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Capnography is the graphical study of carbon dioxide during expiration. Capnography 
has evolved and is more than merely a biomedical device that is used in the emergency 
department and intensive care unit (ICU). There are volume based and time-based 
capnographs. Although end tidal CO2 (EtCO2) is the most used parameter in clinical 
medicine, there are an abundance of other parameters from the capnometer. The 
capnographic parameters could originate from specific plot points of the time- or 
volume-based curves, the area under the curve or other mathematical and 
computationally transformed data of the CO2. Although research of capnometry since 
its inception has focused on the respiratory aspects of the CO2 signal with EtCO2, newer 
parameters could be used to monitor, diagnose and prognose certain circulatory and 
metabolic disorders. In short, capnography is inevitably one of the important vital signs 
of modern medicine. As physiologically challenging conditions such as deep-sea diving 
and the now rampant space travel are becoming more common, there might be a need 
for familiarization with capnogram usage. In this narrative review, we go through the 
physiologic, mathematical, physics and clinical aspects of capnography.  
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1. Introduction 
 

The Coronavirus disease 2019 (COVID-19) pandemic made us realize the importance of point-of-
care devices and respiratory diagnostic tools for theranostic purposes [1,2].  In addition, parameters 
such as the pulse oximetry (SpO2) which was widely used during the COVID-19 pandemic showed 
mixed results skewed towards being less reliable [3,4]. Besides that, the area of telemedicine had a 
growth spurt as the need for quarantine, isolation and minimal to non-contact diagnosis, supervision 
and surveillance were needed during the COVID-19 pandemic [5,6].   

With all these factors, there were emergence and re-emergence of biomedical devices that 
served all these purposes. One of these was the capnometer.  The capnometer measures the carbon 
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dioxide pressure signal in millimeter mercury (mmHg). When this is represented as a graph, the term 
capnography is used instead. In this narrative review, we go through the physiologic, mathematical, 
physics and clinical aspects of capnography. For brevity, capnography may be interchangeably 
referred to as ‘capno’ in this manuscript.  

 
2. Carbon Dioxide Physiology in the Body 
2.1 Breathing: A Physiological Process 

 
Breathing is an indispensable physiological process which involves the exchange of gases between 

the lungs and the pulmonary capillary blood, which is also one of the most vital parameters of life. 
This process permits the body to remove CO2 from the blood whereas the intake of oxygen (O2) 
complements the need to support cellular respiration. Cessation of breathing often indicates an 
impending death and is one of the medico-legal criterions of death [7]. Breathing could be divided 
into two phases, namely the inspiratory and the expiratory phases. While breathing, the air needs to 
traverse a series of zones such as the upper conducting zone (nose, mouth, pharynx and larynx) 
followed by the lower conducting zone (trachea, bronchi and terminal bronchioles) and lastly to the 
respiratory zone (respiratory bronchioles, alveolar ducts and alveoli). During inspiration, air is 
sampled from the atmosphere to the terminal units of the lungs where O2 is normally received into 
the bloodstream while CO2 as biproduct of cellular metabolism of the body is deserted from the 
tissues to the blood and expelled into the atmosphere by expiration. It is also worth mentioning that 
the air residing in the respiratory tract does not partake in true gaseous exchange processes and is 
termed as anatomical dead space. This amounts to approximately 150 ml in healthy adults or nearly 
one third of the total tidal volume [8]. Physiological dead space refers to anatomical dead space and 
any other amount of dead space that fails to participate in gaseous exchange processes within the 
lungs despite being within the respiratory zone. Unutilized air residing within the respiratory zone 
usually represents negligible amount in healthy lungs and thus physiological dead space almost 
equals to anatomical dead space. This however is subjected to increase in various pathological 
instances when the diffusion capacity of the lungs (interstitial fibrosis) or the ventilation-perfusion 
ratio is compromised (pulmonary embolism and emphysema) [9–12].   

