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Dengue, a mosquito-borne arboviral disease transmitted by Aedes mosquitoes, has 
been a growing public health burden. Since dengue data is collected spatially, non-
stationarity in the data series is possible. Therefore, we employ a Geographically 
Weighted Regression (GWR) model to ascertain the correlation between dengue 
incidence and location-specific predictor factors. Nevertheless, because GWR is based 
on conventional least squares, it has several drawbacks, including the inability to 
consider non-continuous variables, non-linear relationships, or non-Gaussian error 
distributions. Therefore, this study suggests a hybrid model called a Generalised 
Geographically Weighted Regression (GGWR), which combines Geographically 
Weighted Regression and a Generalised Linear Model (GLM) to address these flaws. 
This study aims to examine the influence of climate factors on the increase of dengue 
incidence in Malaysia and to establish their relationship using the proposed GGWR 
model. Stationarity and spatial autocorrelation assumptions will be evaluated using the 
Breusch-Pagan and Moran's tests, respectively, while normality will be assessed 
through the Jarque-Bera test. In addition, since the data series shows a problem of 
overdispersion, a negative binomial is proposed. Compared to GLM, the GGWR model 
offers a superior fit based on the minimum Akaike information criterion. This study also 
found that the GGWR negative binomial performed better than the GGWR Poisson 
regression based on the mean square errors in dealing with the overdispersion 
problem. The GGWR and GLM models demonstrated that climate factors substantially 
influence dengue incidence. The proposed GGWR model provides a more robust 
framework for understanding the spatial variability in dengue outbreaks, offering 
valuable insights for policymakers to devise more effective preventive strategies to 
mitigate the spread of the disease. The contributions of the study lie in developing and 
applying the GGWR model, which addresses key limitations of traditional GWR and 
GLM approaches, providing a more refined tool for analysing spatially varying 
relationships in public health data. 
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1. Introduction 
 

Dengue has become a major issue for healthcare authorities, especially the World Health 
Organisation (WHO). The dengue virus causes dengue fever, an illness or disease that humans 
contract through mosquito bites. The symptoms of dengue fever often begin to appear 
approximately two weeks after infection and include a high fever, headache, vomiting, muscle and 
joint discomfort, and a rash. Generally, the fever takes five to seven days to recover, resulting in 
bleeding, a low number of blood platelets, leaking of plasma, or the syndrome of dengue shock. 
According to previous studies [1-3], dengue fever, a serious health problem in the tropics, has the 
potential to spread to other geographic areas, particularly Asia-Pacific countries such as Malaysia, 
Indonesia, Thailand, Vietnam, the Philippines, and South America. 

Referring to the statistics reported by the World Health Organisation (WHO) [4], about half of the 
world's population is now at risk of dengue, with an estimated 100–400 million infections occurring 
each year. The dengue pandemic is currently a threat to approximately forty percent of the world's 
population, and countries with a climate that is considered subtropical are the most appropriate 
areas for dengue reproduction. In addition, several researchers discovered that dengue fever has 
increased in urbanised tropical and subtropical nations, such as Malaysia [5-7]. 

Numerous studies have shown a connection between climatic factors and infectious diseases, 
such as the studies by Githeko et al.,[8], Ten Bosch et al.,[9] and Tran et al., [10]. Temperature and 
rainfall play critical roles in influencing the growth and survival of infectious agents, as well as in 
facilitating their transmission and spread. Githeko et al., [8] found that rainfall can influence the 
transport and spreading of the infectious agent, while temperature stimulates the growth and 
survival. Conversely, studies by Ten Bosch et al., [9] and Tran et al., [10] found that rainfall 
characteristics, which include the intensity and patterns of rainfalls, led to an increase in the number 
of dengue-affected areas. As mentioned by Wu et al., [11], climate changes indeed impact the entire 
process of disease development for most recorded dengue incidences in statistics, including the 
reproduction and spreading of the disease pathogens and their hosts. Their findings have shown 
significant relationships between climate change factors and dengue incidence. In addition, a study 
by Lee et al., [12] found that a higher temperature considerably increases the risk of domestic dengue 
epidemics in Korea. Similarly, Butterworth et al., [13] studied the potential impact of climate change 
on dengue transmission in the Southeastern United States. They concluded that the cold winters on 
the US mainland inhibit dengue virus transmission. 

