding the class, lines, and branch coverages. 
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3.4 Results and Discussion  
 

Table 5 shows the average code coverage of class, line, and branch achieved by each AUT during 
execution using three bases and two calculated code complexity metrics. 
  

Table 5  
Average code coverage among subject application 
Application Name RFC CYC WMC RFC + CYC WMC + CYC 
Moneybalance 15.33 15.33 15.33 15.33 15.33 
Tomdroid 48 50 50 50 39.33 
Droidshow 25.67 31.67 23.33 34.67 21.33 
Loaned 10.67 8.67 38.67 24.67 34.67 
Simpledo 18 23.67 25.67 27.67 18 

 
Figure 3 shows a box plot of complexity metrics for all AUT running the experiment. RFC + CYC 

has a higher median code coverage than other code complexity metrics. 
 

 
Fig. 3. Code complexity metric across all applications 

 
The significant distribution of code complexity metrics in AUT code coverage was statistically 

demonstrated using the Kruskal-Wallis H test. The Kruskal-Wallis H test was selected because it is a 
non-parametric test that permits comparisons between more than two populations in a completely 
randomized design. In addition, applying the non-parametric test is appropriate when the sample 
size of the population is too small. The null hypothesis for the Kruskal-Wallis H test is as follows: 

 
H0: The distribution of AUTs code coverage is the same 
HA: The distribution differs in code complexity metric 

 
The significance level for right-tailed chi-square tests was set to = 0.05 for hypothesis tests. 

According to the results of the Kruskal-Wallis H test, there are differences in code coverage for five 
AUTs that are statistically significant (H = 1.9938, p = 0.2971, df = 4). The result indicates that H0 
should be rejected in favor of HA. At the 0.05 level of significance, the statistical test indicates that 
there are differences in code coverage between the five AUTs. Based on the experimental results, 
code complexity metrics can improve the exploration of GUIs based on the percentage of AUT code 
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coverage collected. Also, the experiment has shown that the combination of RFC and CYC metrics 
outperforms other code complexity metrics in terms of code coverage. Therefore, it is statistically 
proven that the complexity of the code behind each action is an important factor in determining its 
potential to discover failures.   

 
3.5 Threats to Validity 
 

This section discusses the potential threats to an experiment's validity. The first threat, external 
validity, involves the degree to which the experimental study's subject applications should represent 
actual practice. However, this threat's mitigation has previously been discussed in the Subject 
Applications section. Second, implementation effects can bias the results' internal validity. Faults in 
Crash Droid might cause such effects. Thus, Crash Droid was tested and manually inspected to reduce 
the threat. Finally, the threats to conclusion validity relate to the validity of the statistical tests. This 
threat can be reduced by ensuring the correctness of the measurements and the use of statistical 
tests must be correct. To ensure the correctness of the measurement due to the impact of 
randomness in both approaches, the experiment for every subject program was performed ten times. 
For the statistical tests, we ensure the assumptions of the Kruskal-Wallis H test have been satisfied. 
 
4. Conclusions 
 

Mobile application testing is becoming increasingly important as more and more people rely on 
their mobile devices to get their work done. As mobile users interact with the application on 
numerous operating systems and devices, especially Android, there are additional aspects to 
consider when testing mobile applications. Thus, the developer often puts mobile testing aside due 
to the time and effort it takes. Q-learning dynamically automates GUI test generation for Android 
applications, saving humans time and effort in analyzing and writing test cases. Although the Q-
learning approach leverages the concept of dynamic action selection to intelligently choose an action 
from the available actions, Q-learning exploration is only based on the least frequent action. It does 
not explore how each action can identify potential value in disclosing the failures. Therefore, in this 
study, the Q-learning algorithm is enhanced by assigning the value for an action executed for the first 
time rather than selecting the initial action randomly. We evaluated the code coverage acquired by 
the proposed approach to assessing the difference in actions' potential abilities during Android 
application testing. The findings demonstrate a difference in AUT code coverage among other code 
complexity metrics. In the future, the effectiveness of the proposed approach will be evaluated with 
other state-of-the-art tools to investigate the capability of detecting crashes. In addition, the initial 
value of each potential action should be considered, not only the initial value for the first action 
execution. 
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