 
2.2 Physiological Control to CO2 Expiration 
 

The lungs’ role in regulating CO2 level in the blood is enormous. When we breathe in, inhaled 
oxygen is transported via the bloodstream to the tissues which is then utilized to yield energy and 
subsequently produce CO2 as a waste product. This is carried through the blood back to lungs and 
removed through exhalation. Generally, the ventilatory control is sensed and exerted by a variety of 
receptors. Thoracic neural receptors residing in upper airways, trachea, lungs, chest wall and 
pulmonary vessels respond to lung volumes and various chemicals (histamines and prostaglandins) 
including irritant components (exogenous noxious agents) and chiefly responsible to the local 
chemical environment [13]. Activation signals to the respiratory center elicit alterations in breathing 
patterns primarily by increasing the respiratory rate and/or stimulating cough, bronchoconstriction 
and mucus production. Those with asthma, interstitial lung disease, pulmonary oedema, pneumonia 
and pulmonary embolism tend to show hyperventilation when these types of receptors are activated. 
Peripheral chemoreceptors while being in the carotid and aortic bodies are responsible to react if 
there is a change in arterial oxygen (PaO2). However, they also equally enhance signaling to the brain 
in the event of hypercapnia and acidosis.  Generally, discharge enhances when the partial pressure 
of arterial oxygen goes below 75 mmHg, and shows noticeable increase when it goes below 50-55 
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mmHg [14]. The combined impact of hypoxemia and hypercapnia always produce greater responses 
of the body than it does singly. Centrally located most pronounced chemoreceptors are mainly found 
close to the ventral surface of medulla and retrotrapezoid nucleus and play a significant role to act 
with urgency and powerfully to correct acid base irregularities by calibrating ventilation in response 
to a heightened PCO2 situation. Owing to the lipophilic nature of CO2, it crosses the blood brain 
barrier easily and thus is sensed rapidly by the brain to bring concomitant enhancement in ventilatory 
pattern and alteration in acidity. Pertinent to say that the influence of activation on centrally located 
chemoreceptors are much less while the acid base changes are metabolic in origin in contrast to 
respiratory type. The alveolar sacs are distal anatomical structures that are usually placed at the 20th 
to 23rd successful bifurcation of an ideal lung tissue [15]. Figure 1 shows the trends of O2 and CO2 
values in mmHg in the atmospheric (1), inspired (2), alveolar (3), artery (4), vein (5) and expired air 
(7). Red arrows indicate the movement of respired air while blue arrows indicate expired air. The 
“METABOLISM” arrow shows the steady state of cellular respiration in which oxygenated RBCs are 
converted to deoxygenated RBCs. 

 

 
Fig. 1. Oxygen and carbon dioxide metabolism in the body 

 
3. The Science of Capnography 
3.1 Carbon Dioxide Fate: From One Red to Another 

 
The content of carbon dioxide in the atmosphere is approximately 0.3 mmHg which makes up 

0.04 % of the total gaseous content. Upon exhalation, the carbon dioxide increases to 27 mmHg. The 
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content of carbon dioxide is higher in the alveolar region at 40 mmHg.  The humidity of the inspired 
air is higher than the atmospheric air but remains unchanged in the expired and alveolar air [16,17]. 
The gaseous exchange in the alveoli could also be evaluated in the circulatory system via blood 
sampling of both the arteries and veins. Typically, the arterial blood would show a higher yield of 
oxygen and a lower carbon dioxide of 75 - 100 mmHg and 40 mmHg, respectively. The venous sample 
on the other hand has a lower oxygen and higher carbon dioxide concentration at 40 and 45 mmHg, 
respectively [18]. The arterial blood gas sampling remains the gold standard theranostic tool for 
cellular respiration in the clinical setting [19]. 

The gaseous exchange of carbon dioxide happens via diffusion through the deoxygenated red 
blood cells (RBCs) or better known as carbaminohemoglobin from the capillaries into the alveoli. CO2 
is transported from cells in the circulation towards the lungs in three forms which are the 
carbaminohemoglobin, bicarbonates (HCO3

-) and the gaseous CO2 form. Only 23 % of the CO2 is 
transported via haemoglobin binding in contrast to HCO3

- which owes to 70 % [20]. The CO2 is 20 
times more soluble than O2 in the serum [20].  The carbaminoahemoglobin utilizes the reverse effect 
of Bohr or better known as the Heldane’s effect for the transport of CO2 into the alveoli [21,22]. In 
the capillaries of the alveoli, as the oxygen binds to the haemoglobin, the affinity of the haemoglobin 
towards the CO2 is weakened owing to its diffusion from the capillaries to the alveoli. Other than 
that, the acidity of the haemoglobin is altered at this state to be more acidic thus converting the 
HCO3

- to carbonic acid which readily cleaves into CO2 and water. The CO2 continuously diffuses 
through the alveoli [22]. Of note, other forms of metabolites such as carbon monoxide (CO) also 
undergo similar diffusion into the haemoglobin of the RBCs to form carboxyhaemoglobin.  