When addressing global climate change, it is important to consider the factors that drive the 
development and spread of agent diseases. The findings and results of those studies by Mwanyika et 
al.,[14] and Caldwell et al.,[15] have shown that the occurrence and persistence of appropriate 
climate factors will enable dengue outbreaks. Liao et al., [16] suggested that emerging infectious 
diseases continue to cause significant harm, and their frequency is expected to rise due to climate 
change. Hence, global strategies are needed to track, model, and project future emerging infectious 
disease behaviors. Direct effects due to climate change encompass the increasing frequency and 
intensity of extreme weather events, including variations in temperature and precipitation patterns 
[17]. For climate-sensitive infectious diseases, these alterations indicate a change in geographical and 
temporal distribution, seasonality, and transmission intensity [18]. 

Modelling the relationship between climate factors and the incidence of infectious disease has 
become the main challenge in climate-health studies. However, given that heterogeneity exists 
between the disease and climate variables, geographically weighted regression (GWR) is a common 
approach to solving heterogeneity by considering the variability of coefficients in diverse locations 
across the study area. GWR is a linear model that identifies relationships between dependent and 
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independent variables that change across space, making it suitable for analysing non-stationary data. 
However, GWR fails to capture the non-linear behavior of the phenomena. The GWR model has been 
extensively employed for various diseases such as hand, foot, and mouth disease (HFMD) (Hong et 
al., [19], Sun et al.,[20]), dengue (Sulekan et al., [21] Sumanasinghe et al., [22]) and COVID-19 (Isazade 
et al., [23]; Jassim et al., [24]; Wu and Zhang [25]; Zhang et al.,[26]. 

Wang et al., [27] utilised the GWR model to address geographical dependency and heterogeneity 
within the data set. Their findings indicated that environmental factors, particularly human 
population density, the Normalised Difference Vegetation Index (NDVI), socioeconomic deprivation, 
and road density, exerted a more substantial influence than meteorological variables on the spatial 
variation of mosquito abundance at the urban level. On the other hand, Isazade et al., [23] identified 
the COVID-19 pandemic in Qom and Mazandaran provinces, Iran, using spatial analysis approaches. 
They used three models for assessing spatial autocorrelation: geographically weighted regression 
(GWR), ordinary least squares (OLS), and Moran's I. ArcGIS software executed all those models. 
Authorities and researchers use the spatial information from these modelling approaches to gain 
general insights for targeted investigations and policies in similar situations. Zhang et al., [26] 
examined the influence of sociodemographic variables on COVID-19 incidence across 342 cities in 
China from a geographical aspect. Their analysis used the local geographically weighted Poisson 
regression (GWPR) and Poisson regression models. Their findings indicated that cities with a higher 
gross domestic product (GDP), limited health resources, and shorter distances to Wuhan were at a 
higher risk for COVID-19. 

In Malaysia, there are limited studies on GWR in spatial variation modelling [28-31]. Hazrin et al., 
[28] used GWR to analyze the health clinic requirement in a sub-district based on the population 
density and the number of high-level health clinics. They also map the spatial distribution of public 
and private health clinics. Eboy and Samat [29] used GWR as a space regression tool for modelling 
the valuation of property ratings over Kota Kinabalu, Sabah, while Jamhuri et al., [30] developed a 
toolbox to extend GWR to the forestry sector. On the other hand, Vaziri et al., [31] used GWR in the 
spatial distribution of poverty and in assessing all the factors that contribute most to the spatial 
configuration of Peninsula Malaysia. 

However, GWR fails to handle non-continuous variables and non-Gaussian errors. The challenge 
in applying GWR arises from spatial data, which can involve various types such as binary or count 
data, making conventional GWR methods unsuitable. In many health problems, the response variable 
represents a count best modeled by the Poisson distribution, making classical GWR inappropriate for 
this data type. Therefore, to address the limitations of GWR, we employ a generalised geographically 
weighted regression (GGWR) to evaluate the impact of climate change on dengue incidence and 
concurrently model the spatially varying relationships between variables. 

