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This research proposed a type-2 fuzzy interpolation B-spline modeling, a combination 
of geometric modeling, and type-2 fuzzy set theory (T2FST) to solve complex 
uncertainty in data. First and foremost, the complex uncertainty data is defined using 
the T2FST through the concept of a type-2 fuzzy number (T2FN). Along with 
constructing the type-2 fuzzy model, fuzzification (alpha-cut operation), reduction, and 
defuzzification processes are used against the type-2 fuzzy data points of earthquake 
magnitude in Ranau, Sabah. Then, the interpolation B-spline curve function 
demonstrates the type-2 fuzzy data points. Besides, the error obtained between the 
crisp and defuzzification values of the earthquake magnitude data in Ranau is within 
the acceptable range, which is less than 0.1. Therefore, this study proves that the type-
2 fuzzy interpolation B-spline curve model can solve the complex uncertainty data for 
earthquake magnitude. 

Keywords: 
Type-2 fuzzy number; type-2 fuzzy data 
points; interpolation curve; B-spline 
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1. Introduction 

 
The modeling process uses specific functions, either their result as in curve or data plotting. It 

needs a set of real data that has been collected and followed by analytical methods to obtain the 
best function that represents the original data. Usually, the data are collected from different 
resources, such as satellite images, drawings, or measurements, and then analyzed to determine the 
best mathematical model that represents the original data [1,2]. The selection of the appropriate 
mathematical model depends on the nature of the data and the application domain. 

But, when the data have uncertain issues, the modeling process becomes more complex, and we 
are mostly unable to model them, especially in curve or surface form. Although the traditional 
method was applied, like getting rid of the data or applying statistical methods, it cannot solve the 
uncertainty problem efficiently in some cases. Therefore, another method or theory is needed to 
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define the uncertainty data, whereas the defining data and other specific data can be modeled. This 
will give more reasonable and accurate results.  

One of the methods that have been proposed to model the uncertainty data is the Fuzzy Set 
Theory. The fuzzy set theory was introduced by Zadeh [3] and widely applied in order to define the 
uncertainty before it can be extended to the specific field of research. Part of it is the geometrical 
modeling field. In the geometrical modeling field, fuzzy set theory has proven valuable for 
representing and manipulating uncertain geometric data. This is particularly relevant when dealing 
with imprecise measurements, vague shapes, or subjective interpretations of geometric information. 
For example, in defining curves and surfaces, fuzzy sets can accommodate uncertainty in control 
points or boundary conditions, leading to more robust and flexible geometric models [4-14]. 

However, when dealing with more complex uncertain data, traditional type-1 fuzzy sets (fuzzy set 
theory), employed in fuzzy curve and surface modeling, may be insufficient. Their inherent limitation 
lies in the crisp membership functions, which cannot fully capture uncertainties in the membership 
values themselves. In such cases, type-2 fuzzy sets (T2FS) offer a more robust approach. Unlike type-
1 fuzzy sets, which are characterized by crisp membership functions, T2FS utilize fuzzy membership 
functions, providing a higher level of flexibility in representing uncertainties within the data [9,15]. 
Therefore, T2FSs provide a more suitable framework for defining and modeling complex uncertain 
data, addressing the limitations of crisp membership functions inherent in type-1 fuzzy sets. By 
employing type-2 fuzzy data (T2FD), we can generate type-2 fuzzy curves and surfaces that effectively 
capture the higher-order uncertainties present in the data, overcoming the limitations of traditional 
type-1 fuzzy set approaches. Several studies have been conducted to explore the application of type-
2 fuzzy sets in geometric modeling, particularly in the context of curve and surface representations 
[9,15,16]. 