As of late, non-dispersive infrared (NDIR) sensors are commonly used in medical devices. NDIR 
does not “disperse” or become scattered by substances between the light source and a detector [23]. 
NDIR sensors detect the CO2 in a gaseous environment by its characteristic absorption and the vital 
components are an infrared (IR) source, a light tube, an interference filter (wavelength) and an 
infrared detector [24]. The exhaled CO2 could be measured non-invasively through the manipulation 
of Lambert-Beer’s Law (LBL) [25,26]. The equation of LBL is calculated from Eq. (1). 

 
𝐼 = 𝐼!𝑒"#$%                         (1) 

 
where, I represents the intensity of light striking the photodetector.  I0 represents the intensity of 
light of an empty sample chamber. a is absorption coefficient of CO2. c is the concentration of CO2 in 
mol/cm3. I is the path length between the light source and the light detector. By using the LBL, the 
concentration of gas is typically calculated in IR spectroscopy [27]. From the same equation, radiation 
at wavelength 4.26 μm is associated with CO2 concentration.  Voltage corresponding to the amount 
of light which is absorbed by CO2 contained in the respiratory gas is detected by a light-receiving 
element, thus detecting the CO2.  

Usually most small gaseous molecules exhibit a vibrational mode that also lies in the mid-infrared 
(MIR) range of 2.5 - 25 µm, and is also related with stretching, twisting, or bending their bonds. CO2 
gas has three vibrational modes: A symmetric stretch mode, a bending mode and an anti-symmetric 
stretch mode. The anti-symmetric stretch mode corresponds with the previously mentioned 
wavelength 4.26 µm in MIR and this is the most useful wavelength for measuring CO2 because there 
are only few molecules which have a very little amount of significance of absorption at 4.26 µm range 
[23]. These concepts have also opened the manipulation of radiolabeled carbon dioxide presence, 
ratio, and recovery over time [28]. IR sensors are usually prioritized compared to other sensors such 
as chemical sensors which have a very low lifetime and need to be calibrated to maintain long term 
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stability [29]. In summary, the CO2 needs to be translocated from the ‘red’ blood cell to the infra-
‘red’ sensor to display capnographic signals.   

 
3.2 The Many Names of Capno  

 
In 1860 John Tyndall inaugurally measured expired CO2 by utilizing spectrum absorption with 

infrared technology [24-30]. This revolutionized the study of expiratory CO2. “Capnometry’ is the 
expirometric study of the CO2 gas. It has been used for centuries and there are literatures as early as 
1962 of its usage [31,32]. As it is conventionally known, the study of capnometry focuses mainly on 
usage of end-tidal carbon dioxide (EtCO2). Although it is used interchangeably with “capnography”, 
“capnometry” means only the measurement of CO2 in respiratory gas without a continuous written 
record or waveform [33]. In an earlier paper in 1990, the author suggested that the measurement of 
EtCO2 in numerical form is called a capnometry and when such occurrence is done in a continuous 
fashion whilst involving the analysis of the waveform, “capnography” is a better term [34]. The device 
which measures both capnometry and capnography is called a “capnometer”. Meanwhile, 
colorimetric capnometry is often a victim of the misnomer capnography. The colorimetric approach 
does not yield any waves [35]. “Capnodynamic” is the combination of capno signals with positive 
end-expiratory pressure (PEEP)[36]. It could be used to detect cardiac output [37,38].  Figure 2 shows 
the summary of the differences between the discussed terms.  Of note, although somewhat related, 
capnodynamic and quantification of radiolabeled carbon dioxide displacement would not be 
discussed as it is beyond the scope of this manuscript. These have been narrated extensively 
elsewhere [28,36,38]. 
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Fig. 2. The many names of capno: grams, graph, meter, metry and other 

 
3.3 The Physics Behind Capnometry Stream, Waveform Signal, Flow, Volume and Time 

 
Mainstream capnometers sensors are placed in between the proximal ET tube and the ventilatory 

circuit [39]. The mainstream capnometer could withstand flow range of the ventilator.  Side stream 
capnometers use tubing connected to an airway adaptor and sampling line between the ETT and the 
breathing circuit to aspirate airway samples [39]. With side stream techniques, an IR sensor in a 
monitor could be placed which could be further away from the patient [39]. The flow rate for side 
stream varies between 150-200ml/L [40]. The side stream could be utilized in both intubated and 
non-intubated patients [41]. The low flow side stream or sometimes known as micro stream 
technology uses a flow rate of 50 ml/min [40,42]. Of note, there is a non-breath capnometer called 
the transcutaneous capnometer as depicted in Figure 2. This is discussed elsewhere as it is beyond 
the scope of this manuscript [43]. 