 To the best of the authors' knowledge, the applications of geographically weighted regression in 
spatial modelling remain relatively novel in Malaysia, particularly in climate change and disease 
analysis. Therefore, this study seeks to propose a hybrid model that combines GWR with the 
Generalised Linear Model (GLM), resulting in the generalised geographically weighted regression. 
Furthermore, this study aims to assess the influence of climate factors on dengue incidence in 
Peninsular Malaysia and establish their spatial relationships using GWR modelling. The proposed 
GGWR model can then be a predictive tool for estimating dengue fever risks under varying climate 
change scenarios and identifying potential hotspot areas prone to outbreaks. 
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2. Data and Study Area 
 

Weekly dengue data for each state in Peninsular Malaysia were obtained from the official open 
data portal (www.data.gov.my). However, the observed data is constrained due to limited open-
access provisions from the Ministry of Health. Considering the availability of comprehensive weekly 
dengue records, the dengue data series from 2012 was selected for this analysis. The climatological 
factors, such as temperature (X1), humidity (X2), rainfall(X3), and wind speed(X4), were used as 
explanatory variables to examine the effect of climate factors on dengue incidences. These climate 
data were obtained from the Malaysian Meteorological Department from the following stations, as 
shown in Table 1. 
 

 Table 1 
 List of meteorological stations with their latitude and longitude 

Stations Longitude Latitude 
Kluang 2° 01' N 103° 19' E 
Alor Setar 6° 12' N 100° 24' E 
Kota Bahru 6° 10' N 102° 18' E 
Melaka 2° 16' N 102° 15' E 
Ladang Air Hitam 2° 56' N 102° 25' E 
Kuantan 3° 46' N 103° 13' E 
Ipoh 4° 34' N 101° 06' E 
Chuping 6° 29' N 100° 16' E 
Bayan Lepas 5° 18' N 100° 16' E 
Subang 3° 08' N 101° 33' E 
Petaling 3° 06' N 101° 39' E 
Kuala Terengganu 5° 23' N 103° 06' E 

 
3. Methodology  
3.1 Model Diagnostic Checking 

 
      In performing regression analysis, it is essential to evaluate the normality assumptions of the 
models. The Jarque-Bera test, commonly used to assess model bias, indicates whether the residuals 
follow a normal distribution. The method of Jarque-Bera is given as follows: 
 
Jarque − Bera = !"#$

%
*𝑆$ + #

&
(𝐾 − 3)$1                      (1) 

 
where S refers to the skewness while K represents the value of kurtosis. The higher the Jarque-Bera 
statistics, the higher the chances for the data to deviate from the norm. 

Spatial autocorrelation analysis assesses whether observed variables at one location are 
independent of those at other locations. The presence of spatial autocorrelation indicates 
dependencies between variables across spatial locations. In addition, the Moran autocorrelation 
statistic was applied to detect whether there is spatial autocorrelation or clustering of the residuals, 
which violates the assumption of regression. Under the null hypothesis, it is assumed that no spatial 
autocorrelation exists within the data series, while the alternative hypothesis posits the presence of 
spatial autocorrelation in the series. Moran's I is given as 
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where Zi is the deviation of an attribute for location i from its mean (𝑥+ − 𝑋7), 𝜔+,-   is the spatial weight 
between location i and j, n is equal to the total number of observations, and 𝑆. is the sum of all the 
spatial weights, 𝑆! = ∑ ∑ 𝜔",$%

$&'
%
"&' . The Zi score for the statistics can be computed as 

 
𝑍/ =

/"0[/]
34[/]

               (3) 

 
where 𝐸[𝐼] = "#

(!"#)
, 𝑉[𝐼] = 𝐸[𝐼$] − (𝐸[𝐼])$ .The value of Moran's I index can vary between − 1 

(perfect dispersion) to + 1 (a perfect positive autocorrelation). Note that a zero value indicates perfect 
spatial randomness. 

A Koenker test employs a particular test known as the Breusch-Pagan test to determine whether 
the global model has non-stationarity. Because of the spatially autocorrelated environment, non-
stationarity occurs when the connection between the study variables differs from region to region. 
The Breusch-Pagan test is a test for heteroscedasticity error in a linear model regression test. 
Heteroscedasticity occurs when the residual error variance is not uniform over the measured range 
values. If heteroscedasticity occurs, the outcome analysis may be inaccurate due to uneven variance 
in the variables utilized in the regression. The test follows the Chi-square distribution's features and 
evaluation, 𝑥$7 = 𝑛∗𝑅$,  where n is the total number of observations, 𝑅$ is the coefficient of the 
determination of the regression of the squared residuals, and v is the degree of freedom. 
 