Data modeling of environmental data, sensor data, and other real-world data often face 
uncertainty, vagueness, and imprecision issues. This is also applied to the earthquake magnitude 
data. Earthquake magnitude is not a directly observable quantity. It has been calculated from 
measurements of seismic waves, which are inherently noisy and subject to various sources of error. 
The location and depth of the earthquake, the types of seismic waves recorded, and the 
instrumentation used all contribute to uncertainty in the magnitude estimate. Lucas et al. [17] and 
Musson [18] discuss magnitude uncertainties and their effects. Another key source of complex 
uncertainty in earthquake magnitude data is the limitation of instrumentation and inaccuracies in 
the collection and processing of the data. Imprecise measurements from seismic instruments, errors 
in locating the earthquake epicenter and depth, and issues with data processing algorithms can all 
contribute to uncertainty in the final magnitude estimate. These factors introduce complexities and 
ambiguities that must be accounted for when modeling and analyzing earthquake magnitude data 
[17,18]. 

Therefore, the complex uncertainty data of earthquake magnitude can be defined by using T2FS 
theory. Since the data are in numeric form, we can apply the concept of type-2 fuzzy numbers (T2FNs) 
to represent and model this data. T2FNs provide a more robust and flexible framework for capturing 
the higher-order uncertainties inherent in the earthquake magnitude data, which traditional type-1 
fuzzy sets cannot fully capture. By employing T2FD, we can generate type-2 fuzzy representations, 
such as type-2 fuzzy curves, that effectively account for the complexities and ambiguities in the 
earthquake magnitude measurements. Here, the curve function that will be used is interpolation B-
spline curve as the representative of T2FD which later known as type-2 fuzzy interpolation B-spline 
curve (T2FIBsC). 

Although the T2FIBsC of earthquake magnitude data can be developed, but the data modeling is 
not as a final answer because we need a set of single data point to represent the final result together 
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with its curve. To achieve this, we need to implement a defuzzification process to convert the type-2 
fuzzy interpolation B-spline curve into a single crisp curve that represents the earthquake magnitude 
data with its uncertainty information.  

After the complex uncertainty data had been defined and characterized as type-2 fuzzy data 
points (T2FDPs), the fuzzification, alpha-cut, type-reduction, and defuzzification processes will then 
be implemented to obtain the final crisp representation of the T2FDPs. The fuzzification process is to 
transform the numeric earthquake magnitude data in Ranau, Sabah into a T2FN representation, 
where each data point is expressed as a T2FDPs. The alpha-cut process is then applied to extract the 
upper and lower bounds of the T2FDPs, which represent the range of possible values for each data 
point with the specific alpha value determined by the user. The type-reduction process involves 
applying an appropriate type-reduction method, such as the mean method of interval T2FDPs after 
alpha-cut process, to convert the T2FDPs into a type-1 fuzzy set, which allow the defuzzification 
process of type-1 fuzzy set can be implemented directly because there is no defuzzification of T2FS 
can be used. Finally, a type-1 fuzzy defuzzification method, such as the mean method, is applied to 
the type-reduced fuzzy set to obtain a single crisp value for each data point.  

For each processes, the new T2FDPs will be modeled using an interpolation B-spline curve 
function [19-21]. The interpolation B-spline curve function will generate the earthquake magnitude 
data in Ranau, Sabah, obtained from the Pusat Kajian Bencana Alam, Universiti Malaysia Sabah. The 
collected data was subject to various sources of error. When collecting and recording the 
seismographic measurements of earthquake magnitude, a seismometer is used to measure the 
position with a high probability of active seismic activity. The site of the seismograph and 
seismometer is often situated in the highlands or areas where earthquake shaking is prevalent. 
However, one factor contributing to errors in the earthquake magnitude data is the decision-making 
process regarding the placement of the seismic instrumentation.  

This paper is organized as follows: Section 2 discusses the representation of data points using 
T2FST, the T2FN concept, and interpolation of the B-spline curve function. Then, Section 3 will discuss 
the fuzzification, type-reduction, and defuzzification method processes of T2FDPs. Next, Section 4 
will show the application of the T2FIBsC model through the proposed method discussed in Section 3 
to model the earthquake magnitude in Ranau, Sabah, from a set of complex uncertainty data. In 
addition, this section will also compare the crisp data with the defuzzification data to show the 
effectiveness of the proposed T2FIBsC model. 