The time based capnograph is represented by CO2 concentration on the y-axis and time on the x 
-axis as opposed to volume in the x-axis for volume based capnograph. The time based and volume 
based capno are sometimes abbreviated to TCap and VCap, respectively [44]. The TCap shows four 
phases which are phase 0, I, II and III. In contrast, the VCap does not have phase 0 as this represents 
inspiration [45]. Phase I represents free CO2 in the anatomical and apparatus dead space [46]. Phase 
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II represents mixing of dead space and alveolar CO2 depicting the S-shape [46]. Phase III represents 
the alveolar plateau and the maximum point which represents the EtCO2 [46,47]. Additionally, in 
some articles, phase 0 is used interchangeably with phase IV [48].  Furthermore, SI, SII, SIII and SI are 
sometimes represented numerically as S1, S2, S3 and S4. Figures 3 and 4 show the TCap and VCap 
with the location of the phases. Phase I (depicted as magenta): Represents the CO2-free gas from the 
airways (anatomical and apparatus dead space). Phase II (depicted as dark blue): Consists of a rapid 
S-shaped upswing on the tracing (due to mixing of dead space gas with alveolar gas). Phase III 
(depicted as orange): The alveolar plateau represents CO2-rich gas from the alveoli. It almost always 
has a positive slope, indicating a rising PCO2. Phase IV or 0 (depicted as cyan) represents the drop of 
CO2 signal upon inspiration. 

 

 

 

 
Fig. 3. Time-based capnography (TCap)  Fig. 4. Volume-based capnography 

(VCap) 
 
Other major differences between the TCap and VCap includes the lack of dead space and dead 

space ratio calculation in TCap. On the other hand, the VCap lacks duration and temporal based 
capnometrics [49]. Both TCap and VCap could be manipulated to exert capnometric parameters such 
as frequency, efficiency, slopes, volume dead spaces and dead space ratios [49]. 

 
3.4 Capnometric Features 

 
There are numerous of parameters that could be utilized ad manipulated in both TCap and VCap. 

We have divided these to at least seven proposed features. These includes carbon dioxide 
concentration points and coordinates, slopes, angles, areas and volumetric studies, transformation 
of capnometric data, combination of data with other non-capnometric parameter and morphological 
changes. These has been depicted in Figure 5. 

 
3.4.1 Carbon dioxide concentration and time points and coordinates which signify certain clinical 
importance 

 
An example of these phenomena is the EtCO2 which is the peak of carbon dioxide concentration 

of at the alveolar level. Clinically, this also signifies the end of the expiration. This capnographic 
feature has the most usage in clinical practice. Other examples of points usage would be the Bohr’s 
partial pressure of carbon dioxide (PaCO2) based on the location of EtCO2 [50]. Other than that, the 



Semarak Current Biomedical Research Journal  
Volume 1, Issue 1 (2024) 18-39 

25 
 

determination of the beginning and end of a breath cycle which may be used to estimate the ratio 
and frequency of breathing. 

 
3.4.2 Slopes 
 

In 1994, You utilized the S1, S2 and its ratio to differentiate bronchospastic and non-
bronchospastic patients [51]. This finding was later reiterated by Howe in which increment in both 
S1 and S2 was found in bronchospastic diseases [52] .Recent papers suggest the usage of slope II and 
slope III which slightly differs from the S1 and S2 as it uses the percentage of the whole breath 
duration rather than fixed coordinates in the S1 and S2 [53].  

 
3.4.3 Angles 
 

Few angles that have been in use are the take-off angle, alpha and beta angle. The alpha angle 
seems to be increased in bronchospastic diseases as reported by two separate papers by Howe and 
Nik Hisamuddin [52,54]. Other than that, congestive heart failure has shown different wave 
morphology when compared to normal cases [55]. Although no research on the morphological 
feature has been explained, we hypothesize that the beta angle and inspiration time would be 
increased in congestive heart failure cases.    

