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Heat transfer plays a crucial role in various industrial applications. Thus, this study 
investigates the heat transfer characteristics of a non-Newtonian Williamson hybrid 
nanofluids flowing over a non-linear shrinking sheet, incorporating MHD effects and 
viscous dissipation. Alumina and Copper nanoparticles are dispersed in a CMC-water 
base fluid, representing a non-Newtonian hybrid nanofluid with shear thinning 
behaviour. The complex mathematical model is transformed into similarity equations 
using appropriate transformations, and the MATLAB function bvp4c is employed to 
solve these equations numerically. The model’s accuracy is validated by comparison 
with an established model, demonstrating reasonable agreement. The study analyses 
the impact of various fluid parameters, including magnetic, Eckert number, 
Williamson, suction, and nanoparticle volume fraction, on fluid flow behaviour. Results 
show that increased suction enhances both the skin friction coefficient and heat 
transfer rate, while a higher Williamson parameter reduces both. The heat transfer 
rate decreases with an increase in the Eckert number. Additionally, an increase in the 
magnetic parameter and nanoparticle volume fraction leads to higher skin friction but 
a lower heat transfer rate. 

Keywords: 
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Joule heating; hybrid nanofluid; 
shrinking; bvp4c 

 
1. Introduction 
 

In the industrial process and manufacturing, the use of an effective working fluid is essential for 
achieving optimal production efficiency. In 1995, a breakthrough occurred with the introduction of 
Nanofluids (NFs) which consist of nanoparticles dispersed in a base fluid, as developed by Choi and 
Eastman [1]. These NFs have demonstrated superior performance compared to traditional fluids in 
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various heat transfer applications, particularly in energy-intensive systems. Common base fluids 
include water and oil, while frequently used nanoparticles, such as Alumina (Al2O3) and Copper (Cu), 
are valued for their stability and high thermal conductivity, respectively. Numerous studies have been 
conducted to investigate the behavior of NFs [2-7], with recent research highlighting that factors such 
as nanoparticle type, concentration, and base fluid selection significantly enhance heat transfer rates 
[8]. 

The development of hybrid nanofluids (HNFs), achieved by adding a second type of nanoparticle 
to conventional NFs, has further improved their thermal properties. Pioneering experimental studies 
in this field include those by Turcu et al., [9], Jana et al., [10], and Suresh et al., [11]. Since 
experimental work involves material preparation, which needs high financial support and even 
involves certain procedures which may harm humans and the environment, several researchers look 
for numerical approaches to overcome these challenges. Notable contributions in this area include 
those by Devi and Devi [12], Takabi and Salehi [13], and Xue et al., [14] who developed different 
thermophysical correlations by implementing the Tiwari Das model of NFs to explore the heat 
transfer characteristics of HNFs numerically. These correlations have since been widely used to study 
HNFs’ flow behavior over various geometries and under different conditions [15-27].  

Depending on nanoparticle volume fractions and the type of base fluid, HNFs may exhibit non-
Newtonian behavior characterized by complex rheological properties. Traditional Navier-Stokes 
equations are often inadequate for modeling such fluids, which can exhibit shear-thinning or shear-
thickening behavior. In this respect, various non-Newtonian models have been employed in HNFs 
studies, including Casson, Maxwell, Viscoelastic, Reiner-Philippoff, and Williamson models [28-32].   

Among these, the Williamson model is particularly noteworthy as it effectively represents 
pseudoplastic fluids, which are the most encountered non-Newtonian fluid [33]. Pseudoplastic fluids, 
such as polymer solutions, paint, blood, and plasma, are shear-thinning whose viscosity decreases 
with increasing shear stress. The Williamson model accounts for both the minimum and maximum 
viscosities of pseudoplastic fluids, providing more accurate results and fitting experimental data 
effectively [34]. Consequently, many recent studies have incorporated the mathematical formulation 
of HNFs with the Williamson fluid model, resulting in what is known as the Williamson hybrid 
nanofluids (WHNFs) model, particularly for investigating fluids with shear-thinning characteristics 
[32,35-38]. Most previous WHNFs studies focused on fluid flow induced by a linear velocity. However, 
as emphasized by Timol [39], for non-Newtonian fluids, a non-linear velocity in the form of a power 
law ( ) should be adopted. This power law form of velocity has been explored in several studies 
[24, 40-43]. 