 
2. Methodology  

 
This section defines complex uncertainty data based on the T2FST through the concept of T2FN. 

The T2FN concept, which is implemented from T2FST, will be used to solve the problem of complex 
uncertainty data. 

 
2.1 Type-2 Fuzzy Set Theory 
 

Definition 1. A type-2 fuzzy set is denoted by , is characterized by a type-2 membership function 
 where  and , that is 

 

  (1) 

 

A
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A
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in which .  can also be defined as  
 

  (2) 

 
where  represent the union of all and  that can be accepted. is the primer member of . In 

other words,  is the primer domain while  is the secondary domain [22]. 
 
2.2 Type-2 Fuzzy Number 
 

Definition 2. A T2FN is broadly defined as a T2FS that has a numerical domain. An interval T2FS is 

defined using the following four constraints, where , 

 [19]. 
 

1. . 
2. and  generate a function that is convex and  generate a function  

is normal. 
3.  for  . 

4. If the maximum of the membership function generated by  is the level , that 

is, , then . 

 
Figure 1 shows the interval of T2FN in triangular form. The footprint of uncertainty (FOU) is 

bounded by two triangular type-1 fuzzy sets known as upper membership function and lower 
membership function. 

 

 
Fig. 1. Definition of an interval T2FN 
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2.3 Type-2 Fuzzy Data Points 
 

Definition 3. Let  and    which is set of type-2 

fuzzy data point with , where X is a universal set and   is the membership 

function which defined as  and formulated by  . Therefore, 
 

   (3) 

 

with  which  and  are left and right footprint of 

membership values with   where,  ,  and    

are left-left, left, right-left membership grade values and ,  and   are right-
right, right, left-right membership grade values, which can be written as  
 

  (4) 

 

for every i,   with   where ,    and   are left-left, left and 

right-left T2FDPs and   where  ,  and   are left-right, right and right-

right T2FDPs respectively. This can be illustrated as in Figure 2. The illustration of T2FDP was shown 
in Figure 2 which type-1 fuzzy data point (T1FDP) becomes the primary membership function 

bounded by upper bound,  and lower bound,  respectively. The process of 

defining T2FDP can be shown through Figure 3. 
Figure 2 shows that the F2FDP around 5. The type-1 triangular fuzzy data bounded by upper and 

lower fuzzy data. This T2FDP also known as normal T2FDP since the full membership for upper and 
lower membership are not equal. 

Figure 3 illustrates the process of defining type-2 fuzzy data points (T2FDPs) from ordinary data 
points. The T2FDPs are formed based on the definition and properties of type-2 fuzzy numbers 
(T2FNs). 
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Fig. 2. T2FDP around 5 

 

 
Fig. 3. Process of defining T2FDP 

 
2.4 Alpha-Cut Method 

 

Definition 4. Let  be the set of T2FDPs with  where . Then  is the alpha-
cut operation of T2FDPs which is given as equation as follows.  
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  (5) 

 
This definition can be illustrated through Figure 4. Figure 4 shows that the alpha-cut of a T2FDP 

at level alpha represents the range of T2FDPs that have a secondary membership grade of at least 
alpha. A higher alpha value corresponds to a stricter membership grade requirement, resulting in a 
narrower alpha-cut interval. This interval can be interpreted as a range of plausible data values, with 
a higher confidence level associated with higher alpha values. 
 

 
Fig. 4. The alpha-cut operation towards T2FDPs 

 
The subsequent step involves the type-reduction method after applying the fuzzification process 

on the T2FDPs. The type-reduction technique transforms the T2FDPs into type-1 fuzzy data points 
(T1FDPs) after the fuzzification process. Additionally, type-reduction is utilized to enable the 
application of type-1 defuzzification methods. Numerous type-reduction approaches have been 
discussed in the literature [20,21]. However, this paper introduces a novel type-reduction method 
known as the centroid min method, as described in Definition 5. 