 
3.4.4 Areas and volumetric studies 
 

The volumes can measure at any point of both the inspiration and expiration phase. Other than 
that, the area under the curve (AUC) via the integration of a concentration wave over time can be 
used to estimate the tidal volume per breath (VTCO2Br) at the alveoli per breath as done in previous 
studies by Tusman [56]. Meanwhile, the area above the curves (ABC) has been used by Bohr and 
Enghoff for dead volume studies as well as for the estimation of the arterial partial pressure of carbon 
dioxide PaCO2 and mean expired carbon dioxide (PeCO2) [57]. 

 
3.4.5 Functional transformation of wave data 
 

A few other studies have optimized the functional transformation of data mathematically which 
uses the Hjorth parameter by squaring the mean variance of the S2 and S1 ratio [58,59]. Lukic et al., 
[60] has used Root Mean Square (RMS) of CO2 wave for the entire breath length for a better 
representation than mean value of the CO2 obtained by standard equation [60]. A Linear Predictive 
Coding (LPC) was previously described by [58]. The same authors also proposed the usage of Power 
Spectral Density (PSD) via utilization of the frequency domain. The PSD was significant to differentiate 
bronchospastic conditions [58]. Of note, the VCap is more efficient and robust than the TCap in 
calculation of volume based capnometrics. Bothe the Bohr’s ad Enghosff’s spaces could be readily 
available with a VCap [61,62]. 

 
3.4.6 Combination of data with other non-capnometric parameter 

 
Other than that, the transformation of the wave data may utilize the usage of other non-

capnographic parameters. Capnodynamic which utilizes bot capnographic signals which combines 
CO2 signals from capno and PEEP is an example [37,38]. Other clinical significance of these 
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combination of parameters for both time and volume based capno has been covered extensively 
elsewhere [48]. 

 
3.4.7 Morphological changes 
 

Morphological change is the qualitative measure in evaluating capnography. Typically, the 
capnograph waveforms in TCap are quasiperiodic [63]. Among the common deviation from normal 
capnographic wave morphology includes absence of waves, changes in amplitude, duration and 
volume, cardiogenic oscillation, rebreathing patterns and the shark-fin pattern seen in 
bronchospasm. These are clearly depicted extensively elsewhere [64,65].  Figure 6 shows an example 
of the ‘Crurare Cleft’ pattern from our clinical experience in a patient who was not deeply sedated 
upon intubation. Meanwhile, as return of spontaneous circulation (ROSC) and pneumothorax’s signal 
changes would be discussed in later part of this manuscript, apnea exerts morphological changes and 
CO2 signal disappearance as reported by [66]. 

 

 
Fig. 5. Suggested feature classifications of capnometry 
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Fig. 6. Example of crurare cleft (image courtesy of Dr Muhammad Aizuddin) 

 
Other clinical capnometric parameters for both TCap and VCap that has not been mentioned in 

this manuscript has covered elsewhere [48]. 
 
3.5 Capnograph Beyond EtCO2 

 

Most modern capnometers are still sole based on EtCO2. Due to the limitations of current 
capnometers, the addition of custom signal processing or digitization methods are needed to yield 
capnometric parameters [67-70]. Figure 7 is an example of a signal derived from a TCap which shows 
several other non EtCO2 parameters. S1, S2, S1-S2 slope, tidal volume per breath, alpha angle, Bohr’s 
PACO2 (represented as black diamond), EtCO2 (represented as black star), inspiration plus expiration 
time and ratio. This could be programmed and computed as discussed by [67]. 

 

 
Fig. 7. Capnometric parameters in a digitized capnograph. Figure adapted 
and modified from [67] 
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3.6 Factors Affecting the Capnograph  
 
Among the factors that may affect the capnograph signal originates from the subject or technical 

abnormalities. Factors such as rebreathing, depletion of CO2 absorber, faulty valve, kinking, 
obstruction of the ET tube and extubation of the ET tube may all play a role in affecting the 
capnograph [43]. Meanwhile, subject conditions that leads to increase or decrease in CO2 production, 
tachypnea or bradypnea and blood acidity levels are also the contributors for signal abnormalities 
[43].  