3.2 Generalised Linear Model (GLM) 
 

A generalised linear model is an extension of classical linear models that represents a class of 
regression models that allows linear regression in various data types, including counts, binary, 
proportions, and continuous distribution. The structure of the generalized linear model can be easily 
seen by considering the classical linear model. 𝑦+ = 𝑥+9𝛽 + 𝜀+   where  yi represents  the ith observation 
of the dengue cases, 𝛽 is the vector of model parameters, 𝑥+: 	is referring to the ith  observation of 
the kth climate factors variable and 𝜀+  be the independent normally distributed error terms with zero 
means and also assumed to be homoscedastic. The link function of GLM gives 𝑔(𝜇+) = 𝜂+ = 𝑥+9𝛽.  

Poisson GLM appears appropriate for modeling variables that describe counting data over a 
specified interval. The family of Poisson distribution with parameter μ is given as follows: 

 

𝑃(𝑌 = 𝑦+) =
;)*"<"+"
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, 𝑦+ = 0,1,2,3, … ,			𝑖 = 1,2,3, … , 𝑡        (4) 

                                 
where 𝜇+  is both the mean and variance of Y. The mean	𝜇+  is expressed as a function of some 
explanatory variable through a log link function. The details can be found in Nelder and Wedderburn 
[32]. In the modelling process, by using the Poisson distribution, the problem of overdispersion might 
exist if the variance of the observation exceeds the mean. In these issues, the standard errors may 
be underestimated, leading to misleading conclusions about the regression parameters. Therefore, a 
negative binomial distribution will be used, as suggested by Breslow [33], since it is one of the ways 
to account for overdispersion problems in data and is considered a convenient and practical 
approach. A negative binomial distribution with the probability function is given as follows: 
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where the mean and variance are 𝐸(𝑌+) = 𝜇+   and Var(𝑌+) = 𝜇+ + 𝜇+$𝑣+"#, respectively. 
 
3.3 Geographically Weighted Regression (GWR) 
  

Geographically weighted regression is a relatively simple technique that extends the traditional 
regression framework by allowing local rather than global parameters to be estimated so that the 
model is written as 

 
𝑌+ = 𝛽.(𝑢+ , 𝑣+) + ∑ 𝛽:Z𝜇+,𝑣+[𝑥+: + 𝜀+:           (6) 

          
where (𝑢+ , 𝑣+)	represents the coordinates of the i-th point in space and 𝛽:(𝑢+ , 𝑣+)	represents a 
realization of the continuous function at point i. This spatially localised model assumes that the 
relationships between regression variables may vary over space; consequently, it generates a set of 
local line regression models rather than a global model, with estimates for every sample in space. 
The weights of each spatial unit vary as a function of the spatial relationship between them. A 
weighted calibration is applied so that more influence in the calibration is related to the point closer 
to i. Observations close to i are weighted more than observations farther away from i; that is 
 
 𝛽\(𝑢+ , 𝑣+) = (𝑋9𝑊(𝑢+ , 𝑣+)𝑋)"#(𝑋9𝑊(𝑢+ , 𝑣+)𝑌)          (7) 
 
where 𝛽\  is an estimate of 𝛽 and  𝑊(𝑢+ , 𝑣+) is the matrix of n by n whose off-diagonal elements are 
zero and whose diagonal elements denote the geographical weighting of observed data for point i. 
Local estimation of model parameters is derived using a subsample of data from nearby observations, 
which are weighted by a decreasing distance. In this way, the impacts of neighbouring samples are 
stronger than those farther away. A kernel bandwidth indicates the distance beyond which 
neighbours no longer influence local estimates. 