 
2.5 Type-Reduction Method 
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  (6) 

 

where  is left type-reduction of alpha-cut T2FDPs, ,  is the 

crisp point and  is right type-reduction of alpha-cut T2FDPs, . 

 
2.6 Defuzzification Method 
 

Definition 6. Let alpha-TR is the type-reduction method after alpha-cut process had been applied 
for every T2FDPs, . Then  named as defuzzification T2FDPs for  if for every , 
 

  (7) 

 

where for every . The process in defuzzifying T2FDPs can be illustrated at 

Figure 5. 
 

 
Fig. 5. Defuzzification process of T2FDP 
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spline curve function. This can be known as a type-2 fuzzy interpolation B-spline curve (T2FIBsC), 
which will give us a more comprehensive understanding of how T2FDPs can be modeled, providing 
us with the curves' shapes based on the data points. Besides that, we can understand the meaning 
of the T2FDPs based on the yielded curves. 

 
2.7 Type-2 Fuzzy Interpolation B-Spline Curve 

 

Definition 7. Let  be a list of T2FDPs with , then the T2FIBsC can be defined as 
 

,  (8) 

 

where t  is crisp knot sequences ,  are type-2 fuzzy control points(T2FCPs) where 

early before  are T2FDPs but here are T2FCPs with the same properties as mentioned in definitions 
before. The  is basic function of B-spline. In this part, T2FCPs need to find first based on the 
T2FDPs which it will force the constructed curve to interpolate the T2FDPs. Here, the T2FDPs known 

as . 
Therefore, to illustrate the T2FIBsC, we summarized in the table form (Table 1) for the computed 

T2FDPs and also in curve form by looking at Figure 6 as follows. 
Table 1 shows the numerical example of the fuzzification, type-reduction, and defuzzification 

processes for the T2FDPs. Based on this table, we will illustrate these processes in curve form using 
the interpolation B-spline curve function. Specifically, we will model the complex uncertainty data 
points using the T2FDP representation and then generate the corresponding B-spline curves as 
T2FIBsC to provide a more comprehensive understanding of how T2FDPs can be represented and 
analyzed graphically. 
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 Process of fuzzification, type-reduction and defuzzification of T2FIBsC 
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T2FDPs  

 
 

   
 

   
 (-12, 0) (-11, 0) (-9, 0) (-5, 0) (3, 0) (6,0) (9,0) 
 (15, 28) (15, 26) (15, 25) (15, 20) (15, 16) (15,14) (15,12) 
 (17, -13) (15, -15) (13, -17) (10, -20) (8, -22) (5,-25) (3,-27) 
 (30, 10) (32, 10) (34, 10) (40, 10) (46, 10) (48,10) (49,10) 

Alpha-Cut,

 

 

   
 

   
 (-8.5, 0) (-8, 0) (-7, 0) (-5, 0) (-1, 0) (0.5, 0) (2, 0) 
 (15, 24) (15, 23) (15, 22.5) (15, 20) (15, 18) (15, 17) (15, 16) 
 (13.5, -16.5) (12.5, -17.5) (11.5, -

18.5) 
(10, -20) (9, -21) (7.5, -22.5) (6.5, -23.5) 

 (35, 10) (36, 10) (37, 10) (40, 10) (43, 10) (44, 10) (44.5, 10) 
Type-Reduction 

 
 

   
 (-7.8333, 0) (-5, 0) (0.5, 0) 
 (15, 23.1667) (15, 20) (15, 7) 
 (12.5, -17.5) (10, -20) (7.6667, -22.3333) 
 (36, 10) (40, 10) (48.8333, 10) 

Type-2 Defuzzification 

 
 
  

 (-5, 0) (-4.1111, 0) 
 (15, 20) (15, 20.0556) 
 (10, -20) (10.0556, -19.9444) 
 (40, 10) (39.9444, 10) 

 
Figure 6 illustrates the comprehensive process of modeling Perfectly Normal Type-2 Fuzzy Data 

Points (PNT2FDPs) using the interpolation B-spline curve function. This process involves several key 
steps: 

 
i. Modeling the T2FDPs to capture the complex uncertainty inherent in the data. 

ii. Generating the Type-2 Fuzzy Interpolation B-spline Curve (T2FIBsC) based on the modeled 
T2FDPs. 

iii. Applying defuzzification techniques to the T2FDPs to obtain the final crisp representation 
of the T2FDPs solution. 