 
4. Capnography and Clinical Medidcine 
4.1 Conventional Usage of the Capnometer / Capnograph 
 

Capnography has been used by anaesthetic and emergency clinicians to determine the placement 
of an endotracheal (ET) tube, to monitor the depth of sedation, to monitor respiratory acidosis and 
as a preventive measure to avoid carbon dioxide narcosis. Over the years, the usage has expanded 
towards the study of metabolism, circulation, lung perfusion and diffusion, quality of spontaneous 
respiration and the patency of airways, outside of its typical usage in the anaesthetic and emergency 
medicine field [71,72].  Additionally, ventilatory and device factors such as patency of the ET tube, 
state of connecting tubes, activity of CO2 absorber and patient positioning on the operation table 
could also be monitored [72].  There are more parameters which are now recognized and being used 
at both bench side and bed beyond the sole usage of EtCO2 in the capnometry alone. In 2017, Jaffe 
proposed that the capnographic analysis includes indices, slopes and angles, area, CO2 waveform 
measures and statistics, frequency transformations, Hjorth parameters and areas [73].  

Other interesting and selected capnometric parameters are shown in Table 1 and Figure 8. For 
easy reference, Table 1 has been sorted alphabetically according to the author’s name. 

 
 Table 1 
 Selected clinical studies with distinct capnometric parameter(s) 
No. Referance and citation Capno parameters 

involved 
Clinical condition Capnometer / Technology 

utilized 
1 Abramo et al., [74]. EtCO2 Detection of respiratory 

failure and assess the 
requirement for 
intubation in actively 
seizing and post-ictal 
patients.  

Sidestream capnometer (Pryon, 
Menomonee Falls, WI) 

2 Alessandro et al., [75].  EtCO2 Chronic ketosis Vmax Encore 29 System 
(Vmax) (Viasys Healthcare, Inc., 
Yorba Linda, CA). 

3 Ansarin et al., [76]. EtCO2 Mild and overt 
hypothyroid patients 

(Microstream®; Oridion, 
Needham, MA) 

4 Araujo-Preza et al., 
[77]. 

EtCO2 Feeding tube placement The Easy-Cap (end-tidal CO2 
detector) 

5 Baudendistel et al., 
[78]. 

EtCO2 Malignant hyperthermia CO2 Monitor (Datex) 

6 Baudin et al., [79]. EtCO2, KPIV 
, EtCO2 + KPIV, 
EtCO2 + KPIV + 
FiO2* 

Estimation of arterial 
PaCO2 in mechanically 
ventilated children 

Capnostat 5 mainstream 
pediatric; Philips Healthcare, 
Markham, ON, Canada – 
volumetric Capnometry 
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7 Bradley et al., [80]. CO2 signal trace Assist / anticipate 
difficult intubation with 
bougie  

sidestream capnograph 
(FilterLine H Set Infant/ 
Neonate, Koninklijke Philips N.V, 
Amsterdam, Netherlands) 

8 Brat et al., [81]. EtCO2, dead space 
volume to tidal 
volume ratio 
(VD/VT), VE/ 
VCO2 slope and 
VE/VCO2 ratio 

Hyperventilation 
Syndrome 

PowerCube-Ergo system 
(Ganshorn Medizin Electronic 
GmbH, Germany) 

9 Brown et al., [82]. Mean forced 
expiratory CO2 
values (1-6 
seconds), slope of 
forced expiratory 
CO2 curve 

 Capnostat® 5 mainstream CO2 
sensor, Philips Respironics, 
Amsterdam, 
Netherlands). 

10 Chebl et al., [83]. EtCO2 Diabetic Ketoacidosis Philips intellivue MX700 Philips 
healthcare, Andover, MA). 

11 Crures et al., [84]. EtCO2 after a 3 
second inspiratory 
hold (PLATCO2) 

Approximation of 
arterial CO2 pressure in 
acute respiratory 
distress syndrome in 
paediatrics 

Sidestream technique via 
EngströmCarestation™ (GE 
Datex) and mainstream 
technique via Hamilton 
G5™ (Hamilton) MV 
 

12 Diniz et al.,  [85]. RR, Vd, VD/VT, 
EtCO2, PeCO2, 
VCO2Br, slopes, 
inspiration and 
expiration time  

Capnometric parameter 
and CT scan correlation 
in COPD 

CO2SMO 
Plus (Dixtal/Novametrix 
Incorporation, Wallingford, CT, 
USA) 

13 Dony et al., [86]. EtCO2 Hypocapnia under 
general anaesthesia and 
post operative 30 days 
mortality rate 

 sidestream CO2 sampling 
(Perseus A500, 
Dräger, Lübeck, Germany 

14 Eriksson et al., [87]. SBT-CO2, fDLate, 
PaCO2-EtCO2? 
VDPhys/VT  

Diagnosis of pulmonary 
embolism 

CO2 
analysis (CO2 / Analyzer 130, 
Siemens Elema) 