In the field of fluid mechanics, Crane [44] and Wang [45] were pioneers in describing the flow 
behavior over stretching and shrinking surfaces, respectively. These surfaces have drawn significant 
attention from scholars due to their diverse and important applications in technology and industry, 
such as wire drawing, aerodynamic extrusion of plastic sheets, hot rolling, and metal spinning. 
Miklavčič and Wang [46] later revealed that fluid flow solutions over a shrinking sheet are not unique. 
Multiple solutions have also been identified in various types of fluid flows over shrinking surfaces, 
including HNFs [47-49], Williamson fluid [50] and Williamson fluid with nanoparticles [51,52]. 

The application of magnetohydrodynamics (MHD) to fluid flow has gained importance in various 
fields, including nuclear reactors, plasma confinement, and metallurgical processes. MHD governs 
the behaviour of electrically conducting fluids in the presence of a magnetic field, where Lorentz 
forces influence velocity profiles and heat transfer. Considering its wide-ranging applications, 
numerous researchers have studied MHD HNFs [16,18,40,53-60] and MHD Williamson fluids [61,62] 
for various geometries and flow conditions. Kavya et al., [37], Almaneea [63], Yahya et al., [64], and 
Alkasasbeh et al., [65], investigated WHNFs involving MHD effects but with different geometries, 

1/3x



Semarak Engineering Journal 
Volume 7, Issue 1 (2024) 31-47 

33 
 

nanoparticles and base fluids. Kavya et al., [37] studied magnetic hybrid nanoparticles in a water 
suspension of MoS4 and Cu nanoparticles for flow over stretching/shrinking cylinder. Almaneea [63], 
explored MHD HNFs composed of Al2O3 and Cu nanoparticles with glycerine as the base fluid for flow 
over a heated pipe. Kavya et al., [37], and Almaneea [63] reported that as the magnetic field strength 
increased, the velocity profile decreased while the temperature increased. This finding consistent 
with Shateyi et al., [61], and Hussain et al., [62]. In contrast, Khashi’ie et al., [40] observed the 
opposite trend, where the velocity increased, and the temperature decreased with an increasing 
magnetic parameter. Yahya et al., [64] analysed the thermal performance of an engine oil-based HNF 
consists of Go and AA7072 nanoparticles, across a Riga wedge, while Alkasasbeh et al., [65] 
investigated MHD WHNFs composed of SWCNTS and MWCNTS with water as the base fluid over an 
exponentially shrinking sheet. Recently, Ali et al., [66] studied an MHD Cross ternary HNF containing 
MoS2, TiO2 and Ag with CMC-water-base fluid over a stretching cylinder. CMC-water has emerged as 
a popular base fluid for stabilizing HNFs [67]. Experimental results show that CMC-water exhibits 
shear thinning behavior, and the outcomes align well with the power-law model for non-Newtonian 
fluids. Recent research on MHD WHNFs flow can be found in the work of Jain et al., [68], and Aselebe 
et al., [69] focusing on viscous dissipation and Joule heating effects, respectively. These effects are 
particularly intriguing due to their significant impact on MHD fluid flow. Jain et al., [68] compared 
nanofluids such as Cuo-water, SWCNT-water, and MWCNT-water and found that hybrid carbon 
nanotubes demonstrated superior performance in terms of skin friction and local Nusselt number 
compared to SWCNT-water and MWCNT-water. Meanwhile, Aselebe et al., [69] reported an increase 
in fluid temperature due to viscous dissipation.   

From the literature, there is limited research on MHD WHNFs under the combined influences of 
viscous dissipation and Joule heating over a shrinking sheet induced by a non-linear velocity. This 
study, therefore, investigates the behaviour of MHD WHNFs flow over a non-linear shrinking sheet, 
incorporating the effects of viscous dissipation and Joule heating. Alumina and Copper nanoparticles 
are suspended in a CMC-water base fluid to represent a non-Newtonian hybrid nanofluid. The 
existing formulation of HNFs is integrated with the Williamson fluid model. Due to the complexity of 
the governing equations describing fluid flow and heat transfer, the mathematical model is reduced 
to a simplified set of ordinary differential equations (ODEs) using a similarity transformation. These 
equations are then solved numerically using the bvp4c function in MATLAB. The results are presented 
graphically, and the effects of various fluid parameters, including the magnetic parameter, Eckert 
number, Williamson parameter, Prandtl number, and suction parameter, on the velocity and 
temperature profiles, as well as physical quantities like skin friction coefficient and Nusselt number, 
are analysed to elucidate fluid flow behaviour. Additionally, the simultaneous impact of the 
Williamson parameter and the volume fraction of nanoparticles on heat transfer enhancement is also 
investigated. 
 