 
This step-by-step approach provides a detailed understanding of how T2FDPs can be effectively 

modeled and represented using the powerful capabilities of the interpolation B-spline curve function. 
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Fig. 6. The modeling of (a) T2FIBsC, (b)  alpha-cut operation of T2FIBsC( -T2FIBsC), (c) type-reduction 
of  -T2FIBsC(TR- -T2FIBsC) and (d) defuzzification of TR- -T2FIBsC 

      
3. Results  

 
This section illustrates an application example of the T2FIBsC model for representing and 

analyzing the earthquake magnitude data collected in Ranau, Sabah. The data set consists of eight 
earthquake magnitude measurements plotted to model the T2FIBsC. By leveraging the concepts of 
T2FST and T2FNs discussed in the previous section, the T2FIBsC model is constructed to provide a 
comprehensive visual representation of the earthquake magnitude data, as shown in Figure 7. 
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Fig. 7. T2FIBsC model of earthquake magnitude data collected in Ranau, Sabah 

 
After achieving the T2FIBsC model, the next step is to apply the alpha-method process, as shown 

in Figure 8. This process utilizes Definition 4 and Eq. (5), with the 𝛼-value set to 0.5. Applying this step 
will reduce the interval between the T2FDPs and the crisp data points. This helps to bridge the gap 
between the fuzzy and non-fuzzy representations of the data, providing a more cohesive and 
comprehensive understanding of the underlying uncertainty. 

 

 
Fig. 8. Fuzzification model of T2FIBsC of earthquake magnitude data 

 
After the alpha-cut process defined in Definition 4, the T2FDPs will be transformed and reduced 

to type-1 fuzzy data points (T1FDPs) through the type-reduction process described in Definition 5. 
This type-reduction step is a crucial part of the overall process, as it allows the complex type-2 fuzzy 
data points to be represented in a more straightforward type-1 fuzzy form, making them more 
accessible and easier to work with. Figure 9 then shows the type-reduction model. It illustrates how 
the type-2 fuzzy interpolation B-spline curve model is transformed into its corresponding type-1 
representation, providing a more streamlined and interpretable form of the fuzzy data points. 
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Fig. 9. Type-reduction model of T2FIBsC of earthquake magnitude data 

 
Finally, Figure 10 illustrates the defuzzification process of the earthquake magnitude data. This 

process obtains a crisp data value based on the defuzzification step described in Definition 6. The 
defuzzification transforms the type-1 fuzzy data points into a single representative value, providing 
a concise and interpretable representation of the complex fuzzy data. 

 

 
Fig. 10. Defuzzification model of T2FIBsC of earthquake magnitude data 

 
Figure 10 shows that the result after applying the defuzzification process to the T2FIBsC is a set 

of crisp data points that can be used for further analysis and applications. The red curve represents 
a crisp curve of earthquake magnitude data modeled through the T2FIBsC. The grey curve also 
represents a defuzzification curve of earthquake magnitude data, showing slightly different values 
between those two curves and the data points. 

In addition, in Figures 7 and 8, the red curve represents the crisp data points. The blue curve 
represents the left-left T2FDPs, left-right T2FDPs, right-right T2FDPs, and right-left T2FDPs. 
Meanwhile, the magenta curve represents the right T2FDPs and the left T2FDPs. In Figure 9, the 
brown curve represents the left and right T2FDPs, and the red curve represents the crisp data points. 
The figures visually represent the various types of fuzzy data points and their corresponding curves, 
allowing for a more comprehensive understanding of the modeling process. 

The errors between the crisp data points and the defuzzification data points, calculated using Eq. 
(9), are analyzed to investigate the effectiveness and accuracy of the earthquake magnitude data 
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output. Figure 11 presents a detailed comparison between the crisp data points and the 
defuzzification data points of the earthquake magnitude, providing valuable insights into the 
performance and reliability of the modeling approach. 