15 Fouzas et al., SII, SIII, VT, RR Bronchopulmonary 
dysplasia 

Unspecified CO2 sensor 

16 Howe et al., [88].  EtCO2, Phase II 
slope, Phase III 
slope 

Asthma  Novametrix® capnometry 

17 Jarenbäck et al., [89]. Phase II, phase III, 
TLC, EFFi 

Correlation of a new 
parameter (EFFi) with 
GOLD staging in COPD 

Exhalyxer D: Mainstream 
capnograph 

18 Kasuya et al., [90]. PaCO2
*

  – EtCO2 
difference 

Obese and non-obese 
subjects with and 
without sleep apnea 

Cap-ONE 
mainstream capnometer system 
(Nihon Kohden)  and  
Microcap sidestream 
capnometer 
 

19 Kean et al., [91]. A1, A2, AR slope 1, 
slope 2, Slope 
ratio, alpha angle 
Hjorth Parameters 

Asthma diagnosis Nihon Kohden Bedside Monitor 
BSM-2301K. 

20 Kerklaan et al., [92]. VCO2 Energy expenditure in 
critically ill ventilated 
children 

Servo-I® ventilator with the 
Capnostat-III sensor, 
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21 Lavillegrand et al., 
[93]. 

Color change Placement of feeding 
tube 

Colorimetric capnometer 

22 Lin et al., [94]. EtCO2, VD/VT Surfactant therapy 
efficacy in preterm 
infants with low birth 
weight 

Philips M2501A Mainstream 
Capnography 

23 Luiz et al., [95]. Tidal volume (TV), 
dead space (DS), 
DS/TV ratio, 
VCO2, inspiratory 
and expiratory 
volume, Slopes 

Respiratory function in  
Duchenne muscular 
dystrophy 
patients 

CO2SMO® 
Plus respiratory profile monitor 
(DX-8100 model, Novametrix 
Inc., CT, USA; Analysis Plus!® 
software). 

24 Malarvilli et al., [70]. A1-A6, S1-S6(All 
parameters are 
subsegments of 
the CO2 TCap 
signal) 

ARDS diagnosis in 
COVID-19  

Unnamed custom capnometer 

25 Mieloszyk et al., [55]. exhalation 
duration; ETCO2; 
time spent at 
ETCO2 ; and end-
exhalation slope 

Capnographic feature 
classification in COPD 
and congestive heart 
failure (CHF) 

Capnostream 20( Oridion 
Medical, Needham, MA) 

26 Moreira et al., [96].  P(a-et) CO2 
gradient, EtCO2, 
SIII III, fDlate 

Pulmonary embolism 
monitoring / prognosis 
post thrombolysis  

CO2 SMO PLUS 8100 
Dixtal/Novametrix™ 

27 Neumann et al., [97]. KPIV BPD Ultrasonic flowmeter (Exhalyzer 
D, ECO MEDICS AG) which 
incorporates a mainstream 
carbon dioxide (CO2) sensor 
(Philips 
Respironic) 

28 Nitzan et al., [98]. CO2 signal 
detection 

Minimally Invasive 
Surfactant Treatment 
(MIST) catheter 
placement in infants 
with respiratory distress 

Commercial CO2 detector 
(Pedicap, Nellcor Colorado, USA) 

29 Norweg et al., [99]. EtCO2 COPD therapeutic 
option 

Information not provided 

30 Peyton et al., [100]. VCO2 and EtCO2 Cardiac output 
approximation in patient 
undergoing cardiac or 
liver surgeries 

CO2SMO+ inline  
infrared capnograph transducer 
and differential pressure  
pneumotachograph 
(Novametrix/Respironics USA) 

31 Poon et al., [101]. EtCO2  for 3 
minutes 

ROSC in cardiac arrest 
patents 

NellcorTM Microstream model 
N85 by Medtronic was  

32 Ribeiro et al., [102]. RR, inspiratory 
time (IT), 
expiratory time 
(ET), and the 
phase III slope 
normalized by 
expiratory  
volume (phase III 
slope/Ve). 

Evaluation of airway 
obstruction in cystic 
fibrosis 

CO2SMO  
Plus Analyzer® (Respironics, 
Murrysville, PA, USA) 

33 Shikama et al., [103]. EtCO2, Slope III Bronchospasm 
resolution 

Information not provided 
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34 Singh et al.,  [104]. EtCO2, RR and  
Hjorth activity 

Asthma diagnosis Unnamed custom capnometer 

35 Szakál et al.,  [105]. EtCO2 and gastric 
artery PaCO2* 

Estimation of splanchnic 
perfusion and 
a prognostic index also 
in critically ill neonates 

Sidestream Microcap Handheld 
Capnograph. 