2. Methodology  

 
The physical flow model of WHNFs over a shrinking sheet is illustrated in Figure 1.  The surface 

velocity is described by  where  is a constant and . The parameter  

represents the mass flux velocity, while  is treated as a variable surface 

temperature. Here,  and  denote the ambient and constant temperatures, respectively. A 

magnetic field, , is applied transversely along the y-axis, where  and  
represents the constant magnetic strength [40]. Additionally, the effects of viscous dissipation and 
Joule heating are considered in the analysis. 

( ) 1/3
wu x ax= a 0a > ( )wv x

( ) 2/3
0wT x T T x•= +

T• 0T

( )B x ( ) 1/3
0B x B x-= 0B
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Fig. 1. Geometry of the physical problem 

 
The governing equations for WHNFs can be derived using boundary layer approximations to the 

continuity, momentum, and energy equations. Consequently, the steady two-dimensional boundary 
layer equations for this fluid model are expressed as follows [15,24,38,70]: 

 

                                                                                                                                                       (1) 

 

                                                                                (2) 
  

                 (3) 
 
In this context,  represents the Cartesian coordinates, while  denote the velocity 

components in the x- and y-directions, respectively. Additionally, , , , , , , and 

 correspond to the thermal conductivity, density, dynamic viscosity, heat capacitance, electrical 
conductivity, time constant, and gravitational acceleration, respectively. The problem is governed by 
the following boundary conditions:  

 

                                                                                                                        (4) 

 
where  represents the deformable sheet, where  indicates a stretching sheet,  denotes a 
shrinking sheet and  corresponds to a static sheet. Additionally, throughout this section, the 
subscripts hnf and f refer to hybrid nanofluid and regular fluid respectively. 

The governing Eq. (1)-(3) are expressed as nonlinear partial differential equations (PDEs). Due to 
their complexity, the similarity transformation method is applied to simplify them into nonlinear 
ordinary differential equations (ODEs). According to references [59,68], the appropriate similarity 
variables are introduced in Eq. (5) as follows:  

 

                                                                                  (5) 
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where  and are dimensionless similarity variables related to the stream function . Utilizing 

these variables, and considering that  and , the velocity components are transformed 

into: 
 

,                                                                               (6) 

 
which satisfied the continuity Eq. (1). Additionally,  represents the mass 
velocity at the surface, where  represents the fluid’s kinematic viscosity and  is the 
suction/injection parameter. A positive  corresponds to suction, while a negative  indicates 
injection.  

Subsequently, Eq. (5) and (6) are substituted into the governing Eq. (2) and (3) to derive the 
transformed ODEs, which are presented as Eq. (7) and (8): 

 

                                                                                             (7) 

                                                            

                                          (8) 

 
These equations are subject to the corresponding boundary conditions given by: 
 

                                                                                                                                     (9) 

 

In this context, the prime notation  denotes differentiation with respect to . The 
dimensionless parameters associated with the Williamson fluid , magnetic field , Eckert 
number , and Prandtl number  are defined as follows:  

 

, , , ,                                                                                (10) 

 
where  represents the local Reynolds number.   

Eq. (11) defines the physical quantities of interest, specifically the skin friction coefficient  and 
the local Nusselt number : 

 

,                                                                              (11) 
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,                                                                             (12) 

 
In this study, the thermophysical correlations used to solve the HNFs flow problem are based on 

the model of Takabi and Salehi [13]. For clarity, the thermophysical correlations for both NFs and 
HNFs are detailed in Table 1. Throughout the analysis, a volume fraction of nanoparticles 

 is applied, resulting in Cu-Al2O3/CMC-water hybrid nanofluid. Note that,  and  
represent the nanoparticles concentration for Al2O3 and Cu, respectively, and the summation of them 
represented by . Additionally, the thermophysical properties of the base fluid (CMC-water) and 
the nanoparticles (Cu, and Al2O3) are listed in Table 2 [71,72].  