 

  (9) 

 

 
Fig. 11. The comparison between the crisp data points and defuzzify data 
points of earthquake magnitude data in Ranau, Sabah 

 
The average error for both models is 0.02706244, which is significantly less than the acceptable 

error threshold of 0.1. This indicates that the T2FIBsC model provides a highly accurate 
representation of the earthquake magnitude data, and can be confidently accepted as a valid model. 
The low error value suggests that the type-2 fuzzy approach effectively captures the complex 
uncertainty inherent in the seismic measurements, leading to improved accuracy in the final 
earthquake magnitude estimates. 

The T2FIBsC of earthquake magnitude data against all process to obtain the final result had been 
explain and illustrate through figures before. The following is the algorithm of the T2FIBsC of 
earthquake magnitude data which give more understanding on how this model work and applied 
towards the earthquake magnitude data. 

 
Algorithm 1. T2FIBsC modeling of earthquake magnitude data. 
 
Step 1:  Collect data from the data center of Ranau earthquake magnitude data. 
 
Step 2: Define the uncertainty complex uncertainty data of earthquake magnitude using Definition 3. 
 
Step 3: Find the type-2 fuzzy control points based on Eq. (8) and given T2FDPs. 
 
Step 4: Model the T2FDPs based on Eq. (8) and the result at Figure 7. 
 
Step 5: Alpha-cut process: Apply Eq. (5) against the T2FDP of earthquake magnitude data, and the 

result is shown in Figure 8. 
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Step 6: Type-reduction process: Apply Definition 5 against the T2FDP of earthquake magnitude data, 
and the result is shown in Figure 9. 

 
Step 7: Defuzzification process: Apply Definition 6 against the T2FDP of earthquake magnitude data, 

and the result is shown in Figure 10. 
 
Step 8: Find and model the error between defuzzification T2FDPs and crisp data points of earthquake 

magnitude data by applying Eq. (9). The result is shown in Figure 11. 
 
4. Conclusions 

 
In conclusion, a T2FIBsC model has been constructed based on the concept of T2FST and the B-

spline curve function. The main contribution of this method is to define the complex uncertainty data 
of earthquake magnitude in Ranau, Sabah while modeling the data using the B-spline curve function. 

When the T2FDPs was successfully defined, the fuzzification process, reduction, and 
defuzzification processes were applied. These methods have their definitions to hold the crisp type-
2 fuzzy solution as a final result. Thus, in order to illustrate the T2FDPs for better understanding, the 
T2FDPs is blended with the interpolation B-spline curve function to produce the type-2 fuzzy 
interpolation B-spline curve model. 

The fuzzification, type-reduction, and defuzzification processes are critical components of this 
framework, as they facilitate the transformation of complex T2FDPs into a more accessible and 
manageable type-1 fuzzy form. This transformation is a vital step in the overall procedure, as it 
enables the representation of the intricate T2FDPs in a more straightforward and interpretable type-
1 fuzzy form. As illustrated in Figure 9, the type-reduction model demonstrates how the type-2 fuzzy 
interpolation B-spline curve model is transformed into its corresponding type-1 representation, 
providing a more streamlined and interpretable form of the fuzzy data points that can be more 
readily comprehended and utilized for further analysis and applications. 

Furthermore, the defuzzification process, as shown in Figure 10, is applied to the earthquake 
magnitude data to obtain a single data value based on Definition 6. This final step ensures that the 
complex fuzzy data can be effectively utilized for further analysis and applications. 

In addition, these T2FDPs can be applied in defining complex uncertainty data, which can be 
modeled through various curve functions or surface functions in approximation forms such as Bezier, 
rational Bezier, rational B-spline, and NURBS functions. This allows for a more comprehensive and 
flexible representation of the complex data, enabling deeper insights and more accurate modeling of 
the earthquake magnitude data in Ranau, Sabah. 
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