Two choices of the weighting function, either computing using a Gaussian kernel function or a Bi-
square kernel function, which is given as  

 

𝑊+- = 𝑒𝑥𝑝 3− #
$
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B
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$
4            (8) 

 

𝑊+- = 31 − *A"$
B
1
$
4
$
 if  𝑑+- < 𝑏     and 𝑊+- = 0,			otherwise.                         (9)

                                            
where dij is the distance between the location of observation i and j, with b is the bandwidth. Note 
that the bandwidth can be defined by a fixed number of the closest neighbours (adaptive bandwidth) 
or a fixed distance (known as fixed bandwidth). The bandwidth selection can be determined using 
the Akaike Information Criterion (AIC). Minimising the AIC provides a trade-off between goodness-
of-fit and degrees of freedom. The AIC is defined for GWR as the following 
 
𝐴𝐼𝐶C = 2𝑛𝑙𝑛(𝜎l) + 𝑛𝑙𝑛(2𝜋) + 𝑛 n !@DE(')

!"$"DE(')
o        (10) 

 
where n is the sample size, σq is the estimated standard deviation of the error term, and tr(S) refers 
to the trace of the hat matrix, which is a function of the bandwidth. As the general rule, the lower 
the AIC, the closer the model approximation to reality. 
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3.4 Generalised Geographically Weighted Regression (GGWR) 
 

Generalised geographically weighted regression is a version of the generalised linear model that 
incorporates spatial variability coefficients. In this case, it is used to describe the linear predictor with 

 
𝜂+(𝑢+ , 𝑣+) = 𝛽.(𝑢+ , 𝑣+) + 𝛽#(𝑢+ , 𝑣+)𝑋#,+ + 𝛽$(𝑢+ , 𝑣+)𝑋$,+ +⋯+ 𝛽:(𝑢+ , 𝑣+)𝑋:,+ = ∑ 𝛽:(𝑢+ , 𝑣+)𝑋:,+: (11) 

                                                                                            
Based on Nakaya et al.,[34],  the geographically weighted Poisson regression (GWPR) can be defined 
as 
𝑌+~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇+) = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 *𝑒𝑥𝑝Z𝜂+(𝑢+ , 𝑣+)[1 
𝑙𝑜𝑔(𝜇+) = 𝜂+(𝑢+ , 𝑣+)           (12) 
𝜇+ = 𝑒𝑥𝑝Z𝜂+(𝑢+ , 𝑣+)[ 
                                                   
where Poisson (μi) indicates the Poisson distribution with mean,	𝑢+. A component 𝜌+, which is known 
as the offset, is frequently included in the Poisson regression model as  
 
𝜇+ = 𝜌+𝑒𝑥𝑝Z∑ 𝛽:(𝑢+ , 𝑣+): 𝑋:,+[.         (13) 
                                                                 
The GWPR model extends the traditional Poisson regression model, allowing for local rather than 
global parameter estimation. Poisson regression is commonly used for counting data, where the 
outcome variable is the count of events that follow a Poisson distribution. However, in the context 
of GWPR, the model's coefficients vary across geographic space. This flexibility is crucial for 
addressing spatial non-stationarity, where the influence of explanatory variables on the outcome 
may differ across locations. 
 Silva and Rodrigues [35]  proposed GWR with a negative binomial distribution called GWNBR. The 
GWNBR model is an extension of the geographically weighted regression that caters to 
overdispersion in count data. Overdispersion occurs when the variance exceeds the mean, a common 
scenario in real-world datasets where count-based outcomes exhibit greater variability than the 
Poisson assumption allows. The GWNBR model, therefore, incorporates a negative binomial 
distribution, which has an extra parameter to account for overdispersion. The global model with 
family negative binomial is applied to a count model with overdispersion where 
 
𝑌+~𝑁𝐵z𝜌+𝑒𝑥𝑝Z∑ 𝛽:(𝑢+ , 𝑣+)𝑋:,+: [, 𝛼|         (14) 
 
with 𝜌+  denotes as an offset variable, 𝛼	refers to the overdispersion parameter, 𝛽:		is the parameter 
that is related to the explanatory variables, 𝑋:  for k=1,2,3,…K, and 𝑌+  be the dependent variable 
when i=1,2,…,n. 
 
4. Results and Discussion 
4.1 Summary Statistics of Dengue Cases 
 

Figure 1 displays a bar graph of the number of dengue cases with their respective coefficient of 
variations for each studied station in Peninsular Malaysia. Selangor recorded the highest number of 
dengue cases, while Perlis recorded the lowest. There is a high possibility that high urbanisation, 
industrialisation, and the rapid development of Selangor will influence the increasing number of 
dengue incidences in the area. The weekly variations range from 24% to 65%, with the lowest 
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variability recorded for Johor and the highest in Perlis. The highest variability of the dengue cases in 
Perlis indicates that the weekly number of dengue cases is widely spread for the stations and varies 
in 2014. 