 
Table 1 
Thermophysical properties for nanofluid and hybrid nanofluid 
Element Nanofluid Hybrid nanofluid 
Viscosity 

  

Density   

Heat capacity   

Thermal 
conductivity  

 

Electrical 
conductivity  

 

where  

 
Table 2 
Thermophysical properties for the base fluid and nanoparticles 
Thermophysical properties Base fluid Nano particle 

CMC-water Al2O3 Cu 
Density,  997.1 3970 8933 
Heat capacitance,  4179 765 385 
Thermal conductivity,  0.613 40 400 
Electrical conductivity,   0.05 0.85 1.67 
Prandtl, Pr 6.2   

  
3. Results  
 

Eq. (7) to (9) were solved using the numerical approach with MATLAB’s bvp4c function. The 
effects of various physical parameters on the WHNFs flow behavior were analyzed by adjusting the 
control parameters accordingly. Prior to obtaining the solutions, a validation process was carried out 
to ensure the accuracy of the current model. Under specific limiting conditions, the momentum 
equation in this study was reduced to those found in previous works by Waini et al., [24], Cortell [41], 
and Ferdows et al., [42], as shown in Table 3. The accuracy of the current numerical method was 
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confirmed when the values of , as presented in Table 4, showed reasonable agreement with 
previous studies. These values were obtained under the condition of a stretching sheet  for 
various values of and certain limiting values. 

 
Table 3 
Comparative model in terms of momentum equations 

 
Table 4 
Comparative values of  for various values of when ,  and   

 Cortel [41] Ferdows et al., [42] Waini et al., [24] Current 
0.75 -0.453521 -0.453523 -0.453523 -0.453526660 
-0.5 -0.518869 -0.518869 -0.518869 -0.518871662 
0 -0.677647 -0.677648 -0.677648 -0.677648605 
0.5 -0.873627 -0.873643 -0.873643 -0.873642953 
0.75 -0.984417 -0.984439 -0.984439 -0.984439416 
 
The fluid flow of HNFs is characterized by 2% nanoparticle concentration  and is 

driven by a shrinking surface . The solutions for the skin friction coefficient,  and the 
Nusselt number,  for various parameter values are recorded in Table 5. An increase in the 
values of  enhances both  and . In contrast, increasing the values of  results in 
a decrease in these physical quantities. Additionally, the values of  and  increase 
and decrease, respectively, with the rise of . Moreover,  and  have no effect on . 
However, these parameters influence the energy equation. As a result, the values of   are 
affected, decreasing as  increase but increasing as  rise. Physically, the presence of suction and 
a higher Prandtl number tends to release energy to the flow, while the Williamson fluid parameter, 
magnetic parameter, and Eckert number act to hinder the flow’s energy.  
 

Table 5 
Values of and for different physical parameters when . 

       
2.25 0.01 0.01 0.1 6.2 1.110990647 7.822658227 
2.24     1.092462312 7.776725260 
2.22      1.050075988 7.683979925 
2.25 0.02    1.106574516 7.821477794 

  0.03    1.102116671 7.820313237 
  0.04    1.097612236 7.819163763 
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 0.01  0   1.080725411 7.830468736 
  0.02   1.136413715 7.815525959 
  0.03   1.158831679 7.808865051 
  0.01 0  1.110990649 8.289691565 
    0.2  1.110990647 7.355624890 
   0.3  1.110990647 6.888591552 
   0.1 7 1.110990649 8.958907313 
    8 1.110990649 10.378906129 
    10 1.110990667 13.217952059 

 
The velocity  and temperature  profiles for the previously mentioned parameters are 

shown in Figures 2-9. The far-field boundary conditions were satisfied asymptotically. Figures 2 and 
3 illustrate the effect of magnetic parameters on the velocity and temperature profile . 
It is observed that as this parameter increases, the velocity increases, whereas the temperature 
decreases along the shrinking surface. Theoretically, magnetic parameters may reduce the velocity 
due to the Lorentz force, but in the present study, the velocity increases. Figures 4 and 5 depict the 
influence of the Eckert number,  and the Prandtl number,  on the temperature profile , 
respectively. Both parameters lead to an increase in the temperature profile . 

 

 
Fig. 2. for different values of  
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Fig. 3. for different values of  

 

 
Fig. 4. for different values of  

 

 
Fig. 5. for different values of  
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Figures 6 and 7 illustrate the effects of the Williamson number on velocity  and 
temperature , respectively. It is observed that as  increases, the fluid’s velocity decreases while 
the temperature increases. Since the Williamson number represents the ratio of relaxation time to 
specific process time, a decrease in specific process time leads to a higher Williamson number. As a 
result, both velocity and boundary layer thickness are reduced. Physically, the Williamson parameter 
enhances the non-Newtonian behavior of the fluid by increasing its resistance due to frictional 
effects. Consequently, the fluid slows down, allowing more time for heat absorption from the surface, 
which raises the temperature. 