36 Takaki et al.,  [106]. EtCO2 Deep breathing exercise 
post abdominal surgery 

Microstream, AG-400R, (Nihon-
Kohden, Tokyo, Japan) 

37 Talker et al., [107]. α, β, γ, and δ 
angles; gradients 
and residuals 
derived from 
fitting curves to 
phases, absolute 
and short-term 
variability of 
pCO2; curvature; 
ratio of the 
expiratory to 
inspiratory phase ; 
area under the 
curve (AUC. 

Real time diagnosis of 
COPD using machine 
learning 

TidalSense’s N-Tidal™ device 

38 Tsai et al.; TBFL Capno waveform Pneumothorax No information provided 
39 Veronez et al., [108]. RR, VCO2, Phase 3 

Slopes normalized 
for tidal volume 
(P3Slp/VE) 

Lung disease evaluation 
in Cystic Fibrosis and 
Noncystic 
Fibrosis Bronchiectasis 

C02SMOS Plus Analyser 
(Respironics, 
Murrisville, PA) 

40 Vijayam et al., [109]. EtCO2  Acute ketosis / 
Nutritional ketosis 

Microstream Capnostream-20 
capnometer (Covidien, 
Mansfield, MA), 
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Fig. 8. The current possible clinical usages of capno 

 
5. Current Limitations and Challenges in Capno Usage 
5.1 Limitation of Capnography 

 
There has been a vast capnometric usage of EtCO2 despite the presence of capnograph in modern 

medicine. To add to this dilemma, the current medical exposure and training of capnometry is still 
low compared to colorimetric capnometer [110]. Other than that, most capnometers that are time 
based do not have flow as one other adjunct or complementary parameter.  Likewise, the physiologic 
dead space parameters cannot be calculated when utilizing a time based capnometer. The 
mainstream and side stream devices serve different issues when it comes to dead space and 
inaccuracies when low tidal volumes are encountered [111].  

From a clinical perspective, signals and waveform patterns of diseases such as pneumothorax and 
pleural effusion are not represented and have been depicted in any scientific article at the point of 
writing this manuscript.  
 
5.2 Challenges in Capnography 

 
Older devices show graphical representation with EtCO2 value being the sole capnometric 

parameters. Additional measures must be taken to analyze other capnometric parameters. Signal 
processing of digital data or digitization of the capnographic images to analog prints may be applied 
[67–69].  
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6. Future Prospects of Capnography 
6.1 Future Prospects 
 

Among the prospects of capnograpy is the current expansion of usage. More diseases could be 
tested out as the capnography can be utilized for surveillance, monitoring diagnosis and prognosis. 
A particular are of interest would be metabolism as REE could be approximated by capnometric 
parameters [92]. Other than that, more integration and combination of non-capnometric parameters 
with the capnograph would yield better diagnostic sensitivity and specificity. 

As for the device, there is a need for major improvement for the integration of capnographic 
parameters in newer devices. For older devices, signal processing or digitization of the capnograph 
could be a strategy to obtain the capnometric parameters as we have discussed earlier. Future 
devices should also focus on reducing device related errors such as rebreathing artefacts, motion 
artefacts and CO2 signal leakage. Currently there are works in laser spectroscopy for high resolution 
capnography [112]. In addition, there are numerous techniques to obtain other capnometric 
parameters by manipulation both the VCap and TCap [113]. The utilization of artificial intelligence 
also increases the accuracy of capnometric parameters and may perhaps lead t discovery of newer 
ones [107]. 

There is a huge role of capnography is for space travel, monitoring in confined spaces underwater 
exploration and telemedicine to name a few [114–117]. These endless possibilities are depicted in 
Figure 9. 
 

 
Fig. 9. Future possibilities and prospects of capnograph 

 
7. Conclusions 
 

The use of capnographs outside of the operating room, intensive care unit and emergency 
department is becoming more prominent. Capnographic data and interpretation are needed for both 
lung and non-lung diseases. As the age of telemedicine and remote human voyage and scavenging 
has already taken place, we believe that we have provided ‘breathtaking’ evidence that the 
capnography is a deserving candidate for the sixth vital sign in humanity. 
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