 

 
Fig. 1. The number of dengue cases of each station with their corresponding 
coefficient of variations 

 
4.2 Collinearity Testing 
 

Multicollinearity occurs when a regression model has a high intercorrelation between two or more 
independent variables. It will create repeated information that may lead to misleading results, 
especially when analysts attempt to determine which variables can be used most effectively. 
Moreover, multicollinearity yields a broader confidence interval and produces a less trustworthy 
probability. The Spearman's rho correlation coefficient is computed between the climate variables. 
Based on Table 2, temperature and humidity are significantly negatively correlated, indicating that 
these two variables may be collinear. Hence, two separate models are considered to overcome the 
existence of collinearity among regressors: the first model without temperature, X1, and the second 
model without humidity, X2. 
 

Table 2 
Spearman rank correlation coefficient 
Variables Y X1 X2 X3 X4 
Y 1.0000     
X1 0.5173 

(0.1212) 
1.0000    

X2 -0.6454 
(0.0212) 

-0.7329 
(0.0067) 

1.0000   

X3 0.3658 
(0.1236) 

0.3931 
(0.2062) 

-0.2227 
(0.4866) 

1.0000  

X4 -0.2605 
(0.9462) 

0.2870 
(0.3657) 

-0.1149 
(0.7223) 

0.5253 
(0.0794) 

1.0000 

 
4.3 Accessing the Significance of the Parameters of Generalised Linear Model 

 
Next, the study will identify the key variables influencing dengue incidence. Given the count nature 

of the dengue data, the Generalised Linear Model (GLM) with a Poisson family was applied to develop 
two distinct models. Model 1 excludes temperature as a predictor, while Model 2 excludes humidity. 
Each model is independently examined throughout the study to provide comparative insights into 
the influence of these variables on dengue cases. The model equation of GLM Poisson and the 
corresponding AIC values are given as 
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Model	1:	𝑌+ = 22.058 − 0.188𝑋$ + 0.355𝑋G − 1.472𝑋&        AIC1 = 2891.1 
Model	2:	𝑌+ = −11.633 + 0.696𝑋# + 0.404𝑋G − 1.939𝑋&     AIC2 = 2995.2     (15) 
 
All climate variables of each model are found to be significant for dengue incidence but with different 
magnitudes and signs. Since the data series showed an overdispersion pattern, a GLM negative 
binomial was implemented. The model equation of the GLM negative binomial can be written as 
 
Model	1:	𝑌+ = 20.561 − 0.166𝑋$ + 0.289𝑋G − 1.327𝑋&        AIC1 = 195.8 
Model	2:	𝑌+ = −9.164 + 0.601𝑋# + 0.318𝑋G − 1.439𝑋&       AIC2 = 199.2     (16) 
 
Based on a comparison between Model 1 and 2, the exclusion of temperature in Model 1 provides a 
better model fit (lower AIC), implying that temperature might have less predictive value than other 
variables when considered in conjunction with dengue cases. GLM with a negative binomial is a better 
approach than GLM with a Poisson, as the negative binomial distribution can deal with overdispersion 
in the data series. Besides, GLM with a negative binomial attained the lowest AIC values.  

It appears that humidity (X2) and wind speed (X4) have a negative correlation with dengue cases, 
according to Eq. (15) and (16). A one-unit increase in humidity and wind speed leads to a decrease in 
the expected number of dengue cases. On the other hand, a one-unit increase in rainfall (X3) leads to 
an increase in dengue cases. Similarly, a one-unit increase in temperature (X1) will stimulate the 
growth and survival of Aedes. The coefficient for wind speed (X4) is negative in both models but more 
substantial in Model 2, indicating a strong protective influence against dengue cases, especially when 
humidity is excluded. This comparative analysis shows how temperature and humidity influence 
dengue cases, with humidity's inclusion potentially resulting in a better model fit. 
 
4.4 Residuals Diagnostic Checking 
 

Next, we performed a comprehensive residual analysis for each Generalised Linear Model (GLM) 
to assess the assumptions underlying the model's validity and identify potential issues with model fit. 
Specifically, we evaluated the residuals using three diagnostic tests: the Jarque-Bera test for 
normality, Moran's test for spatial autocorrelation, and the Breusch-Pagan test for homoscedasticity. 