 

 
Fig. 6. for different values of  

 

 
Fig. 7. for different values of  

 
Figures 8 and 9 show the effects of the suction parameter  on velocity  and temperature 
, respectively. It is observed that the velocity increases due to mass transfer at the suction wall, 

while the temperature decreases. Physically, as the suction strength in the flow increases, the 
velocity increases because the decelerated fluid particles are removed at the surface. As a result, 
heat is dissipated more quickly, leading to a decrease in the fluid temperature. 

 

( )g ( )f h¢

( )q h g

( )f h¢ g

( )q h g

( )S ( )f h¢

( )q h



Semarak Engineering Journal 
Volume 7, Issue 1 (2024) 31-47 

41 
 

 
Fig. 8. for different values of  

 

 
Fig. 9.  for different values of  

 
The combined effects of the Williamson parameter  and the volume fraction of nanoparticles 

 on  and  are shown in Table 6 and 7, respectively. It is observed that the values 
of  gradually decrease by 1.47% when  increases from 0 to 0.03 for the case of . 
However, the values of  are only slightly affected by , with a 0.05% decrease. For the case 
of , the values of  are significantly increased by 23.70% when the concentration of Cu 
increases from 0.5% to 2% in the base fluid. However, the values of  slightly decreased by 
0.47%. 

 
Table 6 
Values of when,  

    
0 0.994175254 1.085933948 1.229762975 
0.01 0.985719569 1.080725376 1.225628600 
0.02 0.976215875 1.075414429 1.221485537 
0.03 0.964932440 1.069986681 1.217331669 
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Table 7 
Values of when,  

    
0 8.297562702 8.286588416 8.258380193 
0.01 8.295658524 8.285119660 8.256933084 
0.02 8.293605242 8.283651914 8.255503825 
0.03 8.291286325 8.282182473 8.254091418 

 

 
Fig. 10. Variation of against  for 
different values of  

 

 
Fig. 11. Variation of against  for 
different values of  

 
To gain more insight, Figures 10 and 11 are presented to demonstrate the simultaneous effects 

of the Williamson parameter  and various nanoparticle concentrations  on  and 
, respectively. The Al2O3-Cu/CMC-water hybrid nanofluid  with the 

highest nanoparticle concentration exhibits the highest skin friction but the lowest Nusselt number, 
followed by Al2O3-Cu/CMC-water hybrid nanofluid  with a moderate concentration, 
and then the Al2O3-Cu/CMC-water hybrid nanofluid  with the lowest 
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concentration. Physically, an increase in nanoparticles concentration enhances the fluid’s viscosity, 
causing the fluid to slow down and reducing heat transfer performance. Furthermore, an increase in 
the Williamson parameter  significantly affects both skin friction and heat transfer rate, which is 
consistent with its relationship to the velocity term in Eq. (7) and the energy term in Eq. (8). 

 
4. Conclusions 
 

This study investigates the impact of various fluid parameters, such as the magnetic parameter, 
Eckert number, Williamson parameter, Prandtl number, suction parameter, and nanoparticle volume 
fraction, on velocity and temperature profiles, as well as physical quantities like skin friction and the 
heat transfer rate. The results indicate that an increase in the Williamson parameter leads to a 
decrease in velocity but an increase in temperature. In contrast, higher values of the magnetic and 
suction parameters result in increased velocity but decreased temperature. It was also observed that 
suction allows the WHNFs molecules to gain control of the surface, enhancing the heat transfer rate. 
Meanwhile, a higher Williamson parameter reduces both skin friction and heat transfer rate due to 
the obstacles that appear by the shear-thinning phenomenon, which diminishes fluid interaction with 
surfaces and generates less drag force. The heat transfer rate decreases with an increase in the Eckert 
number and increases with a rise in the Prandtl Number in the operating fluid. Moreover, an increase 
in magnetic parameters and nanoparticle volume fraction results in higher skin friction but a lower 
heat transfer rate. 

The present findings are only conclusive to the non-linear shrinking sheet. Theoretically, magnetic 
parameters and nanoparticles enhance the heat transfer rate. However, in this study, the higher 
suction strength may influence the heat transfer process. Thus, this study will be a reference for 
future research to further study and investigate the other physical parameters or hybrid 
nanomaterials that may enhance the heat transfer rate, particularly for the shrinking sheet case. 
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