The Jarque-Bera test results indicated that the residuals of both models adhered to the 
assumption of normality, as they did not deviate significantly from a normal distribution. The results 
indicate a well-distributed distribution of the models' error terms, satisfying the normality 
assumption. However, Moran's test, which assesses spatial autocorrelation, revealed statistically 
significant levels of spatial dependency in the residuals. The spatial clustering of the residuals, which 
violates the assumption of independence, suggests the presence of unaccounted-for spatial effects 
in the data. Similarly, the Breusch-Pagan test, which assesses the homoscedasticity or constant 
variance of residuals, revealed that both models did not meet this assumption. The test results 
indicate heteroscedasticity, implying that the variance of residuals is not constant across 
observations, potentially leading to inefficiencies in parameter estimates. 

Because of these results, the residuals' autocorrelation and heteroscedasticity show that a 
standard GLM is not quite right for this spatial dataset. As a result, a geographically weighted 
regression model is a more suitable approach for this series. GWR takes into account differences in 
local space by letting parameter estimates change from place to place. This fixes the problems with 
spatial autocorrelation and non-stationarity found in the residual diagnostics. This approach 
adequately models spatial heterogeneity, resulting in more robust and accurate insights from the 
data. Therefore, we propose a generalised geographically weighted regression for further analysis. 
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 4.5 Spatial Weighting Functions of Generalised Geographically Weighted Regression                 
 

Several weighting functions can be used to calculate the model's parameter estimations of GWR. 
Table 3 shows the result of weighting function data with the bandwidth (b) values and the optimal 
AIC values. The best weighting function has the smallest bandwidth value (b) and the optimal AIC 
values. The results indicated that the best weighting function for the GWR model is an adaptive 
Gaussian function based on the minimum AIC. 

 
 Table 3 
 Results of bandwidth (b) values with optimal AIC values 

Model 1 
Weighting Function Bandwidth (b) AIC 
Fixed Gaussian 1.9659 50.6901 
Fixed Bisquare 5.4086 42.6485 
Adaptive Gaussian 0.6909 42.5823 
Adaptive Bisquare 0.9451 66.5791 
Model 2 
Weighting Function Bandwidth (b) AIC 
Fixed Gaussian 1.6936 60.5967 
Fixed Bisquare 4.9685 58.7625 
Adaptive Gaussian 0.3292 57.8621 
Adaptive Bisquare 0.9999 57.9247 

 
The Gaussian function can be written as follows 
 

Model	1:𝑊+- = 𝑒𝑥𝑝 3− 1
2
* 𝑑𝑖𝑗
0.6909

1
2
4                                                   

(17)Model	2:𝑊+- = 𝑒𝑥𝑝 3− 1
2
* 𝑑𝑖𝑗
0.3292

1
2
4                                                             (18) 

 
4.6 Generalised Geographically Weighted Regression Poisson and Negative Binomial                

 
The study used the adaptive bandwidth parameters listed in Table 3 and the geographically 

weighted Poisson regression (GWPR) model to examine how climate factors affect the number of 
dengue cases in Peninsular Malaysia. This study also employed the geographically weighted negative 
binomial regression (GWNBR) model, as the data series showed signs of overdispersion. Both GGWR 
models were chosen due to their capacity to capture spatial heterogeneity, a critical factor when 
assessing health outcomes that may vary according to localised climate conditions and spatial 
distribution of cases. 

Table 4 summarises the statistics of each variable of each model. For Model 1, the coefficient for 
humidity (X2) is consistently negative across the quartiles, supporting the inverse relationship 
between humidity and dengue cases. The closed values indicate low variability within geographical 
locations, yet a strong and stable negative influence on dengue cases. The positive coefficient for 
rainfall (X3) suggests a direct positive influence on dengue cases. The median at 0.3205 shows 
moderate variability, indicating that its effect is slightly less stable than that of humidity, but it 
remains positive across the range. The coefficient for wind speed (X4)  has a wider range, suggesting 
higher variability across the locations in its effect on dengue cases. However, it has a negative effect 
on dengue cases. The positive temperature coefficient (X1) in Model 2 suggests that temperature 
positively affects dengue cases. However, the temperature varies across different locations in 
comparison to other variables. In Model 2, rainfall (X3) also has a positive influence on dengue cases, 
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but it varies more when humidity is excluded from the model. Model 2 also shows that the coefficient 
of wind speed (X4) spans from negative to slightly positive. This suggests that wind speed is more 
variable in its effect on dengue cases when humidity is excluded, with some estimates even indicating 
a slight positive influence. 

 
Table 4 
Summary of the GGWR models 
Model Variables Min 1st Quartile Median 3rd Quartile Max 
 (Intercept) 21.3349 21.7449 22.3721 23.5739 23.7851 
1 X2 -0.2274 -0.2223 -0.1982 -0.1844 -0.1784 
 X3 0.2943 0.3024 0.3205 0.3644 0.3706 
 X4 -1.2208 -1.1780 -1.0111 -0.7327 -0.6703 
 (Intercept) -18.3230 -16.4894 -15.2473 -12.9920 -11.9516 
2 X1 0.6509 0.6799 0.7967 0.8735 1.0046 
 X3 0.2075 0.2330 0.2877 0.3960 0.4732 
 X4 -2.1620 -1.8732 -1.3137 -0.5059 0.0341 

 
Table 5 provides a comparative overview of the model results based on the mean square error 

(MSE) and root mean square error (RMSE) as key performance metrics. The comparative analysis 
highlights that the GWPR and GWNBR models significantly outperform traditional global models, 
such as the generalised linear model with Poisson and negative binomial specifications. Based on the 
findings, localised models (GWPR and GWNBR) offer improved accuracy and predictive performance 
for modelling relationships that consist of geographically or spatially varying data. Hence, the GGWR 
model is the best for determining the relationship between climate factors and dengue cases in 
Peninsular Malaysia.               

 
Table 5 
Model Evaluation of GGWR and GLM using MSE and RMSE 
  GWPR GLM Poisson 
Model MSE RMSE MSE RMSE 
1 0.2148 0.4635 231.52 15.22 
2 0.1816 0.4261 394.48 19.86 
  GWNBR GLM Negative Binomial 
Model MSE RMSE MSE RMSE 
1 0.1684 0.4104 1.05 1.02 
2 0.1358 0.3686 1.06 1.03 

 
5. Conclusion 

 
This study analyses the potential of geographically weighted regression as an alternative 

statistical model to examine the relationship between the variables that vary across locations. GWR 
can theoretically integrate geographical location, altitude, and other spatial estimates and reflect the 
non-stationary spatial relationship between these factors. By considering the spatial locations of the 
variables, the GWR provides the best way to describe the relationship between dengue incidence 
and climate variables. However, due to the categorisation of dengue series as count data, the hybrid 
model of GLM and GWR is more appropriate for modelling these types of series. 

Consequently, the findings suggest that the geographically weighted generalised regression 
model is optimal for analysing climate disease relationships in this context. The adaptive bandwidth 
mechanism of the GGWR model allows it to accurately model the data by calibrating local parameter 
estimates that reflect the unique climatic and demographic factors affecting dengue transmission in 
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each subregion. The geographically weighted regression with a negative binomial performed better 
than the geographically weighted Poisson regression in explaining the effects of climate variables on 
dengue incidence. These localised parameter estimates provide a refined understanding of spatial 
patterns, offering valuable insights for public health interventions to control and predict dengue 
outbreaks in regions with diverse climatic conditions, such as Peninsular Malaysia. Researchers have 
found that climate variables significantly impact the pattern of dengue cases. Temperature and 
rainfall positively affect dengue cases, while humidity and wind speed negatively influence them. In 
Model 1, humidity consistently shows a negative impact compared to temperature, potentially 
indicating a more consistent reduction in dengue cases when under control. 

For future studies, it would be better to have more variations of variables that link to the nature 
of dengue incidence, such as duration of the infection and time for recovery, environmental 
conditions, medical intensive care unit cases, and hospitalised cases. Adding more variables allows 
for the acquisition and examination of more information. This work improves our understanding of 
the effects of climate conditions across Malaysia on the spatial variations of this epidemic. It helps 
local hygienic and environmental authorities make targeted joint interventions to prevent and 
control the epidemic. 
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